Generic placeholder image

Current Proteomics

Editor-in-Chief

ISSN (Print): 1570-1646
ISSN (Online): 1875-6247

Research Article

A Multi-Method and Structure-Based In Silico Vaccine Designing Against Helicobacter pylori Employing Immuno-Informatics Approach

Author(s): Anam Naz*, Tahreem Zaheer, Hamza Arshad Dar, Faryal Mehwish Awan, Ayesha Obaid, Shifa Tariq Ashraf, Rehan Zafar Paracha, Arif Malik and Amjad Ali*

Volume 18, Issue 2, 2021

Published on: 14 April, 2020

Page: [237 - 247] Pages: 11

DOI: 10.2174/1570164617999200414120231

Price: $65

Abstract

Background: Helicobacter pylori infection and its treatment still remain a challenge for human health worldwide. A variety of antibiotics and combination therapies are currently used to treat H. pylori induced ulcers and carcinoma; however, no effective treatment is available to eliminate the pathogen from the body. Additionally, antibiotic resistance is also one of the main reasons for prolonged and persistent infection.

Aims: Until new drugs are available for this infection, vaccinology seems the only alternative opportunity to exploit against H. pylori induced diseases.

Methods: Multiple epitopes prioritized in our previous study have been tested for their possible antigenic combinations, resulting in 169-mer and 183-mer peptide vaccines containing the amino acid sequences of 3 and 4 epitopes respectively, along with adjuvant (Cholera Toxin Subunit B adjuvant at 5’ end) and linkers (GPGPG and EAAAK).

Results: Poly-epitope proteins proposed as potential vaccine candidates against H. pylori include SabA-HP0289-Omp16-VacA (SHOV), VacA-Omp16-HP0289-FecA (VOHF), VacA-Omp16-HP0289- SabA (VOHS), VacA-Omp16-HP0289-BabA (VOHB), VacA-Omp16-HP0289-SabA-FecA (VOHSF), VacA-Omp16-HP0289-SabA-BabA (VOHSB) and VacA-Omp16-HP0289-BabA-SabA (VOHBS). Structures of these poly-epitope peptide vaccines have been modeled and checked for their affinity with HLA alleles and receptors. These proposed poly-epitope vaccine candidates bind efficiently with A2, A3, B7 and DR1 superfamilies of HLA alleles. They can also form stable and significant interactions with Toll-like receptor 2 and Toll-like receptor 4.

Conclusion: Results suggest that these multi-epitopic vaccines can elicit a significant immune response against H. pylori and can be tested further for efficient vaccine development.

Keywords: H. pylori, multi-epitope vaccine, poly-epitope peptide vaccine, HLA allele binding, TLR2 receptor, TLR4 receptor.

Graphical Abstract
[1]
Ali, A.; Naz, A.; Soares, S.C. Pan-genome analysis of human gastric pathogen H. pylori: comparative genomics and pathogenomics approaches to identify regions associated with pathogenicity and prediction of potential core therapeutic targets. BioMed Res. Int., 2015, 2015, 139580.
[2]
Yang, J.C.; Lu, C-W.; Lin, C.J. Treatment of Helicobacter pylori infection: current status and future concepts. World J. Gastroenterol., 2014, 20(18), 5283-5293.
[http://dx.doi.org/10.3748/wjg.v20.i18.5283] [PMID: 24833858]
[3]
Ben Chaabane, N.; Al-Adhba, H.S. Ciprofloxacin-containing versus clarithromycin-containing sequential therapy for Helicobacter pylori eradication: a randomized trial. Indian J. Gastroenterol., 2015, 34(1), 68-72.
[http://dx.doi.org/10.1007/s12664-015-0535-x] [PMID: 25721770]
[4]
Zhou, W-Y.; Shi, Y.; Wu, C.; Zhang, W.J.; Mao, X.H.; Guo, G.; Li, H.X.; Zou, Q.M. Therapeutic efficacy of a multi-epitope vaccine against Helicobacter pylori infection in BALB/c mice model. Vaccine, 2009, 27(36), 5013-5019.
[http://dx.doi.org/10.1016/j.vaccine.2009.05.009] [PMID: 19446591]
[5]
Olive, C.; Toth, I.; Jackson, D. Technological advances in antigen delivery and synthetic peptide vaccine developmental strategies. Mini Rev. Med. Chem., 2001, 1(4), 429-438.
[http://dx.doi.org/10.2174/1389557013406666] [PMID: 12369968]
[6]
Suhrbier, A. Multi-epitope DNA vaccines. Immunol. Cell Biol., 1997, 75(4), 402-408.
[http://dx.doi.org/10.1038/icb.1997.63] [PMID: 9315485]
[7]
Bijker, M.S.; Melief, C.J.; Offringa, R.; van der Burg, S.H. Design and development of synthetic peptide vaccines: Past, present and future. Expert Rev. Vaccines, 2007, 6(4), 591-603.
[http://dx.doi.org/10.1586/14760584.6.4.591] [PMID: 17669012]
[8]
Farhadi, T.; Karimi, Z.; Ghasemi, Y. Production of a novel multi-epitope vaccine based on outer membrane proteins of Klebsiella pneumoniae. Trends Pharmacol. Sci., 2015, 1(3), 167-172.
[9]
Sette, A.; Fikes, J. Epitope-based vaccines: an update on epitope identification, vaccine design and delivery. Curr. Opin. Immunol., 2003, 15(4), 461-470.
[http://dx.doi.org/10.1016/S0952-7915(03)00083-9] [PMID: 12900280]
[10]
Naz, A.; Awan, F.M.; Obaid, A.; Muhammad, S.A.; Paracha, R.Z.; Ahmad, J.; Ali, A. Identification of putative vaccine candidates against Helicobacter pylori exploiting exoproteome and secretome: a reverse vaccinology based approach. Infect. Genet. Evol., 2015, 32, 280-291.
[http://dx.doi.org/10.1016/j.meegid.2015.03.027] [PMID: 25818402]
[11]
Garg, A.; Gupta, D. VirulentPred: a SVM based prediction method for virulent proteins in bacterial pathogens. BMC Bioinformatics, 2008, 9(1), 62.
[http://dx.doi.org/10.1186/1471-2105-9-62] [PMID: 18226234]
[12]
Doytchinova, I.A.; Flower, D.R. VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics, 2007, 8(1), 4.
[http://dx.doi.org/10.1186/1471-2105-8-4] [PMID: 17207271]
[13]
Dominguez, C.; Boelens, R.; Bonvin, A.M. HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. J. Am. Chem. Soc., 2003, 125(7), 1731-1737.
[http://dx.doi.org/10.1021/ja026939x] [PMID: 12580598]
[14]
Nezafat, N.; Ghasemi, Y.; Javadi, G.; Khoshnoud, M.J.; Omidinia, E. A novel multi-epitope peptide vaccine against cancer: an in silico approach. J. Theor. Biol., 2014, 349, 121-134.
[http://dx.doi.org/10.1016/j.jtbi.2014.01.018] [PMID: 24512916]
[15]
Stratmann, T. Cholera toxin subunit B as adjuvant-An accelerator in protective immunity and a break in autoimmunity. Vaccines (Basel), 2015, 3(3), 579-596.
[http://dx.doi.org/10.3390/vaccines3030579] [PMID: 26350596]
[16]
Dimitrov, I.; Naneva, L.; Doytchinova, I. AllergenFP: allergenicity prediction by descriptor fingerprints. Bioinformatics, 2014, 30(6), 846-851.
[PMID: 24167156]
[17]
Magnan, C.N.; Randall, A.; Baldi, P. SOLpro: accurate sequence-based prediction of protein solubility. Bioinformatics, 2009, 25(17), 2200-2207.
[http://dx.doi.org/10.1093/bioinformatics/btp386] [PMID: 19549632]
[18]
Gasteiger, E.; Hoogland, C.; Gattiker, A. Protein identification and analysis tools on the ExPASy server. The Proteomics Protocols Handbook; Springer, 2005, pp. 571-607.
[http://dx.doi.org/10.1385/1-59259-890-0:571]
[19]
Roy, A.; Kucukural, A.; Zhang, Y. I-TASSER: a unified platform for automated protein structure and function prediction. Nat. Protoc., 2010, 5(4), 725-738.
[http://dx.doi.org/10.1038/nprot.2010.5] [PMID: 20360767]
[20]
Ko, J.; Park, H.; Heo, L.; Seok, C. GalaxyWEB server for protein structure prediction and refinement. Nucleic Acids Res., 2012, 40(Web Server issue), W294-297.
[http://dx.doi.org/10.1093/nar/gks493] [PMID: 22649060]
[21]
Rodrigues, J.P.; Levitt, M.; Chopra, G. KoBaMIN: a knowledge-based minimization web server for protein structure refinement. Nucleic Acids Res., 2012, 40(Web Server issue), W323-328.
[http://dx.doi.org/10.1093/nar/gks376] [PMID: 22564897]
[22]
Abraham, M.J.; Murtola, T.; Schulz, R. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 2015, 1, 19-25.
[http://dx.doi.org/10.1016/j.softx.2015.06.001]
[23]
Peng, X.N.; Jing Wang, J.; Zhang, W. Molecular dynamics simulation analysis of the effect of T790M mutation on epidermal growth factor receptor protein architecture in non-small cell lung carcinoma. Oncol. Lett., 2017, 14(2), 2249-2253.
[24]
Humphrey, W.; Dalke, A.; Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph., 1996, 14(1), 33-38.
[http://dx.doi.org/10.1016/0263-7855(96)00018-5] [PMID: 8744570]
[25]
Sette, A.; Livingston, B.; McKinney, D.; Appella, E.; Fikes, J.; Sidney, J.; Newman, M.; Chesnut, R. The development of multi-epitope vaccines: epitope identification, vaccine design and clinical evaluation. Biologicals, 2001, 29(3-4), 271-276.
[http://dx.doi.org/10.1006/biol.2001.0297] [PMID: 11851327]
[26]
Jardetzky, T.S.; Brown, J.H.; Gorga, J.C.; Stern, L.J.; Urban, R.G.; Strominger, J.L.; Wiley, D.C. Crystallographic analysis of endogenous peptides associated with HLA-DR1 suggests a common, polyproline II-like conformation for bound peptides. Proc. Natl. Acad. Sci. USA, 1996, 93(2), 734-738.
[http://dx.doi.org/10.1073/pnas.93.2.734] [PMID: 8570625]
[27]
Madden, D.R. The three-dimensional structure of peptide-MHC complexes. Annu. Rev. Immunol., 1995, 13(1), 587-622.
[http://dx.doi.org/10.1146/annurev.iy.13.040195.003103] [PMID: 7612235]
[28]
Günther, S.; Schlundt, A.; Sticht, J.; Roske, Y.; Heinemann, U.; Wiesmüller, K.H.; Jung, G.; Falk, K.; Rötzschke, O.; Freund, C. Bidirectional binding of invariant chain peptides to an MHC class II molecule. Proc. Natl. Acad. Sci. USA, 2010, 107(51), 22219-22224.
[http://dx.doi.org/10.1073/pnas.1014708107] [PMID: 21115828]
[29]
DeLano, W.L. The PyMOL molecular graphics system.DeLano Scientific; Sci. Res: San Carlos, CA, 2002, p. 700.
[30]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera a visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[31]
Laskowski, R.A.; Hutchinson, E.G.; Michie, A.D.; Wallace, A.C.; Jones, M.L.; Thornton, J.M. PDBsum: a Web-based database of summaries and analyses of all PDB structures. Trends Biochem. Sci., 1997, 22(12), 488-490.
[http://dx.doi.org/10.1016/S0968-0004(97)01140-7] [PMID: 9433130]
[32]
López-Blanco, J.R.; Aliaga, J.I.; Quintana-Ortí, E.S.; Chacón, P. iMODS: internal coordinates normal mode analysis server. Nucleic Acids Res., 2014, 42(Web Server issue), W271-276.
[http://dx.doi.org/10.1093/nar/gku339] [PMID: 24771341]
[33]
Atherton, J.C.; Cao, P.; Peek, R.M., Jr; Tummuru, M.K.; Blaser, M.J.; Cover, T.L. Mosaicism in vacuolating cytotoxin alleles of Helicobacter pylori. Association of specific vacA types with cytotoxin production and peptic ulceration. J. Biol. Chem., 1995, 270(30), 17771-17777.
[http://dx.doi.org/10.1074/jbc.270.30.17771] [PMID: 7629077]
[34]
Rhead, J.L.; Letley, D.P.; Mohammadi, M.; Hussein, N.; Mohagheghi, M.A.; Eshagh Hosseini, M.; Atherton, J.C. A new Helicobacter pylori vacuolating cytotoxin determinant, the intermediate region, is associated with gastric cancer. Gastroenterology, 2007, 133(3), 926-936.
[http://dx.doi.org/10.1053/j.gastro.2007.06.056] [PMID: 17854597]
[35]
Wen, S.; Moss, S.F. Helicobacter pylori virulence factors in gastric carcinogenesis. Cancer Lett., 2009, 282(1), 1-8.
[http://dx.doi.org/10.1016/j.canlet.2008.11.016] [PMID: 19111390]
[36]
Gerhard, M.; Lehn, N.; Neumayer, N.; Borén, T.; Rad, R.; Schepp, W.; Miehlke, S.; Classen, M.; Prinz, C. Clinical relevance of the Helicobacter pylori gene for blood-group antigen-binding adhesin. Proc. Natl. Acad. Sci. USA, 1999, 96(22), 12778-12783.
[http://dx.doi.org/10.1073/pnas.96.22.12778] [PMID: 10535999]
[37]
Cohen, S.; Shafferman, A. Novel strategies in the design and production of vaccines; Springer Sci. Business Media, 1996, p. 397.
[http://dx.doi.org/10.1007/978-1-4899-1382-1_21]
[38]
Sause, W.E.; Castillo, A.R.; Ottemann, K.M. The Helicobacter pylori autotransporter ImaA (HP0289) modulates the immune response and contributes to host colonization. Infect. Immun., 2012, 80(7), 2286-2296.
[http://dx.doi.org/10.1128/IAI.00312-12] [PMID: 22566509]
[39]
Bambini, S.; Rappuoli, R. The use of genomics in microbial vaccine development. Drug Discov. Today, 2009, 14(5-6), 252-260.
[http://dx.doi.org/10.1016/j.drudis.2008.12.007] [PMID: 19150507]
[40]
Nezafat, N.; Karimi, Z.; Eslami, M.; Mohkam, M.; Zandian, S.; Ghasemi, Y. Designing an efficient multi-epitope peptide vaccine against Vibrio cholerae via combined immunoinformatics and protein interaction based approaches. Comput. Biol. Chem., 2016, 62, 82-95.
[http://dx.doi.org/10.1016/j.compbiolchem.2016.04.006] [PMID: 27107181]
[41]
Livingston, B.; Crimi, C.; Newman, M.; Higashimoto, Y.; Appella, E.; Sidney, J.; Sette, A. A rational strategy to design multiepitope immunogens based on multiple Th lymphocyte epitopes. J. Immunol., 2002, 168(11), 5499-5506.
[http://dx.doi.org/10.4049/jimmunol.168.11.5499] [PMID: 12023344]
[42]
Shedlock, D.J.; Shen, H. Requirement for CD4 T cell help in generating functional CD8 T cell memory. Science, 2003, 300(5617), 337-339.
[http://dx.doi.org/10.1126/science.1082305] [PMID: 12690201]
[43]
Carvalho, L.H.; Sano, G.; Hafalla, J.C.; Morrot, A.; Curotto de Lafaille, M.A.; Zavala, F. IL-4-secreting CD4+ T cells are crucial to the development of CD8+ T-cell responses against malaria liver stages. Nat. Med., 2002, 8(2), 166-170.
[http://dx.doi.org/10.1038/nm0202-166] [PMID: 11821901]
[44]
Elyaman, W.; Kivisäkk, P.; Reddy, J.; Chitnis, T.; Raddassi, K.; Imitola, J.; Bradshaw, E.; Kuchroo, V.K.; Yagita, H.; Sayegh, M.H.; Khoury, S.J. Distinct functions of autoreactive memory and effector CD4+ T cells in experimental autoimmune encephalomyelitis. Am. J. Pathol., 2008, 173(2), 411-422.
[http://dx.doi.org/10.2353/ajpath.2008.080142] [PMID: 18583313]
[45]
van de Berg, P.J.; van Leeuwen, E.M.; ten Berge, I.J.; van Lier, R. Cytotoxic human CD4(+) T cells. Curr. Opin. Immunol., 2008, 20(3), 339-343.
[http://dx.doi.org/10.1016/j.coi.2008.03.007] [PMID: 18440213]
[46]
Shams, H.; Klucar, P.; Weis, S.E.; Lalvani, A.; Moonan, P.K.; Safi, H.; Wizel, B.; Ewer, K.; Nepom, G.T.; Lewinsohn, D.M.; Andersen, P.; Barnes, P.F. Characterization of a Mycobacterium tuberculosis peptide that is recognized by human CD4+ and CD8+ T cells in the context of multiple HLA alleles. J. Immunol., 2004, 173(3), 1966-1977.
[http://dx.doi.org/10.4049/jimmunol.173.3.1966] [PMID: 15265931]
[47]
Mustafa, A.S. HLA-restricted immune response to mycobacterial antigens: relevance to vaccine design. Hum. Immunol., 2000, 61(2), 166-171.
[http://dx.doi.org/10.1016/S0198-8859(99)00137-8] [PMID: 10717810]
[48]
Majewska, M.; Szczepanik, M. The role of Toll-Like Receptors (TLR) in innate and adaptive immune responses and their function in immune response regulation. Postepy Hig. Med. Dosw., 2006, 60, 52-63.
[PMID: 16474276]
[49]
Takeda, K.; Akira, S. Roles of Toll-like receptors in innate immune responses. Genes Cells, 2001, 6(9), 733-742.
[http://dx.doi.org/10.1046/j.1365-2443.2001.00458.x] [PMID: 11554921]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy