Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Phanginin R Induces Cytoprotective Autophagy via JNK/c-Jun Signaling Pathway in Non-Small Cell Lung Cancer A549 Cells

Author(s): Le-Le Zhang, Han Bao, Yu-Lian Xu, Xiao-Ming Jiang, Wei Li, Liang Zou, Li-Gen Lin* and Jin-Jian Lu*

Volume 20, Issue 8, 2020

Page: [982 - 988] Pages: 7

DOI: 10.2174/1871520620666200414095828

Price: $65

Abstract

Background: Cassane-type diterpenoids are widely distributed in the medical plants of genus Caesalpinia. To date, plenty of cassane diterpenoids have been isolated from the genus Caesalpinia, and some of them were documented to exhibit multiple biological activities. However, the effects of these compounds on autophagy have never been reported.

Objective: To investigate the effects and mechanisms of the cassane diterpenoids including Phanginin R (PR) on autophagy in Non-Small Cell Lung Cancer (NSCLC) A549 cells.

Methods: Western blot analysis and immunofluorescence assay were performed to investigate the effects of the compounds on autophagic flux in A549 cells. The pathway inhibitor and siRNA interference were used to investigate the mechanism of PR. MTT assay was performed to detect cell viability.

Results: PR treatment upregulated the expression of phosphatidylethanolamine-modified microtubule-associated protein Light-Chain 3 (LC3-II) in A549 cells. Immunofluorescence assay showed that PR treatment increased the production of red-fluorescent puncta in mRFP-GFP-LC3 plasmid-transfected cells, indicating PR promoted autophagic flux in A549 cells. PR treatment activated the c-Jun N-terminal Kinase (JNK) signaling pathway while it did not affect the classical Akt/mammalian Target of Rapamycin (mTOR) pathway. Pretreatment with the JNK inhibitor SP600125 or siRNA targeting JNK or c-Jun suppressed PR-induced autophagy. In addition, cotreatment with the autophagy inhibitor Chloroquine (CQ) or inhibition of the JNK/c-Jun signaling pathway increased PR-induced cytotoxicity.

Conclusion: PR induced cytoprotective autophagy in NSCLC A549 cells via the JNK/c-Jun signaling pathway, and autophagy inhibition could further improve the anti-cancer potential of PR.

Keywords: Phanginin R, autophagy, JNK, c-Jun, non-small cell lung cancer, anti-cancer.

Graphical Abstract
[1]
Mizushima, N. Autophagy: process and function. Genes Dev., 2007, 21(22), 2861-2873.
[http://dx.doi.org/10.1101/gad.1599207] [PMID: 18006683]
[2]
Mizushima, N.; Komatsu, M. Autophagy: renovation of cells and tissues. Cell, 2011, 147(4), 728-741.
[http://dx.doi.org/10.1016/j.cell.2011.10.026] [PMID: 22078875]
[3]
Mathew, R.; Karantza-Wadsworth, V.; White, E. Role of autophagy in cancer. Nat. Rev. Cancer, 2007, 7(12), 961-967.
[http://dx.doi.org/10.1038/nrc2254] [PMID: 17972889]
[4]
Wong, E.; Cuervo, A.M. Autophagy gone awry in neurodegenerative diseases. Nat. Neurosci., 2010, 13(7), 805-811.
[http://dx.doi.org/10.1038/nn.2575] [PMID: 20581817]
[5]
Deretic, V.; Saitoh, T.; Akira, S. Autophagy in infection, inflammation and immunity. Nat. Rev. Immunol., 2013, 13(10), 722-737.
[http://dx.doi.org/10.1038/nri3532] [PMID: 24064518]
[6]
Levy, J.M.M.; Towers, C.G.; Thorburn, A. Targeting autophagy in cancer. Nat. Rev. Cancer, 2017, 17(9), 528-542.
[http://dx.doi.org/10.1038/nrc.2017.53] [PMID: 28751651]
[7]
Maiuri, M.C.; Kroemer, G. Therapeutic modulation of autophagy: which disease comes first? Cell Death Differ., 2019, 26(4), 680-689.
[http://dx.doi.org/10.1038/s41418-019-0290-0] [PMID: 30728461]
[8]
Rezabakhsh, A.; Fathi, F.; Bagheri, H.S.; Malekinejad, H.; Montaseri, A.; Rahbarghazi, R.; Garjani, A. Silibinin protects human endothelial cells from high glucose-induced injury by enhancing autophagic response. J. Cell. Biochem., 2018, 119(10), 8084-8094.
[http://dx.doi.org/10.1002/jcb.26735] [PMID: 29388698]
[9]
Rezabakhsh, A.; Rahbarghazi, R.; Malekinejad, H.; Fathi, F.; Montaseri, A.; Garjani, A. Quercetin alleviates high glucose-induced damage on human umbilical vein endothelial cells by promoting autophagy. Phytomedicine, 2019, 56, 183-193.
[http://dx.doi.org/10.1016/j.phymed.2018.11.008] [PMID: 30668339]
[10]
Jing, W.; Zhang, X.; Zhou, H.; Wang, Y.; Yang, M.; Long, L.; Gao, H. Naturally occurring cassane diterpenoids (CAs) of Caesalpinia: A systematic review of its biosynthesis, chemistry and pharmacology. Fitoterapia, 2019, 134, 226-249.
[http://dx.doi.org/10.1016/j.fitote.2019.02.023] [PMID: 30825578]
[11]
Dickson, R.A.; Houghton, P.J.; Hylands, P.J. Antibacterial and antioxidant cassane diterpenoids from Caesalpinia benthamiana. Phytochemistry, 2007, 68(10), 1436-1441.
[http://dx.doi.org/10.1016/j.phytochem.2007.03.008] [PMID: 17418286]
[12]
Jiang, R.W.; Ma, S.C.; But, P.P.H.; Mak, T.C. New antiviral cassane furanoditerpenes from Caesalpinia minax. J. Nat. Prod., 2001, 64(10), 1266-1272.
[http://dx.doi.org/10.1021/np010174+] [PMID: 11678648]
[13]
Ruan, Q.F.; Zhou, X.H.; Jiang, S.Q.; Yang, B.; Jin, J.; Cui, H.; Zhao, Z.X. Caesalminaxins O-T, cassane diterpenoids from the seeds of Caesalpinia minax and their anti-inflammation. Fitoterapia, 2019, 134, 50-57.
[http://dx.doi.org/10.1016/j.fitote.2019.02.004] [PMID: 30731147]
[14]
Yang, G.X.; Ma, G.L.; Li, H.; Huang, T.; Xiong, J.; Hu, J.F. Advanced natural products chemistry research in China between 2015 and 2017. Chin. J. Nat. Med., 2018, 16(12), 881-906.
[http://dx.doi.org/10.1016/S1875-5364(18)30131-6] [PMID: 30595214]
[15]
Bao, H.; Zhang, L.L.; Liu, Q.Y.; Feng, L.; Ye, Y.; Lu, J.J.; Lin, L.G. Cytotoxic and pro-apoptotic effects of cassane diterpenoids from the seeds of Caesalpinia sappan in cancer cells. Molecules, 2016, 21(6), 791.
[http://dx.doi.org/10.3390/molecules21060791] [PMID: 27322234]
[16]
Zhang, L.L.; Xu, Y.L.; Tang, Z.H.; Xu, X.H.; Chen, X.; Li, T.; Ding, C.Y.; Huang, M.Q.; Chen, X.P.; Wang, Y.T.; Yuan, X.F.; Lu, J.J. Effects of alisol B 23-acetate on ovarian cancer cells: G1 phase cell cycle arrest, apoptosis, migration and invasion inhibition. Phytomedicine, 2016, 23(8), 800-809.
[http://dx.doi.org/10.1016/j.phymed.2016.04.003] [PMID: 27288915]
[17]
Kimura, S.; Noda, T.; Yoshimori, T. Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy, 2007, 3(5), 452-460.
[http://dx.doi.org/10.4161/auto.4451] [PMID: 17534139]
[18]
Green, D.R.; Levine, B. To be or not to be? How selective autophagy and cell death govern cell fate. Cell, 2014, 157(1), 65-75.
[http://dx.doi.org/10.1016/j.cell.2014.02.049] [PMID: 24679527]
[19]
Wirth, M.; Tooze, S.A. Autophagy Pathway Mapping to Elucidate the Function of Novel Autophagy Regulators Identified by High-Throughput Screening. In: Autophagy; Springer, 2019; pp. 375-387.
[http://dx.doi.org/10.1007/978-1-4939-8873-0_25]
[20]
Mizushima, N.; Yoshimori, T. How to interpret LC3 immunoblotting. Autophagy, 2007, 3(6), 542-545.
[http://dx.doi.org/10.4161/auto.4600] [PMID: 17611390]
[21]
Mauthe, M.; Orhon, I.; Rocchi, C.; Zhou, X.; Luhr, M.; Hijlkema, K.J.; Coppes, R.P.; Engedal, N.; Mari, M.; Reggiori, F. Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion. Autophagy, 2018, 14(8), 1435-1455.
[http://dx.doi.org/10.1080/15548627.2018.1474314] [PMID: 29940786]
[22]
Mauvezin, C.; Neufeld, T.P. Bafilomycin A1 disrupts autophagic flux by inhibiting both V-ATPase-dependent acidification and Ca-P60A/SERCA-dependent autophagosome-lysosome fusion. Autophagy, 2015, 11(8), 1437-1438.
[http://dx.doi.org/10.1080/15548627.2015.1066957] [PMID: 26156798]
[23]
Sun, H.; Wang, Z.; Yakisich, J.S. Natural products targeting autophagy via the PI3K/Akt/mTOR pathway as anticancer agents. Anticancer. Agents Med. Chem., 2013, 13(7), 1048-1056.
[http://dx.doi.org/10.2174/18715206113139990130] [PMID: 23293890]
[24]
Lv, D.L.; Chen, L.; Ding, W.; Zhang, W.; Wang, H.L.; Wang, S.; Liu, W.B. Ginsenoside G-Rh2 synergizes with SMI-4a in anti-melanoma activity through autophagic cell death. Chin. Med., 2018, 13(1), 11.
[http://dx.doi.org/10.1186/s13020-018-0168-y] [PMID: 29483938]
[25]
Pal, M.; Febbraio, M.A.; Lancaster, G.I. The roles of c-Jun NH2-terminal kinases (JNKs) in obesity and insulin resistance. J. Physiol., 2016, 594(2), 267-279.
[http://dx.doi.org/10.1113/JP271457] [PMID: 26608096]
[26]
Xie, X.; Kaoud, T.S.; Edupuganti, R.; Zhang, T.; Kogawa, T.; Zhao, Y.; Chauhan, G.B.; Giannoukos, D.N.; Qi, Y.; Tripathy, D.; Wang, J.; Gray, N.S.; Dalby, K.N.; Bartholomeusz, C.; Ueno, N.T. c-Jun N-terminal kinase promotes stem cell phenotype in triple-negative breast cancer through upregulation of Notch1 via activation of c-Jun. Oncogene, 2017, 36(18), 2599-2608.
[http://dx.doi.org/10.1038/onc.2016.417] [PMID: 27941886]
[27]
Feng, Z.L.; Zhang, L.L.; Zheng, Y.D.; Liu, Q.Y.; Liu, J.X.; Feng, L.; Huang, L.; Zhang, Q.W.; Lu, J.J.; Lin, L.G. Norditerpenoids and dinorditerpenoids from the seeds of Podocarpus nagi as cytotoxic agents and autophagy inducers. J. Nat. Prod., 2017, 80(7), 2110-2117.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00347] [PMID: 28719204]
[28]
Tang, Z.H.; Zhang, L.L.; Li, T.; Lu, J.H.; Ma, D.L.; Leung, C.H.; Chen, X.P.; Jiang, H.L.; Wang, Y.T.; Lu, J.J. Glycyrrhetinic acid induces cytoprotective autophagy via the inositol-requiring enzyme 1α-c-Jun N-terminal kinase cascade in non-small cell lung cancer cells. Oncotarget, 2015, 6(41), 43911-43926.
[http://dx.doi.org/10.18632/oncotarget.6084] [PMID: 26549806]
[29]
Dalby, K.N.; Tekedereli, I.; Lopez-Berestein, G.; Ozpolat, B. Targeting the prodeath and prosurvival functions of autophagy as novel therapeutic strategies in cancer. Autophagy, 2010, 6(3), 322-329.
[http://dx.doi.org/10.4161/auto.6.3.11625] [PMID: 20224296]
[30]
Denton, D.; Kumar, S. Autophagy-dependent cell death. Cell Death Differ., 2019, 26(4), 605-616.
[http://dx.doi.org/10.1038/s41418-018-0252-y] [PMID: 30568239]
[31]
Bialik, S.; Dasari, S.K.; Kimchi, A. Autophagy-dependent cell death - where, how and why a cell eats itself to death. J. Cell Sci., 2018, 131(18)jcs215152
[http://dx.doi.org/10.1242/jcs.215152] [PMID: 30237248]

Rights & Permissions Print Export Cite as
© 2024 Bentham Science Publishers | Privacy Policy