Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Anticancer Activity of Lectins from Bauhinia purpurea and Wisteria floribunda on Breast Cancer MCF-7 Cell Lines

Author(s): Sanskruthi B. Agrawal*, Neha Gupta, Sameer S. Bhagyawant and Sushama M. Gaikwad

Volume 27, Issue 9, 2020

Page: [870 - 877] Pages: 8

DOI: 10.2174/0929866527666200408143614

Price: $65

Abstract

Background: Individual and collaborative efforts are being made worldwide in search of effective chemical or natural drugs with less severe side-effects for treatment of cancer. Due to the specificity and selectivity properties of lectins for saccharides, several plant lectins are known to induce cytotoxicity into tumor cells.

Objective: To study the antiproliferative activity of two N-acetyl galactosamine specific plant lectins from seeds of Bauhinia purpurea and Wisteria floribunda against MCF-7 Breast cancer cell lines.

Methods: MTT, lactate dehydrogenase (LDH) leakage, reactive oxygen species (ROS), and caspase- 3 assays and flow cytometry for cell cycle analysis were performed.

Results: The agglutinins BPL and WFL; 446 μgml-1 (2.2 μM) and 329 μgml-1 (2.8 μM), respectively caused remarkable concentration-dependent antiproliferative effect on MCF-7. The effect was seen to be a consequence of binding of the lectin to the cell surface and triggering S and G2 phase arrest. Apoptosis induced was found to be associated with LDH leakage, cell cycle arrest and ROS generation. The apoptotic signal was observed to be amplified by activation of caspase-3 resulting in cell death.

Conclusion: The study provides a base for detailed investigation and further use of lectins in cancer studies.

Keywords: Lectins, anti-cancer, MCF-7, antiproliferative, reactive oxygen species, apoptosis, caspase-3, cell cycle arrest.

Graphical Abstract
[1]
De Mejía, E.G.; Prisecaru, V.I. Lectins as bioactive plant proteins: A potential in cancer treatment. Crit. Rev. Food Sci. Nutr., 2005, 45(6), 425-445.
[http://dx.doi.org/10.1080/10408390591034445] [PMID: 16183566]
[2]
Van Damme, E.J.M.; Lanno, N.; Peumans, W.J. Plant Lectins. In: Advances in botanical research., Kader, J.C.; Delseny, M., Eds.; Elsevier Ltd: San Diego, . 2008, pp. 107-209.
[http://dx.doi.org/10.1016/S0065-2296(08)00403-5]
[3]
Liu, B.; Bian, H.J.; Bao, J.K. Plant lectins: Potential antineoplastic drugs from bench to clinic. Cancer Lett., 2010, 287(1), 1-12.
[http://dx.doi.org/10.1016/j.canlet.2009.05.013] [PMID: 19487073]
[4]
Lyu, S.Y.; Choi, S.H.; Park, W.B. Korean mistletoe lectin-induced apoptosis in hepatocarcinoma cells is associated with inhibition of telomerase via mitochondrial controlled pathway independent of p53. Arch. Pharm. Res., 2002, 25(1), 93-101.
[http://dx.doi.org/10.1007/BF02975269] [PMID: 11885700]
[5]
Coulibaly, F.S.; Youan, B.C. Current status of lectin-based cancer diagnosis and therapy. AIMS Mol. Sci., 2017, 4(1), 1-27.
[http://dx.doi.org/10.3934/molsci.2017.1.1]
[6]
Sharon, N.; Lis, H. History of lectins: From hemagglutinins to biological recognition molecules. Glycobiology, 2004, 14(11), 53R-62R.
[http://dx.doi.org/10.1093/glycob/cwh122] [PMID: 15229195]
[7]
Fry, S.A.; Afrough, B.; Lomax-Browne, H.J.; Timms, J.F.; Velentzis, L.S.; Leathem, A.J.C. Lectin microarray profiling of metastatic breast cancers. Glycobiology, 2011, 21(8), 1060-1070.
[http://dx.doi.org/10.1093/glycob/cwr045] [PMID: 21507904]
[8]
Haji-Ghassemi, O.; Gilbert, M.; Spence, J.; Schur, M.J.; Parker, M.J.; Jenkins, M.L.; Burke, J.E.; van Faassen, H.; Young, N.M.; Evans, S.V. Molecular basis for recognition of the cancer glycobiomarker, LacdiNAc (GalNAc[β1→4]GlcNAc), by Wisteria floribunda agglutinin. J. Biol. Chem., 2016, 291(46), 24085-24095.
[http://dx.doi.org/10.1074/jbc.M116.750463] [PMID: 27601469]
[9]
Matsuda, A.; Kuno, A.; Kawamoto, T.; Matsuzaki, H.; Irimura, T.; Ikehara, Y.; Zen, Y.; Nakanuma, Y.; Yamamoto, M.; Ohkohchi, N.; Shoda, J.; Hirabayashi, J.; Narimatsu, H. Wisteria floribunda agglutinin-positive mucin 1 is a sensitive biliary marker for human cholangiocarcinoma. Hepatology, 2010, 52(1), 174-182.
[http://dx.doi.org/10.1002/hep.23654] [PMID: 20578261]
[10]
Remmelink, M.; Darro, F.; Decaestecker, C.; De Decker, R.; Bovin, N.V.; Gebhart, M.; Kaltner, H.; Gabius, H.J.; Kiss, R.; Salmon, I.; Danguy, A. In vitro influence of lectins and neoglycoconjugates on the growth of three human sarcoma cell lines. J. Cancer Res. Clin. Oncol., 1999, 125(5), 275-285.
[http://dx.doi.org/10.1007/s004320050274] [PMID: 10359132]
[11]
Fotakis, G.; Timbrell, J.A. In vitro cytotoxicity assays: Comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicol. Lett., 2006, 160(2), 171-177.
[http://dx.doi.org/10.1016/j.toxlet.2005.07.001] [PMID: 16111842]
[12]
Ajji, P.K.; Binder, M.J.; Walder, K.; Puri, M. Balsamin induces apoptosis in breast cancer cells via DNA fragmentation and cell cycle arrest. Mol. Cell. Biochem., 2017, 432(1-2), 189-198.
[http://dx.doi.org/10.1007/s11010-017-3009-x] [PMID: 28378131]
[13]
Mishell, B.B.; Shiigi, S.M. Selected methods in cellular immunology. , W.H. Freeman and Co.: Oxford, UK,. 1980.
[14]
Khazir, J.; Riley, D.L.; Pilcher, L.A.; De-Maayer, P.; Mir, B.A. Anticancer agents from diverse natural sources. Nat. Prod. Commun., 2014, 9(11), 1655-1669.
[http://dx.doi.org/10.1177/1934578X1400901130] [PMID: 25532303]
[15]
Seca, A.M.L.; Pinto, D.C.G.A. Plant secondary metabolites as anticancer agents: Successes in clinical trials and therapeutic application. Int. J. Mol. Sci., 2018, 19(1), 263.
[http://dx.doi.org/10.3390/ijms19010263] [PMID: 29337925]
[16]
Okur, M.E.; Karakas, N.; Karadag, A.E.; Uludag, D.; Polat, D.C. Investigation of antioxidant and cytotoxic activities of Opuntia ficus-indica (L.) Mill. fruit extract. Istanbul J. Pharm., 2019, 49(3), 154-160.
[http://dx.doi.org/10.26650/IstanbulJPharm.2019.19035]
[17]
Karakas, N.; Okur, M.E.; Ozturk, I.; Ayla, S.; Karadag, A.E.; Polat, D.C. Antioxidant activity of Blackthorn (Prunus spinosa L.) fruit extract and cytotoxic effects on various cancer cell lines. Medeniyet Med J., 2019, 34, 297-304.
[18]
Gupta, N.; Bisen, P.S.; Bhagyawant, S.S. Chickpea lectin inhibits human breast cancer cell proliferation and induces apoptosis through cell cycle arrest. Protein Pept. Lett., 2018, 25(5), 492-499.
[http://dx.doi.org/10.2174/0929866525666180406142900] [PMID: 29623820]
[19]
Huang, L.H.; Yan, Q.J.; Kopparapu, N.K.; Jiang, Z.Q.; Sun, Y. Astragalus membranaceus lectin (AML) induces caspase-dependent apoptosis in human leukemia cells. Cell Prolif., 2012, 45(1), 15-21.
[http://dx.doi.org/10.1111/j.1365-2184.2011.00800.x] [PMID: 22172162]
[20]
Agrawal, S.B.; Ghosh, D.; Gaikwad, S.M. Investigation of structural and saccharide binding transitions of Bauhinia purpurea and Wisteria floribunda lectins. Arch. Biochem. Biophys., 2019, 662, 134-142.
[http://dx.doi.org/10.1016/j.abb.2018.12.003] [PMID: 30529570]
[21]
Decker, T.; Lohmann-Matthes, M.L. A quick and simple method for the quantitation of lactate dehydrogenase release in measurements of cellular cytotoxicity and tumor necrosis factor (TNF) activity. J. Immunol. Methods, 1988, 115(1), 61-69.
[http://dx.doi.org/10.1016/0022-1759(88)90310-9] [PMID: 3192948]
[22]
Kumari, S.; Badana, A.K. G, M.M.; G, S.; Malla, R. reactive oxygen species: a key constituent in cancer survival. Biomark. Insights, 2018, 13, 1177271918755391.
[http://dx.doi.org/10.1177/1177271918755391] [PMID: 29449774]
[23]
Salvesen, G.S.; Dixit, V.M. Caspase activation: The induced-proximity model. Proc. Natl. Acad. Sci. USA, 1999, 96(20), 10964-10967.
[http://dx.doi.org/10.1073/pnas.96.20.10964] [PMID: 10500109]
[24]
Singh, R.; Nawale, L.; Sarkar, D.; Suresh, C.G. Two chitotriose-specific lectins show anti-angiogenesis, induces caspase-9-mediated apoptosis and early arrest of pancreatic tumor cell cycle. PLoS One, 2016, 11(1), e0146110.
[http://dx.doi.org/10.1371/journal.pone.0146110] [PMID: 26795117]
[25]
Deepa, M.; Sureshkumar, T.; Satheeshkumar, P.K.; Priya, S. Purified mulberry leaf lectin (MLL) induces apoptosis and cell cycle arrest in human breast cancer and colon cancer cells. Chem. Biol. Interact., 2012, 200(1), 38-44.
[http://dx.doi.org/10.1016/j.cbi.2012.08.025] [PMID: 22982777]
[26]
Moreno-Celis, U.; López-Martínez, J.; Blanco-Labra, A.; Cervantes-Jiménez, R.; Estrada-Martínez, L.E.; García-Pascalin, A.E.; Guerrero-Carrillo, M.J.; Rodríguez-Méndez, A.J.; Mejía, C.; Ferríz-Martínez, R.A.; García-Gasca, T. Phaseolus acutifolius lectin fractions exhibit apoptotic effects on colon cancer: Preclinical studies using dimethilhydrazine or azoxi-methane as cancer induction agents. Molecules, 2017, 22(10), E1670.
[http://dx.doi.org/10.3390/molecules22101670] [PMID: 28991196]
[27]
Estrada-Martínez, L.E.; Moreno-Celis, U.; Cervantes-Jiménez, R.; Ferriz-Martínez, R.A.; Blanco-Labra, A.; García-Gasca, T. Plant lectins as medical tools against digestive system cancers. Int. J. Mol. Sci., 2017, 18(7), 1403.
[http://dx.doi.org/10.3390/ijms18071403] [PMID: 28671623]
[28]
Mukhopadhyay, S.; Panda, P.K.; Behera, B.; Das, C.K.; Hassan, M.K.; Das, D.N.; Sinha, N.; Bissoyi, A.; Pramanik, K.; Maiti, T.K.; Bhutia, S.K. In vitro and in vivo antitumor effects of Peanut agglutinin through induction of apoptotic and autophagic cell death. Food Chem. Toxicol., 2014, 64, 369-377.
[http://dx.doi.org/10.1016/j.fct.2013.11.046] [PMID: 24333024]
[29]
Liu, S.; Song, X.L.; Wang, Y.H.; Wang, X.M.; Xiao, Y.; Wang, X.; Cheng, L.; Li, X.T. The efficacy of WGA modified daunorubicin anti-resistant liposomes in treatment of drug-resistant MCF-7 breast cancer. J. Drug Target., 2017, 25(6), 541-553.
[http://dx.doi.org/10.1080/1061186X.2017.1298602] [PMID: 28277825]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy