Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Proteomics-Based Characterization of the Effects of MMP14 on the Protein Content of Exosomes from Corneal Fibroblasts

Author(s): Kyu-Yeon Han*, Jin-Hong Chang and Dimitri T. Azar

Volume 27, Issue 10, 2020

Page: [979 - 988] Pages: 10

DOI: 10.2174/0929866527666200408142827

Price: $65

Abstract

Background: Exosomes secreted by corneal fibroblasts contain matrix metalloproteinase (MMP) 14, which is known to influence pro-MMP2 accumulation on exosomes. Accordingly, we hypothesized that the enzymatic activity of MMP14 may alter the protein content of corneal fibroblast- secreted exosomes.

Objective: The aim of this study was to investigate the effects of MMP14 on the composition and biological activity of corneal fibroblast-derived exosomes.

Methods: Knock out of the catalytic domain (ΔExon4) of MMP14 in corneal fibroblasts was used to determine the effect of MMP14 expression on the characteristics of fibroblast-secreted exosomes. The amount of secreted proteins and their size distribution were measured using Nano Tracking Analysis. Proteins within exosomes from wild-type (WT) and ΔExon4-deficient fibroblasts were identified by liquid chromatography-tandem mass spectrometry (MS/MS) proteomics analysis. The proteolytic effects of MMP14 were evaluated in vitro via MS identification of eliminated proteins. The biological functions of MMP14-carrying exosomes were investigated via fusion to endothelial cells and flow cytometric assays.

Results: Exosomes isolated from WT and ΔExon4-deficient fibroblasts exhibited similar size distributions and morphologies, although WT fibroblasts secreted a greater amount of exosomes. The protein content, however, was higher in ΔExon4-deficient fibroblast-derived exosomes than in WT fibroblast-derived exosomes. Proteomics analysis revealed that WT-derived exosomes included proteins that regulated cell migration, and ΔExon4 fibroblast-derived exosomes contained additional proteins that were cleaved by MMP14.

Conclusion: Our findings suggest that MMP14 expression influences the protein composition of exosomes secreted by corneal fibroblasts, and through those biological components, MMP14 in corneal fibroblasts derived-exosomes may regulate corneal angiogenesis.

Keywords: Extracellular vesicles, exosomes, metalloproteinase 14, corneal fibroblasts, angiogenesis, biological activity.

Graphical Abstract
[1]
van Niel, G.; D’Angelo, G.; Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol., 2018, 19(4), 213-228.
[http://dx.doi.org/10.1038/nrm.2017.125] [PMID: 29339798]
[2]
Schorey, J.S.; Cheng, Y.; Singh, P.P.; Smith, V.L. Exosomes and other extracellular vesicles in host-pathogen interactions. EMBO Rep., 2015, 16(1), 24-43.
[http://dx.doi.org/10.15252/embr.201439363] [PMID: 25488940]
[3]
Colombo, M.; Raposo, G.; Théry, C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu. Rev. Cell Dev. Biol., 2014, 30, 255-289.
[http://dx.doi.org/10.1146/annurev-cellbio-101512-122326] [PMID: 25288114]
[4]
Johnstone, R.M.; Adam, M.; Hammond, J.R.; Orr, L.; Turbide, C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J. Biol. Chem., 1987, 262(19), 9412-9420.
[PMID: 3597417]
[5]
Trajkovic, K.; Hsu, C.; Chiantia, S.; Rajendran, L.; Wenzel, D.; Wieland, F.; Schwille, P.; Brügger, B.; Simons, M. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science, 2008, 319(5867), 1244-1247.
[http://dx.doi.org/10.1126/science.1153124] [PMID: 18309083]
[6]
Sims, P.J.; Faioni, E.M.; Wiedmer, T.; Shattil, S.J. Complement proteins C5b-9 cause release of membrane vesicles from the platelet surface that are enriched in the membrane receptor for coagulation factor Va and express prothrombinase activity. J. Biol. Chem., 1988, 263(34), 18205-18212.
[PMID: 2848029]
[7]
Isola, A.L.; Chen, S. Exosomes: The messengers of health and disease. Curr. Neuropharmacol., 2017, 15(1), 157-165.
[http://dx.doi.org/10.2174/1570159X14666160825160421] [PMID: 27568544]
[8]
Robinson, D.G.; Ding, Y.; Jiang, L. Unconventional protein secretion in plants: a critical assessment. Protoplasma, 2016, 253(1), 31-43.
[http://dx.doi.org/10.1007/s00709-015-0887-1] [PMID: 26410830]
[9]
Han, K.Y.; Tran, J.A.; Chang, J.H.; Azar, D.T.; Zieske, J.D. Potential role of corneal epithelial cell-derived exosomes in corneal wound healing and neovascularization. Sci. Rep., 2017, 7, 40548.
[http://dx.doi.org/10.1038/srep40548] [PMID: 28165027]
[10]
Booth, A.M.; Fang, Y.; Fallon, J.K.; Yang, J.M.; Hildreth, J.E.; Gould, S.J. Exosomes and HIV Gag bud from endosome-like domains of the T cell plasma membrane. J. Cell Biol., 2006, 172(6), 923-935.
[http://dx.doi.org/10.1083/jcb.200508014] [PMID: 16533950]
[11]
Lin, J.; Li, J.; Huang, B.; Liu, J.; Chen, X.; Chen, X.M.; Xu, Y.M.; Huang, L.F.; Wang, X.Z. Exosomes: novel biomarkers for clinical diagnosis. ScientificWorldJournal, 2015, 2015, 657086.
[http://dx.doi.org/10.1155/2015/657086] [PMID: 25695100]
[12]
Raposo, G.; Nijman, H.W.; Stoorvogel, W.; Liejendekker, R.; Harding, C.V.; Melief, C.J.; Geuze, H.J. B lymphocytes secrete antigen-presenting vesicles. J. Exp. Med., 1996, 183(3), 1161-1172.
[http://dx.doi.org/10.1084/jem.183.3.1161] [PMID: 8642258]
[13]
Zitvogel, L.; Regnault, A.; Lozier, A.; Wolfers, J.; Flament, C.; Tenza, D.; Ricciardi-Castagnoli, P.; Raposo, G.; Amigorena, S. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat. Med., 1998, 4(5), 594-600.
[http://dx.doi.org/10.1038/nm0598-594] [PMID: 9585234]
[14]
Schorey, J.S.; Bhatnagar, S. Exosome function: from tumor immunology to pathogen biology. Traffic, 2008, 9(6), 871-881.
[http://dx.doi.org/10.1111/j.1600-0854.2008.00734.x] [PMID: 18331451]
[15]
Mears, R.; Craven, R.A.; Hanrahan, S.; Totty, N.; Upton, C.; Young, S.L.; Patel, P.; Selby, P.J.; Banks, R.E. Proteomic analysis of melanoma-derived exosomes by two-dimensional polyacrylamide gel electrophoresis and mass spectrometry. Proteomics, 2004, 4(12), 4019-4031.
[http://dx.doi.org/10.1002/pmic.200400876] [PMID: 15478216]
[16]
Feng, D.; Zhao, W.L.; Ye, Y.Y.; Bai, X.C.; Liu, R.Q.; Chang, L.F.; Zhou, Q.; Sui, S.F. Cellular internalization of exosomes occurs through phagocytosis. Traffic, 2010, 11(5), 675-687.
[http://dx.doi.org/10.1111/j.1600-0854.2010.01041.x] [PMID: 20136776]
[17]
Harding, C.; Heuser, J.; Stahl, P. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J. Cell Biol., 1983, 97(2), 329-339.
[http://dx.doi.org/10.1083/jcb.97.2.329] [PMID: 6309857]
[18]
Cestari, I.; Ansa-Addo, E.; Deolindo, P.; Inal, J.M.; Ramirez, M.I. Trypanosoma cruzi immune evasion mediated by host cell-derived microvesicles. J. Immunol., 2012, 188(4), 1942-1952.
[http://dx.doi.org/10.4049/jimmunol.1102053] [PMID: 22262654]
[19]
Vella, L.J.; Sharples, R.A.; Nisbet, R.M.; Cappai, R.; Hill, A.F. The role of exosomes in the processing of proteins associated with neurodegenerative diseases. Eur. Biophys. J., 2008, 37(3), 323-332.
[http://dx.doi.org/10.1007/s00249-007-0246-z] [PMID: 18064447]
[20]
Masyuk, A.I.; Masyuk, T.V.; Larusso, N.F. Exosomes in the pathogenesis, diagnostics and therapeutics of liver diseases. J. Hepatol., 2013, 59(3), 621-625.
[http://dx.doi.org/10.1016/j.jhep.2013.03.028] [PMID: 23557871]
[21]
Hannafon, B.N.; Ding, W.Q. Intercellular communication by exosome-derived microRNAs in cancer. Int. J. Mol. Sci., 2013, 14(7), 14240-14269.
[http://dx.doi.org/10.3390/ijms140714240] [PMID: 23839094]
[22]
Lindsey, M.L. Assigning matrix metalloproteinase roles in ischaemic cardiac remodelling. Nat. Rev. Cardiol., 2018, 15(8), 471-479.
[http://dx.doi.org/10.1038/s41569-018-0022-z] [PMID: 29752454]
[23]
Coussens, L.M.; Fingleton, B.; Matrisian, L.M. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science, 2002, 295(5564), 2387-2392.
[http://dx.doi.org/10.1126/science.1067100] [PMID: 11923519]
[24]
Massova, I.; Kotra, L.P.; Fridman, R.; Mobashery, S. Matrix metalloproteinases: Structures, evolution, and diversification. FASEB J., 1998, 12(12), 1075-1095.
[http://dx.doi.org/10.1096/fasebj.12.12.1075] [PMID: 9737711]
[25]
Sameshima, T.; Nabeshima, K.; Toole, B.P.; Yokogami, K.; Okada, Y.; Goya, T.; Koono, M.; Wakisaka, S. Expression of emmprin (CD147), a cell surface inducer of matrix metalloproteinases, in normal human brain and gliomas. Int. J. Cancer, 2000, 88(1), 21-27.
[http://dx.doi.org/10.1002/1097-0215(20001001)88:1<21::AID-IJC4>3.0.CO;2-S] [PMID: 10962435]
[26]
Guo, H.; Majmudar, G.; Jensen, T.C.; Biswas, C.; Toole, B.P.; Gordon, M.K. Characterization of the gene for human EMMPRIN, a tumor cell surface inducer of matrix metalloproteinases. Gene, 1998, 220(1-2), 99-108.
[http://dx.doi.org/10.1016/S0378-1119(98)00400-4] [PMID: 9767135]
[27]
Koyama, S. Coordinate cell-surface expression of matrix metalloproteinases and their inhibitors on cancer-associated myofibroblasts from malignant ascites in patients with gastric carcinoma. J. Cancer Res. Clin. Oncol., 2005, 131(12), 809-814.
[http://dx.doi.org/10.1007/s00432-005-0030-3] [PMID: 16180025]
[28]
Itoh, Y.; Ito, A.; Iwata, K.; Tanzawa, K.; Mori, Y.; Nagase, H. Plasma membrane-bound tissue inhibitor of metalloproteinases (TIMP)-2 specifically inhibits matrix metalloproteinase 2 (gelatinase A) activated on the cell surface. J. Biol. Chem., 1998, 273(38), 24360-24367.
[http://dx.doi.org/10.1074/jbc.273.38.24360] [PMID: 9733724]
[29]
Cauwe, B.; Van den Steen, P.E.; Opdenakker, G. The biochemical, biological, and pathological kaleidoscope of cell surface substrates processed by matrix metalloproteinases. Crit. Rev. Biochem. Mol. Biol., 2007, 42(3), 113-185.
[http://dx.doi.org/10.1080/10409230701340019] [PMID: 17562450]
[30]
Watanabe, A.; Hoshino, D.; Koshikawa, N.; Seiki, M.; Suzuki, T.; Ichikawa, K. Critical role of transient activity of MT1-MMP for ECM degradation in invadopodia. PLOS Comput. Biol., 2013, 9(5), e1003086.
[http://dx.doi.org/10.1371/journal.pcbi.1003086] [PMID: 23737743]
[31]
Zarrabi, K.; Dufour, A.; Li, J.; Kuscu, C.; Pulkoski-Gross, A.; Zhi, J.; Hu, Y.; Sampson, N.S.; Zucker, S.; Cao, J. Inhibition of matrix metalloproteinase 14 (MMP-14)-mediated cancer cell migration. J. Biol. Chem., 2011, 286(38), 33167-33177.
[http://dx.doi.org/10.1074/jbc.M111.256644] [PMID: 21795678]
[32]
Valacca, C.; Tassone, E.; Mignatti, P. TIMP-2 interaction with MT1-MMP activates the AKT pathway and protects tumor cells from apoptosis. PLoS One, 2015, 10(9), e0136797.
[http://dx.doi.org/10.1371/journal.pone.0136797] [PMID: 26331622]
[33]
Chang, J.H.; Huang, Y.H.; Cunningham, C.M.; Han, K.Y.; Chang, M.; Seiki, M.; Zhou, Z.; Azar, D.T. Matrix metalloproteinase 14 modulates signal transduction and angiogenesis in the cornea. Surv. Ophthalmol., 2016, 61(4), 478-497.
[http://dx.doi.org/10.1016/j.survophthal.2015.11.006] [PMID: 26647161]
[34]
Zhou, Z.; Apte, S.S.; Soininen, R.; Cao, R.; Baaklini, G.Y.; Rauser, R.W.; Wang, J.; Cao, Y.; Tryggvason, K. Impaired endochondral ossification and angiogenesis in mice deficient in membrane-type matrix metalloproteinase I. Proc. Natl. Acad. Sci. USA, 2000, 97(8), 4052-4057.
[http://dx.doi.org/10.1073/pnas.060037197] [PMID: 10737763]
[35]
Onguchi, T.; Han, K.Y.; Chang, J.H.; Azar, D.T. Membrane type-1 matrix metalloproteinase potentiates basic fibroblast growth factor-induced corneal neovascularization. Am. J. Pathol., 2009, 174(4), 1564-1571.
[http://dx.doi.org/10.2353/ajpath.2009.080452] [PMID: 19264910]
[36]
Ohuchi, E.; Imai, K.; Fujii, Y.; Sato, H.; Seiki, M.; Okada, Y. Membrane type 1 matrix metalloproteinase digests interstitial collagens and other extracellular matrix macromolecules. J. Biol. Chem., 1997, 272(4), 2446-2451.
[http://dx.doi.org/10.1074/jbc.272.4.2446] [PMID: 8999957]
[37]
Hiller, O.; Lichte, A.; Oberpichler, A.; Kocourek, A.; Tschesche, H. Matrix metalloproteinases collagenase-2, macrophage elastase, collagenase-3, and membrane type 1-matrix metalloproteinase impair clotting by degradation of fibrinogen and factor XII. J. Biol. Chem., 2000, 275(42), 33008-33013.
[http://dx.doi.org/10.1074/jbc.M001836200] [PMID: 10930399]
[38]
Han, K.Y.; Chang, J.H.; Lee, H.; Azar, D.T. Proangiogenic interactions of vascular endothelial MMP14 With VEGF receptor 1 in VEGFA-mediated corneal angiogenesis. Invest. Ophthalmol. Vis. Sci., 2016, 57(7), 3313-3322.
[http://dx.doi.org/10.1167/iovs.16-19420] [PMID: 27327585]
[39]
Han, K.Y.; Dugas-Ford, J.; Seiki, M.; Chang, J.H.; Azar, D.T. Evidence for the involvement of MMP14 in MMP2 processing and recruitment in exosomes of corneal fibroblasts. Invest. Ophthalmol. Vis. Sci., 2015, 56(9), 5323-5329.
[PMID: 25015352]
[40]
Azar, D.T.; Casanova, F.H.; Mimura, T.; Jain, S.; Chang, J.H. Effect of MT1-MMP deficiency and overexpression in corneal keratocytes on vascular endothelial cell migration and proliferation. Curr. Eye Res., 2008, 33(11), 954-962.
[http://dx.doi.org/10.1080/02713680802461106] [PMID: 19085378]
[41]
Cerofolini, L.; Amar, S.; Lauer, J.L.; Martelli, T.; Fragai, M.; Luchinat, C.; Fields, G.B. Bilayer membrane modulation of membrane Type 1 matrix metalloproteinase (MT1-MMP) structure and proteolytic activity. Sci. Rep., 2016, 6, 29511.
[http://dx.doi.org/10.1038/srep29511] [PMID: 27405411]
[42]
Zöller, M. CD44, Hyaluronan, the hematopoietic stem cell, and leukemia-initiating cells. Front. Immunol., 2015, 6, 235.
[PMID: 26074915]
[43]
Hwang, I.K.; Park, S.M.; Kim, S.Y.; Lee, S.T. A proteomic approach to identify substrates of matrix metalloproteinase-14 in human plasma. Biochim. Biophys. Acta, 2004, 1702(1), 79-87.
[http://dx.doi.org/10.1016/j.bbapap.2004.08.001] [PMID: 15450852]
[44]
Ye, H.Q.; Maeda, M.; Yu, F.S.; Azar, D.T. Differential expression of MT1-MMP (MMP-14) and collagenase III (MMP-13) genes in normal and wounded rat corneas. Invest. Ophthalmol. Vis. Sci., 2000, 41(10), 2894-2899.
[PMID: 10967042]
[45]
Han, K.Y.; Chang, J.H.; Azar, D.T. MMP14-containing exosomes cleave VEGFR1 and promote VEGFA-induced migration and proliferation of vascular endothelial cells. Invest. Ophthalmol. Vis. Sci, 2019, 60(6), 2321-2329.
[http://dx.doi.org/ 10.1167/iovs.18-26277] [PMID: 31117124]

Rights & Permissions Print Export Cite as
© 2024 Bentham Science Publishers | Privacy Policy