Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Review Article

CRISPR-Cas9, A Promising Therapeutic Tool for Cancer Therapy: A Review

Author(s): Fatima Akram*, Ikram ul Haq, Zeeshan Ahmed, Hamza Khan and Muhammad Shrafat Ali

Volume 27, Issue 10, 2020

Page: [931 - 944] Pages: 14

DOI: 10.2174/0929866527666200407112432

Price: $65

Abstract

Cancer is one of the most leading causes of mortality all over the world and remains a foremost social and economic burden. Mutations in the genome of individuals are taking place more frequently due to the excessive progress of xenobiotics and industrialization in the present world. With the progress in the field of molecular biology, it is possible to alter the genome and to observe the functional changes derived from genetic modulation using gene-editing technologies. Several therapies have been applied for the treatment of malignancy which affect the normal body cells; however, more effort is required to develop vsome latest therapeutic approaches for cancer biology and oncology exploiting these molecular biology advances. Recently, the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) associated protein 9 (Cas9) system has emerged as a powerful technology for cancer therapy because of its great accuracy and efficiency. Genome editing technologies have demonstrated a plethora of benefits to the biological sciences. CRISPR- Cas9, a versatile gene editing tool, has become a robust strategy for making alterations to the genome of organisms and a potent weapon in the arsenal of tumor treatment. It has revealed an excellent clinical potential for cancer therapy by discovering novel targets and has provided the researchers with the perception about how tumors respond to drug therapy. Stern efforts are in progress to enhance its efficiency of sequence specific targeting and consequently repressing offtarget effects. CRISPR-Cas9 uses specific proteins to convalesce mutations at genetic level. In CRISPR-Cas9 system, RNA-guided Cas9 endonuclease harnesses gene mutation, DNA deletion or insertion, transcriptional activation or repression, multiplex targeting only by manipulating 20-nucleotide components of RNA. Originally, CRISPR-Cas9 system was used by bacteria for their defense against different bacteriophages, and recently this system is receiving noteworthy appreciation due to its emerging role in the treatment of genetic disorders and carcinogenesis. CRISPR-Cas9 can be employed to promptly engineer oncolytic viruses and immune cells for cancer therapeutic applications. More notably, it has the ability to precisely edit genes not only in model organisms but also in human being that permits its use in therapeutic analysis. It also plays a significant role in the development of complete genomic libraries for cancer patients. In this review, we have highlighted the involvement of CRISPR-Cas9 system in cancer therapy accompanied by its prospective applications in various types of malignancy and cancer biology. In addition, some other conspicuous functions of this unique system have also been discussed beyond genome editing.

Keywords: CRISPR, genome editing, malignancy, mutations, therapy, therapeutic tool.

Graphical Abstract
[1]
Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin., 2015, 65(2), 87-108.
[http://dx.doi.org/10.3322/caac.21262] [PMID: 25651787]
[2]
Doudna, J.A.; Charpentier, E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science, 2014, 346(6213), 1258096.
[http://dx.doi.org/10.1126/science.1258096] [PMID: 25430774]
[3]
Williams, B.O.; Warman, M.L. CRISPR/CAS9 technologies. J. Bone Miner. Res., 2017, 32(5), 883-888.
[http://dx.doi.org/10.1002/jbmr.3086] [PMID: 28230927]
[4]
Zhan, T.; Rindtorff, N.; Betge, J.; Ebert, M.P.; Boutros, M. CRISPR/Cas9 for cancer research and therapy. Semin. Cancer Biol., 2019, 55, 106-119.
[http://dx.doi.org/10.1016/j.semcancer.2018.04.001] [PMID: 29673923]
[5]
Urnov, F.D.; Rebar, E.J.; Holmes, M.C.; Zhang, H.S.; Gregory, P.D. Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet., 2010, 11(9), 636-646.
[http://dx.doi.org/10.1038/nrg2842] [PMID: 20717154]
[6]
Marraffini, L.A.; Sontheimer, E.J. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat. Rev. Genet., 2010, 11(3), 181-190.
[http://dx.doi.org/10.1038/nrg2749] [PMID: 20125085]
[7]
Kim, Y.G.; Cha, J.; Chandrasegaran, S. Hybrid restriction enzymes: Zinc finger fusions to Fok I cleavage domain. Proc. Natl. Acad. Sci. USA, 1996, 93(3), 1156-1160.
[http://dx.doi.org/10.1073/pnas.93.3.1156] [PMID: 8577732]
[8]
Christian, M.; Cermak, T.; Doyle, E.L.; Schmidt, C.; Zhang, F.; Hummel, A.; Bogdanove, A.J.; Voytas, D.F. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics, 2010, 186(2), 757-761.
[http://dx.doi.org/10.1534/genetics.110.120717] [PMID: 20660643]
[9]
Li, T.; Liu, B.; Spalding, M.H.; Weeks, D.P.; Yang, B. High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat. Biotechnol., 2012, 30(5), 390-392.
[http://dx.doi.org/10.1038/nbt.2199] [PMID: 22565958]
[10]
Shan, Q.; Wang, Y.; Chen, K.; Liang, Z.; Li, J.; Zhang, Y.; Zhang, K.; Liu, J.; Voytas, D.F.; Zheng, X.; Zhang, Y.; Gao, C. Rapid and efficient gene modification in rice and Brachypodium using TALENs. Mol. Plant, 2013, 6(4), 1365-1368.
[http://dx.doi.org/10.1093/mp/sss162] [PMID: 23288864]
[11]
Wang, H.; Yang, H.; Shivalila, C.S.; Dawlaty, M.M.; Cheng, A.W.; Zhang, F.; Jaenisch, R. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell, 2013, 153(4), 910-918.
[http://dx.doi.org/10.1016/j.cell.2013.04.025] [PMID: 23643243]
[12]
Bortesi, L.; Fischer, R. The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol. Adv., 2015, 33(1), 41-52.
[http://dx.doi.org/10.1016/j.biotechadv.2014.12.006] [PMID: 25536441]
[13]
Strauß, A.; Lahaye, T. Zinc fingers, TAL effectors, or Cas9-based DNA binding proteins: What’s best for targeting desired genome loci? Mol. Plant, 2013, 6(5), 1384-1387.
[http://dx.doi.org/10.1093/mp/sst075] [PMID: 23718948]
[14]
Ma, X.; Zhang, Q.; Zhu, Q.; Liu, W.; Chen, Y.; Qiu, R.; Wang, B.; Yang, Z.; Li, H.; Lin, Y.; Xie, Y.; Shen, R.; Chen, S.; Wang, Z.; Chen, Y.; Guo, J.; Chen, L.; Zhao, X.; Dong, Z.; Liu, Y.G. A Robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol. Plant, 2015, 8(8), 1274-1284.
[http://dx.doi.org/10.1016/j.molp.2015.04.007] [PMID: 25917172]
[15]
Ishino, Y.; Shinagawa, H.; Makino, K.; Amemura, M.; Nakata, A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J. Bacteriol., 1987, 169(12), 5429-5433.
[http://dx.doi.org/10.1128/JB.169.12.5429-5433.1987] [PMID: 3316184]
[16]
Pougach, K.S.; Lopatina, A.V.; Severinov, K.V. CRISPR adaptive immunity systems of prokaryotes. Mol. Biol., 2012, 46, 175-182.
[http://dx.doi.org/10.1134/S0026893312020136]
[17]
Cong, L.; Ran, F.A.; Cox, D.; Lin, S.; Barretto, R.; Habib, N.; Hsu, P.D.; Wu, X.; Jiang, W.; Marraffini, L.A.; Zhang, F. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339(6121), 819-823.
[http://dx.doi.org/10.1126/science.1231143] [PMID: 23287718]
[18]
Yang, J.; Meng, X.; Pan, J.; Jiang, N.; Zhou, C.; Wu, Z.; Gong, Z. CRISPR/Cas9-mediated noncoding RNA editing in human cancers. RNA Biol., 2018, 15(1), 35-43.
[http://dx.doi.org/10.1080/15476286.2017.1391443] [PMID: 29028415]
[19]
Fan, P.; He, Z.Y.; Xu, T.; Phan, K.; Chen, G.G.; Wei, Y.Q. Exposing cancer with CRISPR-Cas9: From genetic identification to clinical therapy. Transl. Cancer Res., 2018, 7, 817-827.
[http://dx.doi.org/10.21037/tcr.2018.06.16]
[20]
Jansen, R.; Embden, J.D.; Gaastra, W.; Schouls, L.M. Identification of genes that are associated with DNA repeats in prokaryotes. Mol. Microbiol., 2002, 43(6), 1565-1575.
[http://dx.doi.org/10.1046/j.1365-2958.2002.02839.x] [PMID: 11952905]
[21]
Alarcón, L.; Araújo, A.; Godoy, A.; Vera, M. Maltrato infantil y sus consecuencias a largo plazo. Med. UNAB., 2010, 23, 103-115.
[22]
Hille, F.; Charpentier, E. CRISPR-Cas: Biology, mechanisms and relevance. Philos. Trans. R. Soc. Lond. B Biol. Sci, 2016, 371(1707), 20150496.
[http://dx.doi.org/10.1098/rstb.2015.0496] [PMID: 27672148]
[23]
Shah, S.A.; Erdmann, S.; Mojica, F.J.; Garrett, R.A. Protospacer recognition motifs: Mixed identities and functional diversity. RNA Biol., 2013, 10(5), 891-899.
[http://dx.doi.org/10.4161/rna.23764] [PMID: 23403393]
[24]
Rath, D.; Amlinger, L.; Rath, A.; Lundgren, M. The CRISPR-Cas immune system: Biology, mechanisms and applications. Biochimie, 2015, 117, 119-128.
[http://dx.doi.org/10.1016/j.biochi.2015.03.025] [PMID: 25868999]
[25]
Jiang, F.; Doudna, J.A. CRISPR-Cas9 structures and mechanisms. Annu. Rev. Biophys., 2017, 46, 505-529.
[http://dx.doi.org/10.1146/annurev-biophys-062215-010822] [PMID: 28375731]
[26]
Hatoum-Aslan, A.; Samai, P.; Maniv, I.; Jiang, W.; Marraffini, L.A. A ruler protein in a complex for antiviral defense determines the length of small interfering CRISPR RNAs. J. Biol. Chem., 2013, 288(39), 27888-27897.
[http://dx.doi.org/10.1074/jbc.M113.499244] [PMID: 23935102]
[27]
Deveau, H.; Barrangou, R.; Garneau, J.E.; Labonté, J.; Fremaux, C.; Boyaval, P.; Romero, D.A.; Horvath, P.; Moineau, S. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J. Bacteriol., 2008, 190(4), 1390-1400.
[http://dx.doi.org/10.1128/JB.01412-07] [PMID: 18065545]
[28]
Garraway, L.A.; Lander, E.S. Lessons from the cancer genome. Cell, 2013, 153(1), 17-37.
[http://dx.doi.org/10.1016/j.cell.2013.03.002] [PMID: 23540688]
[29]
Chin, L.; Hahn, W.C.; Getz, G.; Meyerson, M. Making sense of cancer genomic data. Genes Dev., 2011, 25(6), 534-555.
[http://dx.doi.org/10.1101/gad.2017311] [PMID: 21406553]
[30]
Wen, W.S.; Yuan, Z.M.; Ma, S.J.; Xu, J.; Yuan, D.T. CRISPR-Cas9 systems: Versatile cancer modelling platforms and promising therapeutic strategies. Int. J. Cancer, 2016, 138(6), 1328-1336.
[http://dx.doi.org/10.1002/ijc.29626] [PMID: 26044706]
[31]
Huang, C.H.; Lee, K.C.; Doudna, J.A. Applications of CRISPR-Cas enzymes in cancer therapeutics and detection. Trends Cancer, 2018, 4(7), 499-512.
[http://dx.doi.org/10.1016/j.trecan.2018.05.006] [PMID: 29937048]
[32]
Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J.A.; Charpentier, E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337(6096), 816-821.
[http://dx.doi.org/10.1126/science.1225829] [PMID: 22745249]
[33]
Yadav, S.S.; Li, J.; Lavery, H.J.; Yadav, K.K.; Tewari, A.K. Next-generation sequencing technology in prostate cancer diagnosis, prognosis, and personalized treatment. Urol. Oncol., 2015, 33(6), 267.e1-267.e13.
[http://dx.doi.org/10.1016/j.urolonc.2015.02.009] [PMID: 25791755]
[34]
To, M.D.; Rosario, R.D.; Westcott, P.M.; Banta, K.L.; Balmain, A. Interactions between wild-type and mutant Ras genes in lung and skin carcinogenesis. Oncogene, 2013, 32(34), 4028-4033.
[http://dx.doi.org/10.1038/onc.2012.404] [PMID: 22945650]
[35]
Kawamura, N.; Nimura, K.; Nagano, H.; Yamaguchi, S.; Nonomura, N.; Kaneda, Y. CRISPR/Cas9-mediated gene knockout of NANOG and NANOGP8 decreases the malignant potential of prostate cancer cells. Oncotarget, 2015, 6(26), 22361-22374.
[http://dx.doi.org/10.18632/oncotarget.4293] [PMID: 26087476]
[36]
Barrangou, R.; Birmingham, A.; Wiemann, S.; Beijersbergen, R.L.; Hornung, V.; Smith, Av. Advances in CRISPR-Cas9 genome engineering: Lessons learned from RNA interference. Nucleic Acids Res., 2015, 43(7), 3407-3419.
[http://dx.doi.org/10.1093/nar/gkv226] [PMID: 25800748]
[37]
Ratan, Z.A.; Son, Y.J.; Haidere, M.F.; Uddin, B.M.M.; Yusuf, M.A.; Zaman, S.B.; Kim, J.H.; Banu, L.A.; Cho, J.Y. CRISPR-Cas9: A promising genetic engineering approach in cancer research. Ther. Adv. Med. Oncol., 2018, 10(10), 1758834018755089.
[http://dx.doi.org/10.1177/1758834018755089] [PMID: 29434679]
[38]
Lee, C.M.; Cradick, T.J.; Fine, E.J.; Bao, G. Nuclease target site selection for maximizing on-target activity and minimizing off-target effects in genome editing. Mol. Ther., 2016, 24(3), 475-487.
[http://dx.doi.org/10.1038/mt.2016.1] [PMID: 26750397]
[39]
Khan, F.A.; Pandupuspitasari, N.S.; Chun-Jie, H.; Ao, Z.; Jamal, M.; Zohaib, A.; Khan, F.A.; Hakim, M.R. ShuJun, Z. CRISPR/Cas9 therapeutics: A cure for cancer and other genetic diseases. Oncotarget, 2016, 7(32), 52541-52552.
[http://dx.doi.org/10.18632/oncotarget.9646] [PMID: 27250031]
[40]
Jamal, M.; Khan, F.A.; Da, L.; Habib, Z.; Dai, J.; Cao, G. Keeping CRISPR/Cas on-Target. Curr. Issues Mol. Biol., 2016, 20, 1-12.
[PMID: 26453843]
[41]
Mali, P.; Yang, L.; Esvelt, K.M.; Aach, J.; Guell, M.; DiCarlo, J.E.; Norville, J.E.; Church, G.M. RNA-guided human genome engineering via Cas9. Science, 2013, 339(6121), 823-826.
[http://dx.doi.org/10.1126/science.1232033] [PMID: 23287722]
[42]
Luo, J. CRISPR/Cas9: From genome engineering to cancer drug discovery. Trends Cancer, 2016, 2(6), 313-324.
[http://dx.doi.org/10.1016/j.trecan.2016.05.001] [PMID: 28603775]
[43]
O’Connell, M.R.; Oakes, B.L.; Sternberg, S.H.; East-Seletsky, A.; Kaplan, M.; Doudna, J.A. Programmable RNA recognition and cleavage by CRISPR/Cas9. Nature, 2014, 516(7530), 263-266.
[http://dx.doi.org/10.1038/nature13769] [PMID: 25274302]
[44]
Gilbert, L.A.; Larson, M.H.; Morsut, L.; Liu, Z.; Brar, G.A.; Torres, S.E.; Stern-Ginossar, N.; Brandman, O.; Whitehead, E.H.; Doudna, J.A.; Lim, W.A.; Weissman, J.S.; Qi, L.S. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell, 2013, 154(2), 442-451.
[http://dx.doi.org/10.1016/j.cell.2013.06.044] [PMID: 23849981]
[45]
Cho, S.W.; Kim, S.; Kim, J.M.; Kim, J.S. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat. Biotechnol., 2013, 31(3), 230-232.
[http://dx.doi.org/10.1038/nbt.2507] [PMID: 23360966]
[46]
Sun, W.; Gu, Z. Tailoring non-viral delivery vehicles for transporting genome-editing tools. Sci. China Materials, 2017, 60, 511-513.
[http://dx.doi.org/10.1007/s40843-016-5154-4]
[47]
Shui, B.; Hernandez Matias, L.; Guo, Y.; Peng, Y. The Rise of CRISPR/Cas for genome editing in stem cells. Stem Cells Int., 2016, 2016, 8140168.
[http://dx.doi.org/10.1155/2016/8140168] [PMID: 26880991]
[48]
Yin, H.; Kauffman, K.J.; Anderson, D.G. Delivery technologies for genome editing. Nat. Rev. Drug Discov., 2017, 16(6), 387-399.
[http://dx.doi.org/10.1038/nrd.2016.280] [PMID: 28337020]
[49]
Sun, W.; Ji, W.; Hall, J.M.; Hu, Q.; Wang, C.; Beisel, C.L.; Gu, Z. Self-assembled DNA nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing. Angew. Chem. Int. Ed. Engl., 2015, 54(41), 12029-12033.
[http://dx.doi.org/10.1002/anie.201506030] [PMID: 26310292]
[50]
Tanenbaum, M.E.; Gilbert, L.A.; Qi, L.S.; Weissman, J.S.; Vale, R.D. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell, 2014, 159(3), 635-646.
[http://dx.doi.org/10.1016/j.cell.2014.09.039] [PMID: 25307933]
[51]
Boyle, P.; Langman, J.S. ABC of colorectal cancer: Epidemiology. BMJ, 2000, 321(7264), 805-808.
[http://dx.doi.org/10.1136/bmj.321.7264.805] [PMID: 11009523]
[52]
Su, L.K.; Kinzler, K.W.; Vogelstein, B.; Preisinger, A.C.; Moser, A.R.; Luongo, C.; Gould, K.A.; Dove, W.F. Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene. Science, 1992, 256(5057), 668-670.
[http://dx.doi.org/10.1126/science.1350108] [PMID: 1350108]
[53]
Muzny, D.M.; Bainbridge, M.N.; Chang, K.; Dinh, H.H.; Drummond, J.A.; Fowler, G.; Kovar, C.L.; Lewis, L.R.; Morgan, M.B.; Newsham, I.F.; Reid, J.G.; Santibanez, J.; Shinbrot, E.; Trevino, L.R.; Wu, Y.Q.; Wang, M.; Gunaratne, P.; Donehower, L.A.; Creighton, C.J.; Wheeler, D.A.; Gibbs, R.A.; Lawrence, M.S.; Voet, D.; Jing, R. Cancer genome atlas network. Comprehensive molecular characterization of human colon and rectal cancer. Nature, 2012, 487(7407), 330-337.
[http://dx.doi.org/10.1038/nature11252] [PMID: 22810696]
[54]
Roper, J.; Tammela, T.; Cetinbas, N.M.; Akkad, A.; Roghanian, A.; Rickelt, S.; Almeqdadi, M.; Wu, K.; Oberli, M.A.; Sánchez-Rivera, F.J.; Park, Y.K.; Liang, X.; Eng, G.; Taylor, M.S.; Azimi, R.; Kedrin, D.; Neupane, R.; Beyaz, S.; Sicinska, E.T.; Suarez, Y.; Yoo, J.; Chen, L.; Zukerberg, L.; Katajisto, P.; Deshpande, V.; Bass, A.J.; Tsichlis, P.N.; Lees, J.; Langer, R.; Hynes, R.O.; Chen, J.; Bhutkar, A.; Jacks, T.; Yilmaz, O.H. In vivo genome editing and organoid transplantation models of colorectal cancer and metastasis. Nat. Biotechnol., 2017, 35(6), 569-576.
[http://dx.doi.org/10.1038/nbt.3836] [PMID: 28459449]
[55]
Fisher, P.G.; Buffler, P.A. Malignant gliomas in 2005: Where to GO from here? JAMA, 2005, 293(5), 615-617.
[http://dx.doi.org/10.1001/jama.293.5.615] [PMID: 15687318]
[56]
Zuckermann, M.; Kawauchi, D.; Gronych, J. “CRISPR” validation of recessive brain cancer genes in vivo. Oncotarget, 2015, 6(20), 17865-17866.
[http://dx.doi.org/10.18632/oncotarget.4864] [PMID: 26203775]
[57]
Xue, W.; Chen, S.; Yin, H.; Tammela, T.; Papagiannakopoulos, T.; Joshi, N.S.; Cai, W.; Yang, G.; Bronson, R.; Crowley, D.G.; Zhang, F.; Anderson, D.G.; Sharp, P.A.; Jacks, T. CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature, 2014, 514(7522), 380-384.
[http://dx.doi.org/10.1038/nature13589] [PMID: 25119044]
[58]
Weber, J.; Öllinger, R.; Friedrich, M.; Ehmer, U.; Barenboim, M.; Steiger, K.; Heid, I.; Mueller, S.; Maresch, R.; Engleitner, T.; Gross, N.; Geumann, U.; Fu, B.; Segler, A.; Yuan, D.; Lange, S.; Strong, A.; de la Rosa, J.; Esposito, I.; Liu, P.; Cadiñanos, J.; Vassiliou, G.S.; Schmid, R.M.; Schneider, G.; Unger, K.; Yang, F.; Braren, R.; Heikenwälder, M.; Varela, I.; Saur, D.; Bradley, A.; Rad, R. CRISPR/Cas9 somatic multiplex-mutagenesis for high-throughput functional cancer genomics in mice. Proc. Natl. Acad. Sci. USA, 2015, 112(45), 13982-13987.
[http://dx.doi.org/10.1073/pnas.1512392112] [PMID: 26508638]
[59]
Liu, Q.; Fan, D.; Adah, D.; Wu, Z.; Liu, R.; Yan, Q.T.; Zhang, Y.; Du, Z.Y.; Wang, D.; Li, Y.; Bao, S.Y.; Liu, L.P. CRISPR/Cas9 mediated hypoxia inducible factor 1α knockout enhances the antitumor effect of transarterial embolization in hepatocellular carcinoma. Oncol. Rep., 2018, 40(5), 2547-2557.
[http://dx.doi.org/10.3892/or.2018.6667] [PMID: 30226584]
[60]
Chen, C.; Huang, J.; Sun, F.; Lin, T. MP48-14 Long noncoding RNA lncRNA-BNCA promotes the progression of bladder cancer via regulating translation of P53. J. Urol., 2017, 197, e642.
[http://dx.doi.org/10.1016/j.juro.2017.02.1495]
[61]
Fujimoto, K.; Yamada, Y.; Okajima, E.; Kakizoe, T.; Sasaki, H.; Sugimura, T.; Terada, M. Frequent association of p53 gene mutation in invasive bladder cancer. Cancer Res., 1992, 52(6), 1393-1398.
[PMID: 1540947]
[62]
Xue, M.; Li, X.; Li, Z.; Chen, W. Urothelial carcinoma associated 1 is a hypoxia-inducible factor-1α-targeted long noncoding RNA that enhances hypoxic bladder cancer cell proliferation, migration, and invasion. Tumour Biol., 2014, 35(7), 6901-6912.
[http://dx.doi.org/10.1007/s13277-014-1925-x] [PMID: 24737584]
[63]
zur Hausen, H. Papillomaviruses and cancer: From basic studies to clinical application. Nat. Rev. Cancer, 2002, 2(5), 342-350.
[http://dx.doi.org/10.1038/nrc798] [PMID: 12044010]
[64]
Yu, L.; Wang, X.; Zhu, D.; Ding, W.; Wang, L.; Zhang, C.; Jiang, X.; Shen, H.; Liao, S.; Ma, D.; Hu, Z.; Wang, H. Disruption of human papillomavirus 16 E6 gene by clustered regularly interspaced short palindromic repeat/Cas system in human cervical cancer cells. OncoTargets Ther., 2014, 8, 37-44.
[http://dx.doi.org/10.2147/OTT.S64092] [PMID: 25565864]
[65]
Zhen, S.; Hua, L.; Takahashi, Y.; Narita, S.; Liu, Y.H.; Li, Y. In vitro and in vivo growth suppression of human papillomavirus 16-positive cervical cancer cells by CRISPR/Cas9. Biochem. Biophys. Res. Commun., 2014, 450(4), 1422-1426.
[http://dx.doi.org/10.1016/j.bbrc.2014.07.014] [PMID: 25044113]
[66]
Petridou, E.; Karpathios, T.; Dessypris, N.; Simou, E.; Trichopoulos, D. The role of dairy products and non alcoholic beverages in bone fractures among schoolage children. Scand. J. Soc. Med., 1997, 25(2), 119-125.
[http://dx.doi.org/10.1177/140349489702500209] [PMID: 9232722]
[67]
Bakshi, R.; Hassan, M.Q.; Pratap, J.; Lian, J.B.; Montecino, M.A.; van Wijnen, A.J.; Stein, J.L.; Imbalzano, A.N.; Stein, G.S. The human SWI/SNF complex associates with RUNX1 to control transcription of hematopoietic target genes. J. Cell. Physiol., 2010, 225(2), 569-576.
[http://dx.doi.org/10.1002/jcp.22240] [PMID: 20506188]
[68]
Ciriello, G.; Gatza, M.L.; Beck, A.H.; Wilkerson, M.D.; Rhie, S.K.; Pastore, A.; Zhang, H.; McLellan, M.; Yau, C.; Kandoth, C.; Bowlby, R.; Shen, H.; Hayat, S.; Fieldhouse, R.; Lester, S.C.; Tse, G.M.; Factor, R.E.; Collins, L.C.; Allison, K.H.; Chen, Y.Y.; Jensen, K.; Johnson, N.B.; Oesterreich, S.; Mills, G.B.; Cherniack, A.D.; Robertson, G.; Benz, C.; Sander, C.; Laird, P.W.; Hoadley, K.A.; King, T.A.; Perou, C.M. TCGA Research Network. Comprehensive molecular portraits of invasive lobular breast cancer. Cell, 2015, 163(2), 506-519.
[http://dx.doi.org/10.1016/j.cell.2015.09.033] [PMID: 26451490]
[69]
Annunziato, S.; Kas, S.M.; Nethe, M.; Yücel, H.; Del Bravo, J.; Pritchard, C.; Bin Ali, R.; van Gerwen, B.; Siteur, B.; Drenth, A.P.; Schut, E.; van de Ven, M.; Boelens, M.C.; Klarenbeek, S.; Huijbers, I.J.; van Miltenburg, M.H.; Jonkers, J. Modeling invasive lobular breast carcinoma by CRISPR/Cas9-mediated somatic genome editing of the mammary gland. Genes Dev., 2016, 30(12), 1470-1480.
[http://dx.doi.org/10.1101/gad.279190.116] [PMID: 27340177]
[70]
Hadoux, J.; Vignot, S.; De La Motte Rouge, T. Renal cell carcinoma: Focus on safety and efficacy of temsirolimus. Clin. Med. Insights Oncol., 2010, 4, 143-154.
[http://dx.doi.org/10.4137/CMO.S4482] [PMID: 21234295]
[71]
Filipowicz, W.; Bhattacharyya, S.N.; Sonenberg, N. Mechanisms of post-transcriptional regulation by microRNAs: Are the answers in sight? Nat. Rev. Genet., 2008, 9(2), 102-114.
[http://dx.doi.org/10.1038/nrg2290] [PMID: 18197166]
[72]
Yoshino, H.; Yonemori, M.; Miyamoto, K.; Tatarano, S.; Kofuji, S.; Nohata, N.; Nakagawa, M.; Enokida, H. microRNA-210-3p depletion by CRISPR/Cas9 promoted tumorigenesis through revival of TWIST1 in renal cell carcinoma. Oncotarget, 2017, 8(13), 20881-20894.
[http://dx.doi.org/10.18632/oncotarget.14930] [PMID: 28152509]
[73]
Lamouille, S.; Xu, J.; Derynck, R. Molecular mechanisms of epithelial-mesenchymal transition. Nat. Rev. Mol. Cell Biol., 2014, 15(3), 178-196.
[http://dx.doi.org/10.1038/nrm3758] [PMID: 24556840]
[74]
Haraguchi, M.; Sato, M.; Ozawa, M. CRISPR/Cas9n-mediated deletion of the snail1 gene (SNAI1) reveals its role in regulating cell morphology, cell–cell interactions, and gene expression in ovarian cancer (RMG-1) cells. PLoS One, 2015, 10(7), e0132260.
[http://dx.doi.org/10.1371/journal.pone.0132260] [PMID: 26161782]
[75]
Faddaoui, A.; Bachvarova, M.; Plante, M.; Gregoire, J.; Renaud, M.C.; Sebastianelli, A.; Gobeil, S.; Morin, C.; Macdonald, E.; Vanderhyden, B.; Bachvarov, D. The mannose receptor LY75 (DEC205/CD205) modulates cellular phenotype and metastatic potential of ovarian cancer cells. Oncotarget, 2016, 7(12), 14125-14142.
[http://dx.doi.org/10.18632/oncotarget.7288] [PMID: 26871602]
[76]
Shetty, D.K.; Inamdar, M.S. Generation of a heterozygous knockout human embryonic stem cell line for the OCIAD1 locus using CRISPR/CAS9 mediated targeting: BJNhem20-OCIAD1-CRISPR-39. Stem Cell Res. (Amst.), 2016, 16(2), 308-310.
[http://dx.doi.org/10.1016/j.scr.2015.12.037] [PMID: 27345991]
[77]
Garzon, R.; Garofalo, M.; Martelli, M.P.; Briesewitz, R.; Wang, L.; Fernandez-Cymering, C.; Volinia, S.; Liu, C.G.; Schnittger, S.; Haferlach, T.; Liso, A.; Diverio, D.; Mancini, M.; Meloni, G.; Foa, R.; Martelli, M.F.; Mecucci, C.; Croce, C.M.; Falini, B. Distinctive microRNA signature of acute myeloid leukemia bearing cytoplasmic mutated nucleophosmin. Proc. Natl. Acad. Sci. USA, 2008, 105(10), 3945-3950.
[http://dx.doi.org/10.1073/pnas.0800135105] [PMID: 18308931]
[78]
Wallace, J.; Hu, R.; Mosbruger, T.L.; Dahlem, T.J.; Stephens, W.Z.; Rao, D.S.; Round, J.L.; O’Connell, R.M. Genome-wide CRISPR-Cas9 screen identifies microRNAs that regulate myeloid leukemia cell growth. PLoS One, 2016, 11(4), e0153689.
[http://dx.doi.org/10.1371/journal.pone.0153689] [PMID: 27081855]
[79]
Heckl, D.; Kowalczyk, M.S.; Yudovich, D.; Belizaire, R.; Puram, R.V.; McConkey, M.E.; Thielke, A.; Aster, J.C.; Regev, A.; Ebert, B.L. Generation of mouse models of myeloid malignancy with combinatorial genetic lesions using CRISPR-Cas9 genome editing. Nat. Biotechnol., 2014, 32(9), 941-946.
[http://dx.doi.org/10.1038/nbt.2951] [PMID: 24952903]
[80]
Wang, H.; La Russa, M.; Qi, L.S. CRISPR/Cas9 in genome editing and beyond. Annu. Rev. Biochem., 2016, 85, 227-264.
[http://dx.doi.org/10.1146/annurev-biochem-060815-014607] [PMID: 27145843]
[81]
Zhang, J.H.; Adikaram, P.; Pandey, M.; Genis, A.; Simonds, W.F. Optimization of genome editing through CRISPR-Cas9 engineering. Bioengineered, 2016, 7(3), 166-174.
[http://dx.doi.org/10.1080/21655979.2016.1189039] [PMID: 27340770]
[82]
Shalem, O.; Sanjana, N.E.; Hartenian, E.; Shi, X.; Scott, D.A.; Mikkelson, T.; Heckl, D.; Ebert, B.L.; Root, D.E.; Doench, J.G.; Zhang, F. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science, 2014, 343(6166), 84-87.
[http://dx.doi.org/10.1126/science.1247005] [PMID: 24336571]
[83]
Molla, K.A.; Yang, Y. CRISPR/Cas-mediated base editing: Technical considerations and practical applications. Trends Biotechnol., 2019, 37(10), 1121-1142.
[http://dx.doi.org/10.1016/j.tibtech.2019.03.008] [PMID: 30995964]
[84]
Deltcheva, E.; Chylinski, K.; Sharma, C.M.; Gonzales, K.; Chao, Y.; Pirzada, Z.A.; Eckert, M.R.; Vogel, J.; Charpentier, E. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature, 2011, 471(7340), 602-607.
[http://dx.doi.org/10.1038/nature09886] [PMID: 21455174]
[85]
Porteus, M. Genome editing: A new approach to human therapeutics. Annu. Rev. Pharmacol. Toxicol., 2016, 56, 163-190.
[http://dx.doi.org/10.1146/annurev-pharmtox-010814-124454] [PMID: 26566154]
[86]
Cho, S.W.; Kim, S.; Kim, Y.; Kweon, J.; Kim, H.S.; Bae, S.; Kim, J-S. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res., 2014, 24(1), 132-141.
[http://dx.doi.org/10.1101/gr.162339.113] [PMID: 24253446]
[87]
Schumann, K.; Lin, S.; Boyer, E.; Simeonov, D.R.; Subramaniam, M.; Gate, R.E.; Haliburton, G.E.; Ye, C.J.; Bluestone, J.A.; Doudna, J.A.; Marson, A. Generation of knock-in primary human T cells using Cas9 ribonucleoproteins. Proc. Natl. Acad. Sci. USA, 2015, 112(33), 10437-10442.
[http://dx.doi.org/10.1073/pnas.1512503112] [PMID: 26216948]
[88]
Moses, C.; Garcia-Bloj, B.; Harvey, A.R.; Blancafort, P. Hallmarks of cancer: The CRISPR generation. Eur. J. Cancer, 2018, 93, 10-18.
[http://dx.doi.org/10.1016/j.ejca.2018.01.002] [PMID: 29433054]
[89]
Brokowski, C.; Adli, M. CRISPR ethics: Moral considerations for applications of a powerful tool. J. Mol. Biol., 2019, 431(1), 88-101.
[http://dx.doi.org/10.1016/j.jmb.2018.05.044] [PMID: 29885329]
[90]
Hammond, A.; Galizi, R.; Kyrou, K.; Simoni, A.; Siniscalchi, C.; Katsanos, D.; Gribble, M.; Baker, D.; Marois, E.; Russell, S.; Burt, A.; Windbichler, N.; Crisanti, A.; Nolan, T.A. CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Nat. Biotechnol., 2016, 34(1), 78-83.
[http://dx.doi.org/10.1038/nbt.3439] [PMID: 26641531]
[91]
Eyquem, J.; Mansilla-Soto, J.; Giavridis, T.; van der Stegen, S.J.; Hamieh, M.; Cunanan, K.M.; Odak, A.; Gönen, M.; Sadelain, M. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature, 2017, 543(7643), 113-117.
[http://dx.doi.org/10.1038/nature21405] [PMID: 28225754]
[92]
Bhattacharjee, R.; Purkayastha, K.D.; Adapa, D.; Choudhury, A. CRISPR/Cas9 genome editing system in the diagnosis and treatment of cancer. J. RNAi Gene Silencing, 2017, 13, 585-591.
[93]
Isakov, N. Future perspectives for cancer therapy using the CRISPR genome editing technology. J. Clin. Cell. Immunol., 2017, 8, 1-4.
[http://dx.doi.org/10.4172/2155-9899.1000e120]
[94]
Jubair, L.; McMillan, N.A.J. The Therapeutic potential of CRISPR/Cas9 systems in oncogene-addicted cancer types: Virally driven cancers as a model system. Mol. Ther. Nucleic Acids, 2017, 8, 56-63.
[http://dx.doi.org/10.1016/j.omtn.2017.06.006] [PMID: 28918056]
[95]
Terns, R.M.; Terns, M.P. CRISPR-based technologies: Prokaryotic defense weapons repurposed. Trends Genet., 2014, 30(3), 111-118.
[http://dx.doi.org/10.1016/j.tig.2014.01.003] [PMID: 24555991]

Rights & Permissions Print Export Cite as
© 2024 Bentham Science Publishers | Privacy Policy