Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

2,4-Thiazolidinedione as Precursor to the Synthesis of Compounds with Anti-glioma Activities in C6 and GL261 Cells

Author(s): Alana de Vasconcelos, Ana Júlia Zulian Boeira, Bruna Bento Drawanz, Nathalia Stark Pedra, Natália Pontes Bona, Francieli Moro Stefanello and Wilson Cunico*

Volume 17, Issue 6, 2021

Published on: 03 April, 2020

Page: [601 - 610] Pages: 10

DOI: 10.2174/1573406416666200403075826

Price: $65

Abstract

Background: Thiazolidinediones (TZDs) represent an important class of heterocyclic compounds that have versatile biological activities, including anticancer activity. Glioma is one of the most common primary brain tumors, and it is responsible for most of the deaths caused by primary brain tumors. In the present work, 2,4-thiazolidinediones were synthesized via a multicomponent microwave one-pot procedure. The cytotoxicity of compounds was analyzed in vitro using rat (C6) and mouse (GL261) glioblastoma cell lines and primary cultures of astrocytes.

Objective: This study aims to synthesize and characterize 2,4-thiazolidinediones and evaluate their antitumor activity.

Methods: TZDs were synthesized from three components: 2,4-thiazolidinedione, arene-aldehydes, and aryl chlorides. The reactions were carried out inside a microwave and monitored using thinlayer chromatography (TLC). Compounds were identified and characterized using gas chromatography coupled to mass spectrometry (CG-MS) and hydrogen (1H-NMR) and carbon nuclear magnetic resonance spectroscopy (13C-NMR). The antitumor activity was analyzed using the 3-(4,5- dimethyl)-2,5-diphenyltetrazolium bromide (MTT) reduction test, in which cell viability was verified in the primary cultures of astrocytes and in rat and mouse glioblastoma cells exposed to the synthesized compounds. The cytotoxicity of all derivatives was analyzed at the 100 μM concentration, both in astrocytes and in the mouse and rat glioblastoma cell lines. The compounds that showed the best results, 4CI and 4DI, were also tested at concentrations 25, 50, 100, 175, and 250 μM to obtain the IC50.

Results: Seventeen TZD derivatives were easily obtained through one-pot reactions in 40 minutes with yields ranging from 12% to 49%. All compounds were cytotoxic to both glioblastoma cell lines without being toxic to the astrocyte primary cell line at 100 μM, thus demonstrating a selective activity. Compounds 4CI and 4DI showed the best results in the C6 cells: IC50 of 28.51 μM and 54.26 μM, respectively.

Conclusion: The compounds were not cytotoxic in astrocyte culture, demonstrating selectivity for malignant cells. Changes in both rings are important for anti-glioma activity in the cell lines tested. TZD 4CI had the best anti-glioma activity.

Keywords: Thiazolidinedione, anti-glioma, astrocyte, one-pot reaction, knoevenagel, microwave synthesis.

Graphical Abstract
[1]
(a)Ferlay, J.; Parkin, D.M.; Steliarova-Foucher, E. Estimates of cancer incidence and mortality in Europe in 2008. Eur. J. Cancer, 2010, 46(4), 765-781.
[http://dx.doi.org/10.1016/j.ejca.2009.12.014] [PMID: 20116997]
(b)Ostrom, Q.T.; Gittleman, H.; Liao, P.; Rouse, C.; Chen, Y.; Dowling, J.; Wolinsky, Y.; Kruchko, C.; Barnholtz-Sloan, J. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007-2011. Neuro-oncol., 2014, 16(Suppl. 4), iv1-iv63.
[http://dx.doi.org/10.1093/neuonc/nou223] [PMID: 25304271]
[2]
Weller, M.; Wick, W.; Aldape, K.; Brada, M.; Berger, M.; Pfister, S.M.; Nishikawa, R.; Rosenthal, M.; Wen, P.Y.; Stupp, R.; Reifenberger, G. Glioma. Nat. Rev. Dis. Primers, 2015, 1, 15017.
[http://dx.doi.org/10.1038/nrdp.2015.17] [PMID: 27188790]
[3]
Ohgaki, H.; Kleihues, P. Epidemiology and etiology of gliomas. Acta Neuropathol., 2005, 109(1), 93-108.
[http://dx.doi.org/10.1007/s00401-005-0991-y] [PMID: 15685439]
[4]
Napoleon, A.A. Review on recent developments and biological activities of 2,4-thiazolidinediones. Int. J. Pharm. Tech. Res., 2016, 9, 429-443.
[5]
Radi, M.; Botta, L.; Casaluce, G.; Bernardini, M.; Botta, M. Practical one-pot two-step protocol for the microwave-assisted synthesis of highly functionalized rhodanine derivatives. J. Comb. Chem., 2010, 12(1), 200-205.
[http://dx.doi.org/10.1021/cc9001789] [PMID: 20028090]
[6]
Naim, M.J.; Alam, M.J.; Ahmad, S.; Nawaz, F.; Shrivastava, N.; Sahu, M.; Alam, O. Therapeutic journey of 2,4-thiazolidinediones as a versatile scaffold: An insight into structure activity relationship. Eur. J. Med. Chem., 2017, 129, 218-250.
[http://dx.doi.org/10.1016/j.ejmech.2017.02.031] [PMID: 28231521]
[7]
(a)Chinthala, Y.; Kumar Domatti, A.; Sarfaraz, A.; Singh, S.P.; Kumar Arigari, N.; Gupta, N.; Satya, S.K.V.N.; Kotesh Kumar, J.; Khan, F.; Tiwari, A.K.; Paramjit, G. Synthesis, biological evaluation and molecular modeling studies of some novel thiazolidinediones with triazole ring. Eur. J. Med. Chem., 2013, 70, 308-314.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.005] [PMID: 24177357]
(b)Salamone, S.; Colin, C.; Grillier-Vuissoz, I.; Kuntz, S.; Mazerbourg, S.; Flament, S.; Martin, H.; Richert, L.; Chapleur, Y.; Boisbrun, M. Synthesis of new troglitazone derivatives: anti-proliferative activity in breast cancer cell lines and preliminary toxicological study. Eur. J. Med. Chem., 2012, 51, 206-215.
[http://dx.doi.org/10.1016/j.ejmech.2012.02.044] [PMID: 22409968]
[8]
(a)Fröhlich, E.; Wahl, R. Chemotherapy and chemoprevention by thiazolidinediones, 2015.
[http://dx.doi.org/10.1155/2015/845340]
(b)Metwally, K.; Pratsinis, H.; Kletsas, D. Novel 2,4- thiazolidinediones: Synthesis, in vitro cytotoxic activity, and mechanistic investigation. Eur. J. Med. Chem., 2017, 133, 340-350.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.052] [PMID: 28395220]
(c)Rêgo, M.J.B.M.; Galdino-Pitta, M.R.; Pereira, D.T.M.; Silva, J.C.; Rabello, M.M.; Lima, M.C.A.; Hernandes, M.Z.; Pitta, I.R.; Galdino, S.L.; Pitta, M.G.R. Synthesis, in vitro anticancer activity and in silico study of new disubstituted thiazolidinedione derivatives. Med. Chem. Res., 2014, 23, 3220-3226.
[http://dx.doi.org/10.1007/s00044-013-0902-z]
[9]
Hau, P.; Kunz-Schughart, L.; Bogdahn, U.; Baumgart, U.; Hirschmann, B.; Weimann, E.; Muhleisen, H.; Ruemmele, P.; Steinbrecher, A.; Reichle, A. Low-dose chemotherapy in combination with COX-2 inhibitors and PPAR-gamma agonists in recurrent high-grade gliomas - a phase II study. Oncology, 2007, 73(1-2), 21-25.
[http://dx.doi.org/10.1159/000120028] [PMID: 18332649]
[10]
Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. A, 2008, 64(Pt 1), 112-122.
[http://dx.doi.org/10.1107/S0108767307043930] [PMID: 18156677]
[11]
Farrugia, L.J. WinGX and ORTEP for Windows: An Update. J. Appl. Cryst., 2012, 45, 849-854.
[http://dx.doi.org/10.1107/S0021889812029111]
[12]
da Frota, M.L.J., Jr; Braganhol, E.; Canedo, A.D.; Klamt, F.; Apel, M.A.; Mothes, B.; Lerner, C.; Battastini, A.M.O.; Henriques, A.T.; Moreira, J.C.F. Brazilian marine sponge Polymastia janeirensis induces apoptotic cell death in human U138MG glioma cell line, but not in a normal cell culture. Invest. New Drugs, 2009, 27(1), 13-20.
[http://dx.doi.org/10.1007/s10637-008-9134-3] [PMID: 18454276]
[13]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[14]
Drawanz, B.B.; Ribeiro, C.S.; Masteloto, H.G.; Neuenfeldt, P.D.; Pereira, C.M.P.; Siqueira, G.M.; Cunico, W. Sonochemistry: a good, fast and clean method to promote the synthesis of 5-arylidene-2,4-thiazolidinediones. Ultrason. Sonochem., 2014, 21(5), 1615-1617.
[http://dx.doi.org/10.1016/j.ultsonch.2014.04.013] [PMID: 24830818]
[15]
Alegaon, S.G.; Alagawadi, K.R. New thiazolidine-2,4-diones as antimicrobial and cytotoxic agent. Med. Chem. Res., 2012, 21, 3214-3223.
[http://dx.doi.org/10.1007/s00044-011-9876-x]
[16]
Pitta, I.R.; Bosso, C.; Goes, A.J.S.; Lima, M.C.A.; Galdino, S.L.; Cuong, L. Mass spectrometry of some benzylidene imidazolidinediones and thiazolidinediones. III. Positive and negative electron impact mass spectra of chlorobenzyl imidazolidinedione or thiazolidinedione compounds. Spectrosc. Lett., 1992, 23, 419-431.
[http://dx.doi.org/10.1080/00387019208018199]
[17]
Goes, A.J.S.; de Lima, M.C.A.; Galdino, S.L.; Pitta, I.R.; Luu-Duc, C. Synthesis and antimicrobial activity of fluorobenzyl (benzylidene) thiazolidinediones and substituted imidazolidinediones. J. Pharm. Belg., 1991, 46, 236-240.
[PMID: 1795213]
[18]
Barros, C.D.; Amato, A.A.; de Oliveira, T.B.; Iannini, K.B.R.; Silva, A.L.; Silva, T.G.; Leite, E.S.; Hernandes, M.Z. Alves de Lima, Mdo.C.; Galdino, S.L.; Neves, Fde.A.; Pitta, Ida.R. Synthesis and anti-inflammatory activity of new arylidene-thiazolidine-2,4-diones as PPARgamma ligands. Bioorg. Med. Chem., 2010, 18(11), 3805-3811.
[http://dx.doi.org/10.1016/j.bmc.2010.04.045] [PMID: 20471839]
[19]
Malik, S.; Choudhary, A.; Kumar, S.; Bhola, A.; Kumar, A. Synthesis of some novel substituted-arylidene and substituted-benzylthiazolidine-2,4-dione analogues as chemotherapeutic agents. Pharma Chem., 2010, 2, 17-21.
[20]
Galdino, S.L.; Lima, M.C.A.; Goes, A.J.S.; Pitta, I.R.; Duc, C.L. Mass spectrometry of some benzylidene imidazolidinediones and thiazolidinediones. II. Chlorobenzyl imidazolidinedione and fluoro or chlorobenzyl thiazolidinedione compounds. Spectrosc. Lett., 1991, 24, 1013-1021.
[http://dx.doi.org/10.1080/00387019108020679]
[21]
Albers, H.M.H.G.; Kuijl, C.; Bakker, J.; Hendrickx, L.; Wekker, S.; Farhou, N.; Liu, N.; Blasco-Moreno, B.; Scanu, T.; den Hertog, J.; Celie, P.; Ovaa, H.; Neefjes, J. Integrating chemical and genetic silencing strategies to identify host kinase-phosphatase inhibitor networks that control bacterial infection. ACS Chem. Biol., 2014, 9(2), 414-422.
[http://dx.doi.org/10.1021/cb400421a] [PMID: 24274083]
[22]
(a)da Silva, D.S.; da Silva, C.E.H.; Soares, M.S.P.; Azambuja, J.H.; de Carvalho, T.R.; Zimmer, G.C.; Frizzo, C.P.; Braganhol, E.; Spanevello, R.M.; Cunico, W. Thiazolidin-4-ones from 4-(methylthio)benzaldehyde and 4-(methylsulfonyl)benzaldehyde: Synthesis, anti-glioma activity and cytotoxicity. Eur. J. Med. Chem., 2016, 124, 574-582.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.057] [PMID: 27614406]
(b)da Silveira, E.F.; Azambuja, J.H.; de Carvalho, T.R.; Kunzler, A.; da Silva, D.S.; Teixeira, F.C.; Rodrigues, R.; Beira, F.T.; de Cássia Sant Anna Alves, R.; Spanevello, R.M.; Cunico, W.; Stefanello, F.M.; Horn, A.P.; Braganhol, E. Synthetic 2-aryl-3-((piperidin-1-yl)ethyl)thiazolidin-4-ones exhibit selective in vitro antitumoral activity and inhibit cancer cell growth in a preclinical model of glioblastoma multiforme. Chem. Biol. Interact., 2017, 266, 1-9.
[http://dx.doi.org/10.1016/j.cbi.2017.02.001] [PMID: 28174097]
[23]
Wang, P.; Yu, J.; Yin, Q.; Li, W.; Ren, X.; Hao, X. Rosiglitazone suppresses glioma cell growth and cell cycle by blocking the transforming growth factor-beta mediated pathway. Neurochem. Res., 2012, 37(10), 2076-2084.
[http://dx.doi.org/10.1007/s11064-012-0828-8] [PMID: 22707243]
[24]
(a)Weng, J.R.; Chen, C.Y.; Pinzone, J.J.; Ringel, M.D.; Chen, C.S. Beyond peroxisome proliferator-activated receptor gamma signaling: the multi-facets of the antitumor effect of thiazolidinediones. Endocr. Relat. Cancer, 2006, 13(2), 401-413.
[http://dx.doi.org/10.1677/erc.1.01182] [PMID: 16728570]
(b)Chou, F.S.; Wang, P.S.; Kulp, S.; Pinzone, J.J. Effects of thiazolidinediones on differentiation, proliferation, and apoptosis. Mol. Cancer Res., 2007, 5(6), 523-530.
[http://dx.doi.org/10.1158/1541-7786.MCR-06-0278] [PMID: 17579114]
(c)Liu, K.; Rao, W.; Parikh, H.; Li, Q.; Guo, T.L.; Grant, S.; Kellogg, G.E.; Zhang, S. 3,5-Disubstituted-thiazolidine-2,4-dione analogs as anticancer agents: design, synthesis and biological characterization. Eur. J. Med. Chem., 2012, 47(1), 125-137..
[http://dx.doi.org/10.1016/j.ejmech.2011.10.031] [PMID: 22074985]
[25]
Grommes, C.; Karlo, J.C.; Caprariello, A.; Blankenship, D.; Dechant, A.; Landreth, G.E. The PPARγ agonist pioglitazone crosses the blood-brain barrier and reduces tumor growth in a human xenograft model. Cancer Chemother. Pharmacol., 2013, 71(4), 929-936.
[http://dx.doi.org/10.1007/s00280-013-2084-2] [PMID: 23358645]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy