Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

The Interaction of Schistosoma Japonicum Glutathione Transferase with Cibacron Blue 3GA and its Fragments

Author(s): Michalis Platis, Dimitrios Vlachakis, Ahmed I. Foudah, Magdy M. Muharram, Mohamed H. Alqarni, Anastassios C. Papageorgiou and Nikolaos E. Labrou*

Volume 17, Issue 4, 2021

Published on: 03 April, 2020

Page: [332 - 343] Pages: 12

DOI: 10.2174/1573406416666200403074742

Price: $65

Abstract

Background: The 26kDa glutathione transferase (GST, EC 2.5.1.18) from Schistosoma japonicum (SjGST) is recognized as the major detoxification enzyme of S. japonicum, a pathogenic helminth causing schistosomiasis.

Objective: In the present study, the interaction of the chlorotriazine dye Cibacron blue 3GA (CB3GA) and its structural analogues with SjGST was investigated. The work aimed to shed light on the non-substrate ligand-binding properties of the enzyme.

Methods: Kinetic inhibition analysis, affinity labelling experiments and molecular modelling studies were employed.

Results: The results showed that CB3GA is a potent inhibitor (IC50 0.057 ± 0.003 μM) towards SjGST. The enzyme was specifically and irreversibly inactivated by the dichlorotriazine-analogue of CB3GA (IC50 0.190 ± 0.024 μM), following a biphasic pseudo-first-order saturation kinetics with approximately 1 mol of inhibitor per mol of the dimeric enzyme being incorporated. All other monochlorotriazine analogues behave as reversible inhibitors with lower inhibition potency (IC50 5.2-82.3 μM). Kinetic inhibition studies, together with molecular modelling and molecular dynamics simulations, established that the CB3GA binding site overlaps both the G- and H-sites. Both hydrophobic/ polar interactions, as well as steric effects, have decisive roles in determining the inhibitory strength of CB3GA and its analogues.

Conclusion: The results of the present study might be useful in future drug design and development efforts towards SjGST.

Keywords: Affinity labelling, Cibacron Blue 3GA, Schistosoma japonicum, schistosomiasis, structure-guided drug design, triazine dyes.

Graphical Abstract
[1]
Hotez, P.J.; Alvarado, M.; Basáñez, M.G.; Bolliger, I.; Bourne, R.; Boussinesq, M.; Brooker, S.J.; Brown, A.S.; Buckle, G.; Budke, C.M.; Carabin, H.; Coffeng, L.E.; Fèvre, E.M.; Fürst, T.; Halasa, Y.A.; Jasrasaria, R.; Johns, N.E.; Keiser, J.; King, C.H.; Lozano, R.; Murdoch, M.E.; O’Hanlon, S.; Pion, S.D.; Pullan, R.L.; Ramaiah, K.D.; Roberts, T.; Shepard, D.S.; Smith, J.L.; Stolk, W.A.; Undurraga, E.A.; Utzinger, J.; Wang, M.; Murray, C.J.; Naghavi, M. The global burden of disease study 2010: interpretation and implications for the neglected tropical diseases. PLoS Negl. Trop. Dis., 2014, 8(7)e2865
[http://dx.doi.org/10.1371/journal.pntd.0002865] [PMID: 25058013]
[2]
Wang, W.; Wang, L.; Liang, Y.S. Susceptibility or resistance of praziquantel in human schistosomiasis: a review. Parasitol. Res., 2012, 111(5), 1871-1877.
[http://dx.doi.org/10.1007/s00436-012-3151-z] [PMID: 23052781]
[3]
Vale, N.; Gouveia, M.J.; Rinaldi, G.; Brindley, P.J.; Gärtner, F.; Correia da Costa, J.M. Praziquantel for schistosomiasis: single-drug metabolism revisited, mode of action, and resistance. Antimicrob. Agents Chemother., 2017, 61(5), 61.
[http://dx.doi.org/10.1128/AAC.02582-16] [PMID: 28264841]
[4]
Tang, C.L.; Zhou, H.H.; Zhu, Y.W.; Huang, J.; Wang, G.B. Glutathione S-transferase influences the fecundity of Schistosoma japonicum. Acta Trop., 2019, 191, 8-12.
[http://dx.doi.org/10.1016/j.actatropica.2018.12.027] [PMID: 30578749]
[5]
Fallon, P.G.; Doenhoff, M.J. Drug-resistant schistosomiasis: resistance to praziquantel and oxamniquine induced in Schistosoma mansoni in mice is drug specific. Am. J. Trop. Med. Hyg., 1994, 51(1), 83-88.
[http://dx.doi.org/10.4269/ajtmh.1994.51.83] [PMID: 8059919]
[6]
Lo, W.J.; Chiou, Y.C.; Hsu, Y.T.; Lam, W.S.; Chang, M.Y.; Jao, S.C.; Li, W.S. Enzymatic and nonenzymatic synthesis of glutathione conjugates: application to the understanding of a parasite’s defense system and alternative to the discovery of potent glutathione S-transferase inhibitors. Bioconjug. Chem., 2007, 18(1), 109-120.
[http://dx.doi.org/10.1021/bc0601727] [PMID: 17226963]
[7]
Brophy, P.M.; Barrett, J. Glutathione transferase in helminths. Parasitology, 1990, 100(Pt 2), 345-349.
[http://dx.doi.org/10.1017/S0031182000061369] [PMID: 2189115]
[8]
Jao, S.C.; Chen, J.; Yang, K.; Li, W.S. Design of potent inhibitors for Schistosoma japonica glutathione S-transferase. Bioorg. Med. Chem., 2006, 14(2), 304-318.
[http://dx.doi.org/10.1016/j.bmc.2005.07.077] [PMID: 16275109]
[9]
Cardoso, R.M.; Daniels, D.S.; Bruns, C.M.; Tainer, J.A. Characterization of the electrophile binding site and substrate binding mode of the 26-kDa glutathione S-transferase from Schistosoma japonicum. Proteins, 2003, 51(1), 137-146.
[http://dx.doi.org/10.1002/prot.10345] [PMID: 12596270]
[10]
Subramanian, S. Dye-ligand affinity chromatography: the interaction of Cibacron Blue F3GA with proteins and enzymes. CRC Crit. Rev. Biochem., 1984, 16(2), 169-205.
[http://dx.doi.org/10.3109/10409238409102302] [PMID: 6203683]
[11]
Burton, S.J.; Stead, C.V.; Lowe, C.R. Design and applications of biomimetic anthraquinone dyes. III. Anthraquinone-immobilised C.I. reactive blue 2 analogues and their interaction with horse liver alcohol dehydrogenase and other adenine nucleotide-binding proteins. J. Chromatogr. A, 1990, 508(1), 109-125.
[http://dx.doi.org/10.1016/S0021-9673(00)91244-5] [PMID: 2380311]
[12]
Friess, S.D.; Zenobi, R. Protein structure information from mass spectrometry? Selective titration of arginine residues by sulfonates. J. Am. Soc. Mass Spectrom., 2001, 12(7), 810-818.
[http://dx.doi.org/10.1016/S1044-0305(01)00257-4] [PMID: 11444603]
[13]
Axarli, I.A.; Rigden, D.J.; Labrou, N.E. Characterization of the ligandin site of maize glutathione S-transferase I. Biochem. J., 2004, 382(Pt 3), 885-893.
[http://dx.doi.org/10.1042/BJ20040298] [PMID: 15196053]
[14]
Tahir, M.K.; Guthenberg, C.; Mannervik, B. Inhibitors for distinction of three types of human glutathione transferase. FEBS Lett., 1985, 181(2), 249-252.
[http://dx.doi.org/10.1016/0014-5793(85)80269-6] [PMID: 3972110]
[15]
Ahmad, R.; Srivastava, A.K. Inhibition of glutathione-S-transferase from Plasmodium yoelii by protoporphyrin IX, cibacron blue and menadione: implications and therapeutic benefits. Parasitol. Res., 2008, 102(4), 805-807.
[http://dx.doi.org/10.1007/s00436-007-0836-9] [PMID: 18180958]
[16]
Ahmad, R.; Srivastava, A.K. Inhibition of filarial glutathione-s-transferase by various classes of compounds and their evaluation as novel antifilarial agents. Helminthologia, 2008, 45, 114-120.
[http://dx.doi.org/10.2478/s11687-008-0022-3]
[17]
Axarli, I.; Labrou, N.E.; Petrou, C.; Rassias, N.; Cordopatis, P.; Clonis, Y.D. Sulphonamide-based bombesin prodrug analogues for glutathione transferase, useful in targeted cancer chemotherapy. Eur. J. Med. Chem., 2009, 44(5), 2009-2016.
[http://dx.doi.org/10.1016/j.ejmech.2008.10.009] [PMID: 19019494]
[18]
Maltezos, A.; Platis, D.; Vlachakis, D.; Kossida, S.; Marinou, M.; Labrou, N.E. Design, synthesis and application of benzyl-sulfonate biomimetic affinity adsorbents for monoclonal antibody purification from transgenic corn. J. Mol. Recognit., 2014, 27(1), 19-31.
[http://dx.doi.org/10.1002/jmr.2327] [PMID: 24375581]
[19]
Platis, D.; Smith, B.J.; Huyton, T.; Labrou, N.E. Structure-guided design of a novel class of benzyl-sulfonate inhibitors for influenza virus neuraminidase. Biochem. J., 2006, 399(2), 215-223.
[http://dx.doi.org/10.1042/BJ20060447] [PMID: 16776653]
[20]
Leatherbarrow, R.J. GraFit Version 4.0; Erithacus Software Ltd., 1998.
[21]
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72, 248-254.
[http://dx.doi.org/10.1016/0003-2697(76)90527-3] [PMID: 942051]
[22]
Labrou, N.E.; Rigden, D.J.; Clonis, Y.D. Characterization of the NAD+ binding site of Candida boidinii formate dehydrogenase by affinity labelling and site-directed mutagenesis. Eur. J. Biochem., 2000, 267(22), 6657-6664.
[http://dx.doi.org/10.1046/j.1432-1327.2000.01761.x] [PMID: 11054119]
[23]
Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem., 1951, 193(1), 265-275.
[PMID: 14907713]
[24]
Molecular Operating Environment (MOE). 2019.01; Chemical Computing Group ULC, 1010 Sherbooke St. West, Suite # 910, Montreal, QC, Canada, H3A 2R7 , 2021.
[25]
Vlachakis, D.; Tsagrasoulis, D.; Megalooikonomou, V.; Kossida, S. Introducing Drugster: a comprehensive and fully integrated drug design, lead and structure optimization toolkit. Bioinformatics, 2013, 29(1), 126-128.
[http://dx.doi.org/10.1093/bioinformatics/bts637] [PMID: 23104887]
[26]
Vlachakis, D.; Fakourelis, P.; Megalooikonomou, V.; Makris, C.; Kossida, S. DrugOn: a fully integrated pharmacophore modeling and structure optimization toolkit. PeerJ, 2015, 3e725
[http://dx.doi.org/10.7717/peerj.725] [PMID: 25648563]
[27]
Kitz, R.; Wilson, I.B. Esters of methanesulfonic acid as irreversible inhibitors of acetylcholinesterase. J. Biol. Chem., 1962, 237, 3245-3249.
[PMID: 14033211]
[28]
Ricci, G.; Caccuri, A.M.; Lo Bello, M.; Parker, M.W.; Nuccetelli, M.; Turella, P.; Stella, L.; Di Iorio, E.E.; Federici, G. Glutathione transferase P1-1: self-preservation of an anti-cancer enzyme. Biochem. J., 2003, 376(Pt 1), 71-76.
[http://dx.doi.org/10.1042/bj20030860] [PMID: 12877654]
[29]
Axarli, I.; Muleta, A.W.; Vlachakis, D.; Kossida, S.; Kotzia, G.; Maltezos, A.; Dhavala, P.; Papageorgiou, A.C.; Labrou, N.E. Directed evolution of Tau class glutathione transferases reveals a site that regulates catalytic efficiency and masks co-operativity. Biochem. J., 2016, 473(5), 559-570.
[http://dx.doi.org/10.1042/BJ20150930] [PMID: 26637269]
[30]
Chronopoulou, E.G.; Vlachakis, D.; Papageorgiou, A.C.; Ataya, F.S.; Labrou, N.E. Structure-based design and application of an engineered glutathione transferase for the development of an optical biosensor for pesticides determination. Biochim. Biophys. Acta, Gen. Subj., 2019, 1863(3), 565-576.
[http://dx.doi.org/10.1016/j.bbagen.2018.12.004] [PMID: 30590099]
[31]
Hegazy, U.M.; Musdal, Y.; Mannervik, B. Hidden allostery in human glutathione transferase p1-1 unveiled by unnatural amino acid substitutions and inhibition studies. J. Mol. Biol., 2013, 425(9), 1509-1514.
[http://dx.doi.org/10.1016/j.jmb.2013.01.038] [PMID: 23399543]
[32]
Oakley, A.J.; Lo Bello, M.; Nuccetelli, M.; Mazzetti, A.P.; Parker, M.W. The ligandin (non-substrate) binding site of human Pi class glutathione transferase is located in the electrophile binding site (H-site). J. Mol. Biol., 1999, 291(4), 913-926.
[http://dx.doi.org/10.1006/jmbi.1999.3029] [PMID: 10452896]
[33]
Dalmizrak, O.; Teralı, K.; Asuquo, E.B.; Ogus, I.H.; Ozer, N. The Relevance of Glutathione Reductase Inhibition by Fluoxetine to Human Health and Disease: Insights Derived from a Combined Kinetic and Docking Study. Protein J., 2019, 38(5), 515-524.
[http://dx.doi.org/10.1007/s10930-019-09834-7] [PMID: 31004256]
[34]
Shehu, D.; Alias, Z. Functional Role of Tyr12 in the Catalytic Activity of Novel Zeta-like Glutathione S-transferase from Acidovorax sp. KKS102. Protein J., 2018, 37(3), 261-269.
[http://dx.doi.org/10.1007/s10930-018-9774-x] [PMID: 29779193]
[35]
Chronopoulou, E.G.; Ataya, F.; Labrou, N.E. A Microplate-based Platform with Immobilized Human Glutathione Transferase A1-1 for High-throughput Screening of Plant-origin Inhibitors. Curr. Pharm. Biotechnol., 2018, 19(11), 925-931.
[http://dx.doi.org/10.2174/1389201019666181029103538] [PMID: 30370843]
[36]
Kataria, R.; Khatkar, A. Molecular docking of natural phenolic compounds for the screening of urease inhibitors. Curr. Pharm. Biotechnol., 2019, 20(5), 410-421.
[http://dx.doi.org/10.2174/1389201020666190409110948] [PMID: 30963969]
[37]
Graciano, R.C.D.; Ribeiro, J.A.T.; Macêdo, A.K.S. de S Lavareda, J.P.; de Oliveira, P.R.; Netto, J.B.; Nogueira, L.M.; Machado, J.M.; Camposda-Paz, M.; Giunchetti, R.C.; Galdino, A.S. Recent patents applications in red biotechnology: a mini-review. Recent Pat. Biotechnol., 2019, 13(3), 170-186.
[http://dx.doi.org/10.2174/1872208313666190114150511] [PMID: 30648529]
[38]
Gokhale, D.V. Use of enzymes as tools in industrial processes. Recent Pat. Biotechnol., 2018, 12(4), 297-298.
[http://dx.doi.org/10.2174/187220831204181221102552] [PMID: 30652629]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy