Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Indole Curcumin Reverses Multidrug Resistance by Reducing the Expression of ABCB1 and COX2 in Induced Multidrug Resistant Human Lung Cancer Cells

Author(s): Sankar Pajaniradje , Kumaravel Mohankumar, Rakesh Radhakrishnan , Shamim Akhtar Sufi, Srividya Subramanian , Parthiban Anaikutti, Surya Prakash Rao Hulluru and Rukkumani Rajagopalan *

Volume 17, Issue 9, 2020

Page: [1146 - 1154] Pages: 9

DOI: 10.2174/1570180817666200402124503

Price: $65

Abstract

Background: Drug resistance by the cancer cells towards current chemotherapeutic approaches poses a great challenge. In the present study, an indole analogue of a well-known plant derived anticancer molecule, curcumin, was tested for its Multidrug Resistance (MDR) reversing potential in induced multi drug resistant A549 cell line.

Materials and Methods: Human lung cancer cell line A549 was made Multidrug Resistant (MDR) by prolonged treatment with low dosage of Docetaxel, an established anticancer drug. The MDR induction was confirmed by morphological evidence, Hoechst 33342 staining, MTT assay, Rhodamine123 staining and RT-PCR of ABCB1 gene. Protein expression studies were carried out using western blotting technique.

Results and Discussions: The induced MDR A549 cells exhibited significant increase in the gene expression of ABCB1 gene at the transcriptional level. Retention and efflux studies with Pglycoprotein (P-gp) substrate Rh123 indicated that indole curcumin inhibited P-gp mediated efflux of Rhodamine. Furthermore, treatment of MDR A549 cells with indole curcumin showed downregulation of gene expression of ABCB1 and COX 2. This was also confirmed from the decreased protein expression of COX 2.

Conclusion: The results of the present study indicate that indole curcumin reverses multi drug resistance by downregulating the expression of ABCB1 and COX 2 genes. Thus, indole curcumin may act as a potent modulator for ABCB1 and COX 2 mediated MDR in lung cancer.

Keywords: Multidrug resistance (MDR), MDR reversal, curcumin, indole curcumin, docetaxel (Dtx), lung cancer.

Graphical Abstract
[1]
Bray, F.; Ren, J.S.; Masuyer, E.; Ferlay, J. Global estimates of cancer prevalence for 27 sites in the adult population in 2008. Int. J. Cancer, 2013, 132(5), 1133-1145.
[http://dx.doi.org/10.1002/ijc.27711] [PMID: 22752881]
[2]
Erdmann, F.; Lortet-Tieulent, J.; Schüz, J.; Zeeb, H.; Greinert, R.; Breitbart, E.W.; Bray, F. International trends in the incidence of malignant melanoma 1953-2008--are recent generations at higher or lower risk? Int. J. Cancer, 2013, 132(2), 385-400.
[http://dx.doi.org/10.1002/ijc.27616] [PMID: 22532371]
[3]
Ferlay, J.; Steliarova-Foucher, E.; Lortet-Tieulent, J.; Rosso, S.; Coebergh, J.W.; Comber, H.; Forman, D.; Bray, F. Cancer incidence and mortality patterns in Europe: Estimates for 40 countries in 2012. Eur. J. Cancer, 2013, 49(6), 1374-1403.
[http://dx.doi.org/10.1016/j.ejca.2012.12.027] [PMID: 23485231]
[4]
Murray, S.; Briasoulis, E.; Linardou, H.; Bafaloukos, D.; Papadimitriou, C. Taxane resistance in breast cancer: Mechanisms, predictive biomarkers and circumvention strategies. Cancer Treat. Rev., 2012, 38(7), 890-903.
[http://dx.doi.org/10.1016/j.ctrv.2012.02.011] [PMID: 22465195]
[5]
Yang, L.; Wei, D.D.; Chen, Z.; Wang, J.S.; Kong, L.Y. Reversal of multidrug resistance in human breast cancer cells by Curcuma wenyujin and Chrysanthemum indicum. Phytomedicine, 2011, 18(8-9), 710-718.
[http://dx.doi.org/10.1016/j.phymed.2010.11.017] [PMID: 21306883]
[6]
Orr, G.A.; Verdier-Pinard, P.; McDaid, H.; Horwitz, S.B. Mechanisms of Taxol resistance related to microtubules. Oncogene, 2003, 22(47), 7280-7295.
[http://dx.doi.org/10.1038/sj.onc.1206934] [PMID: 14576838]
[7]
Cianfriglia, M. Targeting MDR1-P-glycoprotein (MDR1-Pgp) in immunochemotherapy of acute myeloid leukemia (AML). Ann. Ist. Super. Sanita, 2013, 49(2), 190-208.
[PMID: 23771264]
[8]
Amiri-Kordestani, L.; Basseville, A.; Kurdziel, K.; Fojo, A.T.; Bates, S.E. Targeting MDR in breast and lung cancer: iscriminating its potential importance from the failure of drug resistance reversal studies. Drug Resist. Updat., 2012, 15(1-2), 50-61.
[http://dx.doi.org/10.1016/j.drup.2012.02.002] [PMID: 22464282]
[9]
C L Lam, K. Assessment of P&Glycoprotein Substrate and Inhibition Potential of Test Compounds in MDR1&Transfected MDCK Cells. In: Current Protocols in Pharmacology, Volume 58 (Issue 1 )John Wiley & Sons . , 7.13.1-7.13.17.
[10]
Das, T.K.; Dana, D.; Paroly, S.S.; Perumal, S.K.; Singh, S.; Jhun, H.; Pendse, J.; Cagan, R.L.; Talele, T.T.; Kumar, S. Centrosomal kinase Nek2 cooperates with oncogenic pathways to promote metastasis. Oncogenesis, 2013, 2e, 69.
[http://dx.doi.org/10.1038/oncsis.2013.34] [PMID: 24018644]
[11]
Yang, X.; Yang, P.; Shen, J.; Osaka, E.; Choy, E.; Cote, G.; Harmon, D.; Zhang, Z.; Mankin, H.; Hornicek, F.J.; Duan, Z. Prevention of multidrug resistance (MDR) in osteosarcoma by NSC23925. Br. J. Cancer, 2014, 110(12), 2896-2904.
[http://dx.doi.org/10.1038/bjc.2014.254] [PMID: 24853187]
[12]
Cui, J.; Guo, Y.H.; Zhang, H.Y.; Jiang, L.L.; Ma, J.Q.; Wang, W.J.; Wang, M.C.; Yang, C.C.; Nan, K.J.; Song, L.P. Cyclooxygenase-2 inhibitor is a robust enhancer of anticancer agents against hepatocellular carcinoma multicellular spheroids. OncoTargets Ther., 2014, 7, 353-363.
[PMID: 24591842]
[13]
Goda, K.; Bacsó, Z.; Szabó, G. Multidrug resistance through the spectacle of P-glycoprotein. Curr. Cancer Drug Targets, 2009, 9(3), 281-297.
[http://dx.doi.org/10.2174/156800909788166493] [PMID: 19442049]
[14]
Linardi, R.L. Multi-drug resistance (MDR1) gene and P-glycoprotein influence on pharmacokinetic and pharmacodymanic of therapeutic drugs. Cienc. Rural, 2006, 36, 336-341.
[http://dx.doi.org/10.1590/S0103-84782006000100056]
[15]
Xie, X.; Tang, B.; Zhou, J.; Gao, Q.; Zhang, P. Inhibition of the PI3K/Akt pathway increases the chemosensitivity of gastric cancer to vincristine. Oncol. Rep., 2013, 30(2), 773-782.
[http://dx.doi.org/10.3892/or.2013.2520] [PMID: 23743572]
[16]
Susa, M.; Choy, E.; Yang, C.; Schwab, J.; Mankin, H.; Hornicek, F.; Duan, Z. Multidrug resistance reversal agent, NSC77037, identified with a cell-based screening assay. J. Biomol. Screen., 2010, 15(3), 287-296.
[http://dx.doi.org/10.1177/1087057109359422] [PMID: 20150589]
[17]
Jung, Y.J.; Isaacs, J.S.; Lee, S.; Trepel, J.; Neckers, L. IL-1beta-mediated up-regulation of HIF-1alpha via an NFkappaB/COX-2 pathway identifies HIF-1 as a critical link between inflammation and oncogenesis. FASEB J., 2003, 17(14), 2115-2117.
[http://dx.doi.org/10.1096/fj.03-0329fje] [PMID: 12958148]
[18]
Nagengast, W.B.; Oude Munnink, T.H.; Dijkers, E.C.; Hospers, G.A.; Brouwers, A.H.; Schröder, C.P.; Lub-de Hooge, M.; de Vries, E.G. Multidrug resistance in oncology and beyond: from imaging of drug efflux pumps to cellular drug targets. Methods Mol. Biol., 2010, 596, 15-31.
[http://dx.doi.org/10.1007/978-1-60761-416-6_2] [PMID: 19949918]
[19]
Kumaravel, M.; Sankar, P.; Rukkumani, R. Antiproliferative effect of an analog of curcumin bis-1,7-(2-hydroxyphenyl)-hepta-1,6-diene-3,5-dione in human breast cancer cells. Eur. Rev. Med. Pharmacol. Sci., 2012, 16(14), 1900-1907.
[PMID: 23242714]
[20]
Pajaniradje, S.; Mohankumar, K.; Pamidimukkala, R.; Subramanian, S.; Rajagopalan, R. Antiproliferative and apoptotic effects of Sesbania grandiflora leaves in human cancer cells. BioMed Res. Int., 2014., 2014474953
[http://dx.doi.org/10.1155/2014/474953] [PMID: 24949454]
[21]
Ming, J.; Jiang, G.; Zhang, Q.; Qiu, X.; Wang, E. Interleukin-7 up-regulates cyclin D1 via activator protein-1 to promote proliferation of cell in lung cancer. Cancer Immunol. Immunother., 2012, 61(1), 79-88.
[http://dx.doi.org/10.1007/s00262-011-1078-3] [PMID: 21847632]
[22]
Li, K.; Chen, B.; Xu, L.; Feng, J.; Xia, G.; Cheng, J.; Wang, J.; Gao, F.; Wang, X. Reversal of multidrug resistance by cisplatin-loaded magnetic Fe3O4 nanoparticles in A549/DDP lung cancer cells in vitro and in vivo. Int. J. Nanomedicine, 2013, 8, 1867-1877.
[PMID: 23690684]
[23]
Kiran, M.S.; Viji, R.I.; Sameer Kumar, V.B.; Sudhakaran, P.R. Modulation of angiogenic factors by ursolic acid. Biochem. Biophys. Res. Commun., 2008, 371(3), 556-560.
[http://dx.doi.org/10.1016/j.bbrc.2008.04.108] [PMID: 18448068]
[24]
Hsieh, M.J.; Chen, M.K.; Yu, Y.Y.; Sheu, G.T.; Chiou, H.L. Psoralen reverses docetaxel-induced multidrug resistance in A549/D16 human lung cancer cells lines. Phytomedicine, 2014, 21(7), 970-977.
[http://dx.doi.org/10.1016/j.phymed.2014.03.008] [PMID: 24703328]
[25]
Andorfer, P.; Rotheneder, H. Regulation of the MDR1 promoter by E2F1 and EAPP. FEBS Lett., 2013, 587(10), 1504-1509.
[http://dx.doi.org/10.1016/j.febslet.2013.03.026] [PMID: 23542036]
[26]
Collins, D.M.; Crown, J.; O’Donovan, N.; Devery, A.; O’Sullivan, F.; O’Driscoll, L.; Clynes, M.; O’Connor, R. Tyrosine kinase inhibitors potentiate the cytotoxicity of MDR-substrate anticancer agents independent of growth factor receptor status in lung cancer cell lines. Invest. New Drugs, 2010, 28(4), 433-444.
[http://dx.doi.org/10.1007/s10637-009-9266-0] [PMID: 19499189]
[27]
Sui, H.; Fan, Z.Z.; Li, Q. Signal transduction pathways and transcriptional mechanisms of ABCB1/Pgp-mediated multiple drug resistance in human cancer cells. J. Int. Med. Res., 2012, 40(2), 426-435.
[http://dx.doi.org/10.1177/147323001204000204] [PMID: 22613403]
[28]
Thomas, H.; Coley, H.M. Overcoming multidrug resistance in cancer: An update on the clinical strategy of inhibiting p-glycoprotein. Cancer Contr., 2003, 10(2), 159-165.
[http://dx.doi.org/10.1177/107327480301000207] [PMID: 12712010]
[29]
Li, S.L.; Huang, C.H.; Lin, C.C.; Huang, Z.N.; Chern, J.H.; Lien, H.Y.; Wu, Y.Y.; Cheng, C.H.; Chang, C.Y.; Chuu, J.J. Antitumor effect of BPR-DC-2, a novel synthetic cyclic cyanoguanidine derivative, involving the inhibition of MDR-1 expression and down-regulation of p-AKT and PARP-1 in lung cancer. Invest. New Drugs, 2011, 29(2), 195-206.
[http://dx.doi.org/10.1007/s10637-009-9337-2] [PMID: 19960226]
[30]
Xu, X.; Qin, J.; Liu, W. Curcumin inhibits the invasion of thyroid cancer cells via down-regulation of PI3K/Akt signaling pathway. Gene, 2014, 546(2), 226-232.
[http://dx.doi.org/10.1016/j.gene.2014.06.006] [PMID: 24910117]
[31]
Shimada, K.; Anai, S.; Marco, D.A.; Fujimoto, K.; Konishi, N. Cyclooxygenase 2-dependent and independent activation of Akt through casein kinase 2α contributes to human bladder cancer cell survival. BMC Urol., 2011, 11, 8.
[http://dx.doi.org/10.1186/1471-2490-11-8] [PMID: 21592330]
[32]
Bocca, C.; Bozzo, F.; Miglietta, A. COX2 inhibitor NS398 reduces HT-29 cell invasiveness by modulating signaling pathways mediated by EGFR and HIF1-α. Anticancer Res., 2014, 34(4), 1793-1800.
[PMID: 24692712]
[33]
Qiu, X.; Cheng, J.C.; Chang, H.M.; Leung, P.C. COX2 and PGE2 mediate EGF-induced E-cadherin-independent human ovarian cancer cell invasion. Endocr. Relat. Cancer, 2014, 21(4), 533-543.
[http://dx.doi.org/10.1530/ERC-13-0450] [PMID: 24969217]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy