Abietane Diterpenes as Potential Candidates for the Management of Type 2 Diabetes

Author(s): Ninon G.E.R. Etsassala, Christopher N. Cupido, Emmanuel I. Iwuoha, Ahmed A. Hussein*

Journal Name: Current Pharmaceutical Design

Volume 26 , Issue 24 , 2020

Become EABM
Become Reviewer
Call for Editor


Diabetes mellitus (DM) is considered one of the most common metabolic disorders with an elevated morbidity and mortality rate. It is characterised by a deficiency in insulin secretion or degradation of secreted insulin. Many internal and external factors, such as oxidative stress, obesity and sedentary lifestyle, among others, have been suggested as the major causes of these cell alterations. Diabetes I and II are the most common types of diabetes. Treatment of type I requires insulin injection, while type II can be managed using different synthetic antidiabetic agents. However, their effectiveness is limited as a result of low bioavailability, high cost of drug production, and unfavourable side effects. There is a great need to develop alternative and more active antidiabetic drugs from natural sources. Different forms of natural products have been used since time immemorial as a source of medicine for the purpose of curing numerous human diseases, including diabetes. Secondary metabolites such as polyphenols, flavonoids, terpenoids, alkaloids and several other constituents have direct and indirect roles in controlling such diseases; among them, abietane diterpenes have been reported to display a broad spectrum of promising biological activities including diabetes. This review aimed to summarize existing data from SciFinder (2005-2018) on the biological importance of abietane diterpenes in the prevention and management of type 2 diabetes and closely related diseases.

Keywords: Diabetes mellitus, oxidative stress, secondary metabolites, polyphenols, terpenoids, alkaloids.

Tripathy JP. Burden and risk factors of diabetes and hyperglycemia in India: findings from the Global Burden of Disease Study 2016. Diabetes Metab Syndr Obes 2018; 11: 381-7.
[http://dx.doi.org/10.2147/DMSO.S157376] [PMID: 30104893]
Cao A, Tang Y, Liu Y. Novel fluorescent biosensor for α-glucosidase inhibitor screening based on cationic conjugated polymers. ACS Appl Mater Interfaces 2012; 4(8): 3773-8.
[http://dx.doi.org/10.1021/am3010913] [PMID: 22823570]
Hossain MS, Hassan N, Dash BK, Sapon MA, Kumer SM. A review on medicinal plants with antidiabetic activity. J Pharmacogn Phytochem 2014; 3: 149-59.
Ullah A, Khan A, Khan I. Diabetes mellitus and oxidative stress -A concise review. Pharm J 2016; 24: 547-53.
Mohammed A, Ibrahim MA, Islam MS. African medicinal plants with antidiabetic potentials: a review. Planta Med 2014; 80(5): 354-77.
[http://dx.doi.org/10.1055/s-0033-1360335] [PMID: 24535720]
Lorenzati B, Zucco C, Miglietta S, Lamberti F, Bruno G. Oral hypoglycemic drugs: Pathophysiological basis of their mechanism of action. Pharmaceuticals (Basel) 2010; 3(9): 3005-20.
[http://dx.doi.org/10.3390/ph3093005] [PMID: 27713388]
Marín-Peñalver JJ, Martín-Timón I, Sevillano-Collantes C, del Cañizo-Gómez FJ. Type 2 diabetes and cardiovascular disease: Have all risk factors the same strength. World J Diabetes 2016; 7: 354-95.
[PMID: 27660695]
Sofowora A, Ogunbodede E, Onayade A. The role and place of medicinal plants in the strategies for disease prevention. Afr J Tradit Complement Altern Med 2013; 10(5): 210-29.
[http://dx.doi.org/10.4314/ajtcam.v10i5.2] [PMID: 24311829]
Fan K, Li S, Liu G, Yuan H, Ma L, Lu P. Tanshinone IIA inhibits high glucose‑induced proliferation, migration and vascularization of human retinal endothelial cells. Mol Med Rep 2017; 16(6): 9023-8.
[http://dx.doi.org/10.3892/mmr.2017.7743] [PMID: 29039498]
González MA. Aromatic abietane diterpenoids: their biological activity and synthesis. Nat Prod Rep 2015; 32(5): 684-704.
[http://dx.doi.org/10.1039/C4NP00110A] [PMID: 25643290]
Song HM, Li X, Liu YY, et al. Carnosic acid protects mice from high-fat diet-induced NAFLD by regulating MARCKS. Int J Mol Med 2018; 42(1): 193-207.
[http://dx.doi.org/10.3892/ijmm.2018.3593] [PMID: 29620148]
Lipina C, Hundal HS. Carnosic acid stimulates glucose uptake in skeletal muscle cells via a PME-1/PP2A/PKB signalling axis. Cell Signal 2014; 26(11): 2343-9.
[http://dx.doi.org/10.1016/j.cellsig.2014.07.022] [PMID: 25038454]
Vlavcheski F, Baron D, Vlachogiannis IA, MacPherson REK, Tsiani E. Carnosol increases skeletal muscle cell glucose uptake via AMPK-Dependent GLUT4 glucose transporter translocation. Int J Mol Sci 2018; 19(5): 1321.
[http://dx.doi.org/10.3390/ijms19051321] [PMID: 29710819]
Samarghandian S, Borji A, Farkhondeh T. Evaluation of antidiabetic activity of carnosol (phenolic diterpene in rosemary) in Streptozotocin-induced diabetic rats. Cardiovasc Hematol Disord Drug Targets 2017; 17(1): 11-7.
[http://dx.doi.org/10.2174/1871529X16666161229154910] [PMID: 28034282]
Nazaruk J, Borzym-Kluczyk M. The role of triterpenes in the management of diabetes mellitus and its complications. Phytochem Rev 2015; 14(4): 675-90.
[http://dx.doi.org/10.1007/s11101-014-9369-x] [PMID: 26213526]
Bajpai VK, Park YH, Na M, Kang SC. α-Glucosidase and tyrosinase inhibitory effects of an abietane type diterpenoid taxoquinone from Metasequoia glyptostroboides. BMC Complement Altern Med 2015; 15: 84.
[http://dx.doi.org/10.1186/s12906-015-0626-3] [PMID: 25887244]
Kim DH, Paudel P, Yu T, et al. Characterization of the inhibitory activity of natural tanshinones from Salvia miltiorrhiza roots on protein tyrosine phosphatase 1B. Chem Biol Interact 2017; 278: 65-73.
[http://dx.doi.org/10.1016/j.cbi.2017.10.013] [PMID: 29031618]
Tabata N, Ito M, Tomoda H, Omura S. Xanthohumols, diacylglycerol acyltransferase inhibitors, from Humulus lupulus. Phytochemistry 1997; 46(4): 683-7.
[http://dx.doi.org/10.1016/S0031-9422(97)00157-X] [PMID: 9366096]
Dahlqvist A, Ståhl U, Lenman M, et al. Phospholipid:diacylglycerol acyltransferase: an enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants. Proc Natl Acad Sci USA 2000; 97(12): 6487-92.
[http://dx.doi.org/10.1073/pnas.120067297] [PMID: 10829075]
Yang M, Nickels JT. MOGAT2: A new therapeutic target for metabolic syndrome. Diseases 2015; 3(3): 176-92.
[http://dx.doi.org/10.3390/diseases3030176] [PMID: 28943619]
Cui L, Kim MO, Seo JH, et al. Abietane diterpenoids of Rosmarinus officinalis and their diacylglycerol acyltransferase-inhibitory activity. Food Chem 2012; 132(4): 1775-80.
[http://dx.doi.org/10.1016/j.foodchem.2011.11.138] [PMID: 23442620]
Yun YS, Noda S, Shigemori G, et al. Phenolic diterpenes from rosemary suppress cAMP responsiveness of gluconeogenic gene promoters. Phytother Res 2013; 27(6): 906-10.
[http://dx.doi.org/10.1002/ptr.4794] [PMID: 22927089]
Christensen KB, Jørgensen M, Kotowska D, Petersen RK, Kristiansen K, Christensen LP. Activation of the nuclear receptor PPARγ by metabolites isolated from sage (Salvia officinalis L.). J Ethnopharmacol 2010; 132(1): 127-33.
[http://dx.doi.org/10.1016/j.jep.2010.07.054] [PMID: 20696231]
van Schaftingen E, Gerin I. The glucose-6-phosphatase system. Biochem J 2002; 362(Pt 3): 513-32.
[http://dx.doi.org/10.1042/bj3620513] [PMID: 11879177]
Nachar A, Saleem A, Arnason JT, Haddad PS. Regulation of liver cell glucose homeostasis by dehydroabietic acid, abietic acid and squalene isolated from balsam fir (Abies balsamea (L.) Mill.) a plant of the Eastern James Bay Cree traditional pharmacopeia. Phytochemistry 2015; 117: 373-9.
[http://dx.doi.org/10.1016/j.phytochem.2015.07.001] [PMID: 26164238]
Kubínová R, Pořízková R, Navrátilová A, et al. Antimicrobial and enzyme inhibitory activities of the constituents of Plectranthus madagascariensis (Pers.) Benth. J Enzyme Inhib Med Chem 2014; 29(5): 749-52.
[http://dx.doi.org/10.3109/14756366.2013.848204] [PMID: 24506206]
Jung SH, Seol HJ, Jeon SJ, Son KH, Lee JR. Insulin-sensitizing activities of tanshinones, diterpene compounds of the root of Salvia miltiorrhiza Bunge. Phytomedicine 2009; 16(4): 327-35.
[http://dx.doi.org/10.1016/j.phymed.2008.12.017] [PMID: 19200697]
Kang MS, Hirai S, Goto T, et al. Dehydroabietic acid, a phytochemical, acts as ligand for PPARs in macrophages and adipocytes to regulate inflammation. Biochem Biophys Res Commun 2008; 369(2): 333-8.
[http://dx.doi.org/10.1016/j.bbrc.2008.02.002] [PMID: 18267111]
Wang XW, Yu Y, Gu L. Dehydroabietic acid reverses TNF-α-induced the activation of FOXO1 and suppression of TGF-β1/Smad signaling in human adult dermal fibroblasts. Int J Clin Exp Pathol 2014; 7(12): 8616-26.
[PMID: 25674226]
Xie Z, Zhong L, Wu Y, et al. Carnosic acid improves diabetic nephropathy by activating Nrf2/ARE and inhibition of NF-κB pathway. Phytomedicine 2018; 47: 161-73.
[http://dx.doi.org/10.1016/j.phymed.2018.04.031] [PMID: 30166101]
Chen X, Wu R, Kong Y, et al. Tanshinone IIA attenuates renal damage in STZ-induced diabetic rats via inhibiting oxidative stress and inflammation. Oncotarget 2017; 8(19): 31915-22.
[http://dx.doi.org/10.18632/oncotarget.16651] [PMID: 28404881]
Li YH, Xu Q, Xu WH, Guo XH, Zhang S, Chen YD. Mechanisms of protection against diabetes-induced impairment of endothelium-dependent vasorelaxation by Tanshinone IIA. Biochim Biophys Acta 2015; 1850(4): 813-23.
[http://dx.doi.org/10.1016/j.bbagen.2015.01.007] [PMID: 25613563]
Kim SK, Jung KH, Lee BC. Protective effect of Tanshinone IIA on the early stage of experimental diabetic nephropathy. Biol Pharm Bull 2009; 32(2): 220-4.
[http://dx.doi.org/10.1248/bpb.32.220] [PMID: 19182379]
Sun D, Shen M, Li J, et al. Cardioprotective effects of tanshinone IIA pretreatment via kinin B2 receptor-Akt-GSK-3β dependent pathway in experimental diabetic cardiomyopathy. Cardiovasc Diabetol 2011; 10: 4.
[http://dx.doi.org/10.1186/1475-2840-10-4] [PMID: 21232147]
Han YM, Oh H, Na M, et al. PTP1B inhibitory effect of abietane diterpenes isolated from Salvia miltiorrhiza. Biol Pharm Bull 2005; 28(9): 1795-7.
[http://dx.doi.org/10.1248/bpb.28.1795] [PMID: 16141564]
Wei Y, Gao J, Qin L, et al. Tanshinone I alleviates insulin resistance in type 2 diabetes mellitus rats through IRS-1 pathway. Biomed Pharmacother 2017; 93: 352-8.
[http://dx.doi.org/10.1016/j.biopha.2017.06.040] [PMID: 28651236]
Ou J, Huang J, Zhao D, Du B, Wang M. Protective effect of rosmarinic acid and carnosic acid against streptozotocin-induced oxidation, glycation, inflammation and microbiota imbalance in diabetic rats. Food Funct 2018; 9(2): 851-60.
[http://dx.doi.org/10.1039/C7FO01508A] [PMID: 29372208]
Chen J, Bi Y, Chen L, Zhang Q, Xu L. Tanshinone IIA exerts neuroprotective effects on hippocampus-dependent cognitive impairments in diabetic rats by attenuating ER stress-induced apoptosis. Biomed Pharmacother 2018; 104: 530-6.
[http://dx.doi.org/10.1016/j.biopha.2018.05.040] [PMID: 29800917]
Zhang Y, Wei L, Sun D, et al. Tanshinone IIA pretreatment protects myocardium against ischaemia/reperfusion injury through the phosphatidylinositol 3-kinase/Akt-dependent pathway in diabetic rats. Diabetes Obes Metab 2010; 12(4): 316-22.
[http://dx.doi.org/10.1111/j.1463-1326.2009.01166.x] [PMID: 20380652]
Kang MS, Hirai S, Goto T, et al. Dehydroabietic acid, a diterpene, improves diabetes and hyperlipidemia in obese diabetic KK-Ay mice. Biofactors 2009; 35(5): 442-8.
[http://dx.doi.org/10.1002/biof.58] [PMID: 19753653]
Xia G, Wang X, Sun H, Qin Y, Fu M. Carnosic acid (CA) attenuates collagen-induced arthritis in db/db mice via inflammation suppression by regulating ROS-dependent p38 pathway. Free Radic Biol Med 2017; 108: 418-32.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.03.023] [PMID: 28343998]
Li H, Sun JJ, Chen GY, et al. Carnosic acid nanoparticles suppress liver ischemia/reperfusion injury by inhibition of ROS, Caspases and NF-κB signaling pathway in mice. Biomed Pharmacother 2016; 82: 237-46.
[http://dx.doi.org/10.1016/j.biopha.2016.04.064] [PMID: 27470360]
Feng FB, Qiu HY. Neuroprotective effect of tanshinone IIA against neuropathic pain in diabetic rats through the Nrf2/ARE and NF-κB signaling pathways. Kaohsiung J Med Sci 2018; 34(8): 428-37.
[http://dx.doi.org/10.1016/j.kjms.2018.03.005] [PMID: 30041760]
Gong Z, Huang C, Sheng X, et al. The role of tanshinone IIA in the treatment of obesity through peroxisome proliferator-activated receptor gamma antagonism. Endocrinology 2009; 150(1): 104-13.
[http://dx.doi.org/10.1210/en.2008-0322] [PMID: 18818299]
Wu WY, Yan H, Wang XB, et al. Sodium tanshinone IIA silate inhibits high glucose-induced vascular smooth muscle cell proliferation and migration through activation of AMP-activated protein kinase. PLoS One 2014; 9(4)e94957
[http://dx.doi.org/10.1371/journal.pone.0094957] [PMID: 24739942]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Published on: 21 July, 2020
Page: [2885 - 2891]
Pages: 7
DOI: 10.2174/1381612826666200331082917
Price: $65

Article Metrics

PDF: 22
PRC: 1