Generic placeholder image

Current Chromatography

Editor-in-Chief

ISSN (Print): 2213-2406
ISSN (Online): 2213-2414

Research Article

A New Ecological HPLC Method for Determination of Vancomycin Dosage form

Author(s): Patrícia Aleixa do Nascimento, Ana Carolina Kogawa* and Hérida R.N. Salgado

Volume 7, Issue 2, 2020

Page: [82 - 90] Pages: 9

DOI: 10.2174/2213240607666200324140907

Price: $65

Abstract

Aims: To develop and validate a new ecological HPLC method for the determination of vancomycin dosage form.

Background: Vancomycin is an important antimicrobial. According to the literature, there are many methods that use HPLC, but none of these methods follow the green analytical chemistry principles.

Objective: Therefore, a green analytical method to quantify vancomycin in lyophilized powder for injectable solution by HPLC was developed.

Materials and Methods: It uses less quantity of toxic solvents, minimizing the costs and optimizing the time of analysis. Water + 0.1% acetic acid and ethanol (85:15, v/v), 0.5 mL min-1, and C18 column (15 cm) at 280 nm were used.

Results and Discussion: The method was linear in the range of 40 to 140 μg mL-1, with a correlation coefficient of 0.9998. It was selective when subjected to acid 0.1M, basic 0.01M, oxidative 0.3%, UV light and neutral degradation in a bath of 60 ºC for 8 hours. The precision of the method was proved at intraday (RSD 1.08%), interday (RSD 0.47%) and intermediate levels (RSD 2.35%). It was accurate with a mean recovery of 100.19% and robust when changes were performed in seven parameters of the method and analyzed by the Youden and Steiner test.

Conclusion: The method can be applied to routine quality control of vancomycin lyophilized powder for injectable solution as an ecological and sustainable alternative that contemplates the green analytical chemistry and the current pharmaceutical analyses.

Keywords: Vancomycin, HPLC, green analytical chemistry, ecological alternative, lyophilized powder, current pharmaceutical analyses.

[1]
Vila, M.M.D.C.; Oliveira, R.M.; Gonçalves, M.M. Analytical methods for vancomycin determination in biological fluids and in pharmaceuticals. Quim. Nova, 2007, 30, 395-399.
[http://dx.doi.org/10.1590/S0100-40422007000200029]
[2]
Matzke, G.R.; Zhanel, G.G.; Guay, D.R.P. Clinical pharmacokinetics of vancomycin. Clin. Pharmacokinet., 1986, 11(4), 257-282.
[http://dx.doi.org/10.2165/00003088-198611040-00001] [PMID: 3530582]
[3]
Lazar, K.; Walker, S. Substrate analogues to study cell-wall biosynthesis and its inhibition. Curr. Opin. Chem. Biol., 2002, 6(6), 786-793.
[http://dx.doi.org/10.1016/S1367-5931(02)00355-1] [PMID: 12470732]
[4]
Kang, H.K.; Park, Y. Glycopeptide antibiotics: structure and mechanisms of action. J. Bacteriol. Virol., 2015, 45, 67-78.
[http://dx.doi.org/10.4167/jbv.2015.45.2.67]
[5]
Williams, D.H.; Bardsley, B. The vancomycin group of antibiotics and the fight against resistant bacteria. Angew. Chem. Int. Ed. Engl., 1999, 38(9), 1172-1193.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19990503)38:9<1172:AID-ANIE1172>3.0.CO;2-C] [PMID: 29711719]
[6]
Nascimento, P.A.; Kogawa, A.C.; Salgado, H.R.N. Current status of vancomycin analytical methods. J. AOAC Int., in press
[7]
Edwards, M.; Boswell, H.; Górecki, T. Comprehensive multidimensional. Curr. Chromatogr., 2015, 2, 80-109.
[http://dx.doi.org/10.2174/2213240602666150722232236]
[8]
Ali, I; Al-Othman, ZA; Al-Warthan, A; Aboul-Enein, HY Recent trends in chiral separations by nano liquid chromatography and nano capillary electrophoresis., 2014, 1, 81-89.
[9]
Hanai, T. Definition of HILIC system and quantitative analysis of retention mechanisms. Curr. Chromatogr., 2018, 5, 43-52.
[http://dx.doi.org/10.2174/2213240605666180207093716]
[10]
Ali, I.; Saleem, K.; Hussain, I.; Gaitonde, V.D.; Aboul-Enein, H.Y. Polysaccharides Chiral Stationary Phases in Liquid Chromatography. Separ. Purif. Rev., 2009, 38, 97-147.
[http://dx.doi.org/10.1080/15422110802589916]
[11]
Ali, I.; Aboul-Enein, H.Y. Enantioseparation of some clinically used drugs by HPLC using cellulose Tris (3,5-dichlorophenylcarbamate) chiral stationary phase. Biomed. Chromatogr., 2003, 17(2-3), 113-117.
[http://dx.doi.org/10.1002/bmc.220] [PMID: 12717799]
[12]
Al-Othman, Z.A.; Al-Warthan, A.; Ali, I. Advances in enantiomeric resolution on monolithic chiral stationary phases in liquid chromatography and electrochromatography. J. Sep. Sci., 2014, 37(9-10), 1033-1057.
[http://dx.doi.org/10.1002/jssc.201301326] [PMID: 24634395]
[13]
B.P. British Pharmacopoeia, The Stationery Office: London, Vol. , 2012.
[14]
USP The United States Pharmacopeia. The National Formulary (NF 32), 39th ed; United States Pharmacopeia Convention: Rockville, MD, 2016.
[15]
Li, X.; Wang, F.; Xu, B.; Yu, X.; Yang, Y.; Zhang, L.; Li, H. Determination of the free and total concentrations of vancomycin by two-dimensional liquid chromatography and its application in elderly patients. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2014, 969, 181-189.
[http://dx.doi.org/10.1016/j.jchromb.2014.08.002] [PMID: 25178192]
[16]
Khalilian, F.; Hanzaki, S.A.; Yousefi, M. Synthesis of a graphene-based nanocomposite for the dispersive solid-phase extraction of vancomycin from biological samples. J. Sep. Sci., 2015, 38(6), 975-981.
[http://dx.doi.org/10.1002/jssc.201401067] [PMID: 25581736]
[17]
Li, X.; Wu, Y.; Sun, S.; Mei, S.; Wang, J.; Wang, Q.; Zhao, Z. Population pharmacokinetics of vancomycin in postoperative neurosurgical patients. Pharmacokinetics. J. Pharm. Sci., 2015, 104(11), 3960-3967.
[http://dx.doi.org/10.1002/jps.24604] [PMID: 26239933]
[18]
Lin Wu, F.L.; Liu, S.S.; Yang, T.Y.; Win, M.F.; Lin, S.W.; Huang, C.F.; Wang, K.C.; Shen, L.J. A larger dose of vancomycin is required in adult neurosurgical intensive care unit patients due to augmented clearance. Ther. Drug Monit., 2015, 37(5), 609-618.
[http://dx.doi.org/10.1097/FTD.0000000000000187] [PMID: 25627406]
[19]
Oyaert, M.; Peersman, N.; Kieffer, D.; Deiteren, K.; Smits, A.; Allegaert, K.; Spriet, I.; Van Eldere, J.; Verhaegen, J.; Vermeersch, P.; Pauwels, S. Novel LC-MS/MS method for plasma vancomycin: comparison with immunoassays and clinical impact. Clin. Chim. Acta, 2015, 441, 63-70.
[http://dx.doi.org/10.1016/j.cca.2014.12.012] [PMID: 25523192]
[20]
Barco, S.; Castagnola, E.; Gennai, I.; Barbagallo, L.; Loy, A.; Tripodi, G.; Cangemi, G. Ultra high performance liquid chromatography-tandem mass spectrometry vs. commercial immunoassay for determination of vancomycin plasma concentration in children. Possible implications for everyday clinical practice. J. Chemother., 2016, 28(5), 395-402.
[http://dx.doi.org/10.1080/1120009X.2016.1157947] [PMID: 27238431]
[21]
Parker, S.L.; Guerra Valero, Y.C.; Lipman, J.; Roberts, J.A.; Wallis, S.C. Effect of time on recovery of plasma microsamples for the quantitative determination of vancomycin. Bioanalysis, 2016, 8(21), 2235-2242.
[http://dx.doi.org/10.4155/bio-2016-0159] [PMID: 27665940]
[22]
Usman, M.; Hempel, G. Development and validation of an HPLC method for the determination of vancomycin in human plasma and its comparison with an immunoassay (PETINIA). Springerplus, 2016, 5, 124.
[http://dx.doi.org/10.1186/s40064-016-1778-4] [PMID: 26933623]
[23]
Chen, F.; Hu, Z.Y.; Laizure, S.C.; Hudson, J.Q. Simultaneous assay of multiple antibiotics in human plasma by LC-MS/MS: importance of optimizing formic acid concentration. Bioanalysis, 2017, 9(5), 469-483.
[http://dx.doi.org/10.4155/bio-2016-0157] [PMID: 28176533]
[24]
Javorska, L.; Krcmova, L.K.; Solich, P.; Kaska, M. Simple and rapid quantification of vancomycin in serum, urine and peritoneal/pleural effusion via UHPLC-MS/MS applicable to personalized antibiotic dosing research. J. Pharm. Biomed. Anal., 2017, 142, 59-65.
[http://dx.doi.org/10.1016/j.jpba.2017.04.029] [PMID: 28494340]
[25]
Mei, S.; Wang, J.; Zhu, L.; Chen, R.; Li, X.; Chen, K.; Chen, G.; Zhou, J.; Wang, Q.; Zhao, Z.A. UPLC-MS/MS method for analysis of vancomycin in human cerebrospinal fluid and comparison with the chemiluminescence immunoassay. Biomed. Chromatogr., 2017, 31(8), 1-7.
[http://dx.doi.org/10.1002/bmc.3939] [PMID: 28139829]
[26]
Gessmann, J.; Seybold, D.; Ayami, F.; Peter, E.; Baecker, H.; Schildhauer, T.A.; Köller, M. Peripheral blood plasma clot as a local antimicrobial drug delivery matrix. Tissue Eng. Part A, 2018, 24(9-10), 809-818.
[http://dx.doi.org/10.1089/ten.tea.2017.0319] [PMID: 29096582]
[27]
Lima, T.M.; Seba, K.S.; Gonçalves, J.C.S.; Cardoso, F.L.L.; Estrela, R.C.E. A rapid and simple HPLC method for therapeutic monitoring of vancomycin. J. Chromatogr. Sci., 2018, 56(2), 115-121.
[http://dx.doi.org/10.1093/chromsci/bmx089] [PMID: 29069326]
[28]
Liu, M.; Yang, Z.H.; Li, G.H. A novel method for the determination of vancomycin in serum by high-performance liquid chromatography-tandem mass spectrometry and its application in patients with diabetic foot infections. Molecules, 2018, 23(11), 2-12.
[http://dx.doi.org/10.3390/molecules23112939] [PMID: 30423820]
[29]
Muppidi, K.; Pumerantz, A.S.; Betageri, G.; Wang, J. Development and validation of a rapid High-Performance Liquid Chromatography method with UV detection for the determination of vancomycin in mouse plasma. J. Chromatogr. Sep. Tech., 2013, 4, 1-5.
[30]
Tseng, Y.Y.; Kao, Y.C.; Liao, J.Y.; Chen, W.A.; Liu, S.J. Biodegradable drug-eluting poly[lactic-co-glycol acid] nanofibers for the sustainable delivery of vancomycin to brain tissue: in vitro and in vivo studies. ACS Chem. Neurosci., 2013, 4(9), 1314-1321.
[http://dx.doi.org/10.1021/cn400108q] [PMID: 23815098]
[31]
Bue, M.; Birke-Sørensen, H.; Thillemann, T.M.; Hardlei, T.F.; Søballe, K.; Tøttrup, M. Single-dose pharmacokinetics of vancomycin in porcine cancellous and cortical bone determined by microdialysis. Int. J. Antimicrob. Agents, 2015, 46(4), 434-438.
[http://dx.doi.org/10.1016/j.ijantimicag.2015.06.014] [PMID: 26260192]
[32]
Loc-Carrillo, C.; Wang, C.; Canden, A.; Burr, M.; Agarwal, J. Local intramedullary delivery of vancomycin can prevent the development of long boneStaphylococcus aureus infection. PLoS One, 2016, 11(7)e0160187
[http://dx.doi.org/10.1371/journal.pone.0160187] [PMID: 27472197]
[33]
Mao, Y.; Zhao, M.; Ge, Y.; Fan, J. Novel alginate–chitosan composite microspheres for implant delivery of vancomycin and in vivo evaluation. Chem. Biol. Drug Des., 2016, 88(3), 434-440.
[http://dx.doi.org/10.1111/cbdd.12771] [PMID: 27085301]
[34]
Rhodes, N.J.; Prozialeck, W.C.; Lodise, T.P.; Venkatesan, N.; O’Donnell, J.N.; Pais, G.; Cluff, C.; Lamar, P.C.; Neely, M.N.; Gulati, A.; Scheetz, M.H. Evaluation of vancomycin exposures associated with elevations in novel urinary biomarkers of acute kidney injury in vancomycin-treated rats. Antimicrob. Agents Chemother., 2016, 60(10), 5742-5751.
[http://dx.doi.org/10.1128/AAC.00591-16] [PMID: 27431226]
[35]
Joshi, M.D.; O’Donnell, J.N.; Venkatesan, N.; Chang, J.; Nguyen, H.; Rhodes, N.J.; Pais, G.; Chapman, R.L.; Griffin, B.; Scheetz, M.H. High-Performance Liquid Chromatography method for rich pharmacokinetic sampling schemes in translational rat toxicity models with vancomycin. Clin. Transl. Sci., 2017, 10(6), 496-502.
[http://dx.doi.org/10.1111/cts.12484] [PMID: 28675684]
[36]
O’Donnell, J.N.; Rhodes, N.J.; Lodise, T.P.; Prozialeck, W.C.; Miglis, C.M.; Joshi, M.D.; Venkatesan, N.; Pais, G.; Cluff, C.; Lamar, P.C.; Briyal, S.; Day, J.Z.; Gulati, A.; Scheetz, M.H. 24-Hour Pharmacokinetic relationships for vancomycin and novel urinary biomarkers of acute kidney injury. Antimicrob. Agents Chemother., 2017, 61(11), 1-10.
[http://dx.doi.org/10.1128/AAC.00416-17] [PMID: 28807910]
[37]
Working, Z.M.; Frederiksen, H.; Drew, A.; Loc-Carrillo, C.; Kubiak, E.N. Bone penetrance of locally administered vancomycin powder in a rat femur fracture model. Injury, 2017, 48(7), 1459-1465.
[http://dx.doi.org/10.1016/j.injury.2017.04.040] [PMID: 28456368]
[38]
Cao, M.; Feng, Y.; Zhang, Y.; Kang, W.; Lian, K.; Ai, L. Studies on the metabolism and degradation of vancomycin in simulated in vitro and aquatic environment by UHPLC-Triple-TOF-MS/MS. Sci. Rep., 2018, 8(1), 15471.
[http://dx.doi.org/10.1038/s41598-018-33826-9] [PMID: 30341315]
[39]
Bozdag, S.; Weyenberg, W.; Adriaens, E.; Dhondt, M.M.M.; Vergote, V.; Vervaet, C.; De Prijck, K.; Nelis, H.J.; De Spiegeleer, B.; Ludwig, A.; Remon, J.P. In vitro evaluation of gentamicin- and vancomycin-containing minitablets as a replacement for fortified eye drops. Drug Dev. Ind. Pharm., 2010, 36(11), 1259-1270.
[http://dx.doi.org/10.3109/03639041003718030] [PMID: 20545514]
[40]
Hadwiger, M.E.; Sommers, C.D.; Mans, D.J.; Patel, V.; Boyne, M.T. II Quality assessment of U.S. marketplace vancomycin for injection products using high-resolution liquid chromatography-mass spectrometry and potency assays. Antimicrob. Agents Chemother., 2012, 56(6), 2824-2830.
[http://dx.doi.org/10.1128/AAC.00164-12] [PMID: 22371900]
[41]
Whaley, P.A.; Voudrie, M.A., II Stability of vancomycin in SyrSpend SF. Int. J. Pharm. Compd., 2012, 16(2), 167-169.
[PMID: 23050329]
[42]
Anderson, C.; Boehme, S.; Ouellette, J.; Stidham, C.; Mackay, M. Physical and chemical compatibility of injectable acetaminophen during simulated y-site administration. Hosp. Pharm., 2014, 49(1), 42-47.
[http://dx.doi.org/10.1310/hpj4901-42] [PMID: 24421562]
[43]
Berti, A.D.; Hutson, P.R.; Schulz, L.T.; Webb, A.P.; Rose, W.E. Compatibility of cefepime and vancomycin during simulated Y-site administration of prolonged infusion. Am. J. Health Syst. Pharm., 2015, 72(5), 390-395.
[http://dx.doi.org/10.2146/ajhp140369] [PMID: 25694414]
[44]
Serri, A.; Moghimp, H.R.; Mahboubi, A.; Zarghi, A. Stability-indicating hplc method for determination of vancomycin hydrochloride in the pharmaceutical dosage forms. Acta Pol. Pharm., 2017, 74(1), 73-79.
[PMID: 29474763]
[45]
Aguilera-Correa, J.J.; Doadrio, A.L.; Conde, A.; Arenas, M.A.; de-Damborenea, J.J.; Vallet-Regí, M.; Esteban, J. Antibiotic release from F-doped nanotubular oxide layer on TI6AL4V alloy to decrease bacterial viability. J. Mater. Sci. Mater. Med., 2018, 29(8), 118.
[http://dx.doi.org/10.1007/s10856-018-6119-4] [PMID: 30030636]
[46]
Hsu, Y.H.; Chen, D.W.C.; Tai, C.D.; Chou, Y.C.; Liu, S.J.; Ueng, S.W.N.; Chan, E.C. Biodegradable drug-eluting nanofiber-enveloped implants for sustained release of high bactericidal concentrations of vancomycin and ceftazidime: in vitro and in vivo studies. Int. J. Nanomedicine, 2014, 9, 4347-4355.
[http://dx.doi.org/10.2147/IJN.S66526] [PMID: 25246790]
[47]
Roberts, R.; McConoughey, S.J.; Calhoun, J.H. Size and composition of synthetic calcium sulfate beads influence dissolution and elution rates in vitro. J. Biomed. Mater. Res. B Appl. Biomater., 2014, 102(4), 667-673.
[http://dx.doi.org/10.1002/jbm.b.33045] [PMID: 24155136]
[48]
Liu, K.S.; Lee, C.H.; Wang, Y.C.; Liu, S.J. Sustained release of vancomycin from novel biodegradable nanofiber-loaded vascular prosthetic grafts: in vitro and in vivo study. Int. J. Nanomedicine, 2015, 10, 885-891.
[http://dx.doi.org/10.2147/IJN.S78675] [PMID: 25673985]
[49]
Martínez-Vázquez, F.J.; Cabañas, M.V.; Paris, J.L.; Lozano, D.; Vallet-Regí, M. Fabrication of novel Si-doped hydroxyapatite/gelatine scaffolds by rapid prototyping for drug delivery and bone regeneration. Acta Biomater., 2015, 15, 200-209.
[http://dx.doi.org/10.1016/j.actbio.2014.12.021] [PMID: 25560614]
[50]
Chou, Y.C.; Cheng, Y.S.; Hsu, Y.H.; Yu, Y.H.; Liu, S.J. A bio-artificial poly([D,L]-lactide-co-glycolide) drug-eluting nanofibrous periosteum for segmental long bone open fractures with significant periosteal stripping injuries. Int. J. Nanomedicine, 2016, 11, 941-953.
[http://dx.doi.org/10.2147/IJN.S99791] [PMID: 27022261]
[51]
Kirk, L.; Lewis, P.; Luu, Y.; Brown, S. Stability of commercially available grape and compounded cherry oral vancomycin preparations stored in syringes and cups. Int. J. Pharm. Compd., 2016, 20(2), 159-163.
[PMID: 27323427]
[52]
Soran, M.L. Determination of antibiotics in surface water by solid-phase extraction and High-Performance Liquid Chromatography with diode array and mass spectrometry detection. Environmental Analysis, 2016, 50, 1209-1218.
[53]
Suchý, T.; Šupová, M.; Klapková, E.; Horný, L.; Rýglová, Š.; Žaloudková, M.; Braun, M.; Sucharda, Z.; Ballay, R.; Veselý, J.; Chlup, H.; Denk, F. The sustainable release of vancomycin and its degradation products from nanostructured collagen/hydroxyapatite composite layers. J. Pharm. Sci., 2016, 105(3), 1288-1294.
[http://dx.doi.org/10.1016/S0022-3549(15)00175-6] [PMID: 26886321]
[54]
Wicha, S.G.; Kloft, C. Simultaneous determination and stability studies of linezolid, meropenem and vancomycin in bacterial growth medium by high-performance liquid chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2016, 1028, 242-248.
[http://dx.doi.org/10.1016/j.jchromb.2016.06.033] [PMID: 27414982]
[55]
Frew, N.M.; Cannon, T.; Nichol, T.; Smith, T.J.; Stockley, I. Comparison of the elution properties of commercially available gentamicin and bone cement containing vancomycin with ‘home-made’ preparations. Bone Joint J., 2017, 99-B(1), 73-77.
[http://dx.doi.org/10.1302/0301-620X.99B1.BJJ-2016-0566.R1] [PMID: 28053260]
[56]
Soran, M.L.; Opriş, O.; Lung, I.; Kacso, I.; Porav, A.S.; Stan, M. The efficiency of the multi-walled carbon nanotubes used for antibiotics removal from wastewaters generated by animal farms. Environ. Sci. Pollut. Res. Int., 2017, 24(19), 16396-16406.
[http://dx.doi.org/10.1007/s11356-017-9238-4] [PMID: 28550633]
[57]
Song, X.; Xie, J.; Zhang, M.; Zhang, Y.; Li, J.; Huang, Q.; He, L. Simultaneous determination of eight cyclopolypeptide antibiotics in feed by high performance liquid chromatography coupled with evaporation light scattering detection. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2018, 1076, 103-109.
[http://dx.doi.org/10.1016/j.jchromb.2018.01.020] [PMID: 29406023]
[58]
World Health Organization International programme on chemical safety, 1993. Available at http://www.inchem.org/documents/ehc/ehc/ehc154.htm (Accessed on October 2019)
[59]
World Health Organization United Nations environment programme international labour organization world health organization, 1997. Available at http://www.inchem.org/documents/ehc/ehc/ehc196.htm (Accessed on October 2019)
[60]
de Marco, B.A.; Rechelo, B.S.; Tótoli, E.G.; Kogawa, A.C.; Salgado, H.R.N. Evolution of green chemistry and its multidimensional impacts: A review. Saudi Pharm. J., 2019, 27(1), 1-8.
[http://dx.doi.org/10.1016/j.jsps.2018.07.011] [PMID: 30627046]
[61]
Tótoli, E.G.; Salgado, H.R.N. Development and validation of an economic, environmental friendly and stability-indicating analytical method for determination of ampicillin sodium for injection by RP-HPLC. World J. Pharm. Pharm. Sci., 2014, 3, 1928-1943.
[62]
Tótoli, E.G.; Salgado, H.R.N. Development, optimization, and validation of a green and stability-indicating HPLC method for determination of daptomycin in lyophilized powder. J. AOAC Int., 2015, 98(5), 1276-1285.
[http://dx.doi.org/10.5740/jaoacint.15-039] [PMID: 26525246]
[63]
Kogawa, A.C.; Salgado, H.R.N. Analytical methods need optimization to get innovative and continuous processes for future pharma-ceuticals. Scholars Academic Journal of Pharmacy, 2016, 5, 240-244.
[http://dx.doi.org/10.21276/sajp.2016.5.6.3]
[64]
Rodrigues, D.F.; Salgado, H.R.N. Development and validation of a green analytical method of rp-hplc for quantification of cefepime hydrochloride in pharmaceutical dosage form: simple, sensitive and economic. Curr. Pharm. Anal., 2016, 12, 306-314.
[http://dx.doi.org/10.2174/1573412912666151221210921]
[65]
Figueiredo, A.L.; Kogawa, A.C.; Salgado, H.R.N. Development and validation of an ecological, new and rapid stability-indicating High Performance Liquid Chromatographic method for quantitative determination of aztreonam in lyophilized powder for injection. Drug Analytical Research, 2017, 1, 24-30.
[http://dx.doi.org/10.22456/2527-2616.73755]
[66]
Kogawa, A.C.; Salgado, H.R.N. Analytical Methods: Where do we stand in the current environmental scenario? EC Microbiology, 2017, 13, 102-104.
[67]
Marco, B.A.; Salgado, H.R.N. Development and validation of a green RP-HPLC method for quantification of cefadroxil capsules. World J. Pharm. Pharm. Sci., 2017, 6, 2074-2091.
[http://dx.doi.org/10.20959/wjpps20178-9875]
[68]
Ghidini, L.F.; Kogawa, A.C.; Salgado, H.R.N. Eco-friendly green liquid chromatographic for determination of doxycycline in tablets and in the presence of its degradation products. Drug Analytical Research, 2018, 2, 49-55.
[http://dx.doi.org/10.22456/2527-2616.89412]
[69]
Kogawa, A.C.; Salgado, H.R.N. Ethanol on HPLC: Epiphany or Nonsense? Acta Scientific Pharmaceutical Sciences, 2018, 2, 14-15.
[70]
Lima, J.G.S.; Kogawa, A.C.; Salgado, H.R.N. Green analytical method for quantification of secnidazole in tablets by HPLC-UV. Drug Analytical Research, 2018, 02, 20-26.
[http://dx.doi.org/10.22456/2527-2616.89411]
[71]
Nascimento, P.A.; Kogawa, A.C.; Salgado, H.R.N. Development and validation of an innovative and ecological analytical method using high performance liquid chromatography for quantification of cephalothin sodium in pharmaceutical dosage. J. Chromatogr. Sep. Tech., 2018, 9, 394-401.
[http://dx.doi.org/10.4172/2157-7064.1000394]
[72]
Dichiarante, V.; Ravelli, D.; Albini, A. Green chemistry: state of the art through an analysis of the literature. Green Chem. Lett. Rev., 2010, 3, 105-113.
[http://dx.doi.org/10.1080/17518250903583698]
[73]
McElroy, C.R.; Constantinou, A.; Jones, L.C.; Summerton, L.; Clark, J.H. Towards a holistic approach to metrics for the 21st century pharmaceutical industry. Green Chem., 2015, 17, 3111-3121.
[http://dx.doi.org/10.1039/C5GC00340G]
[74]
Ravikiran, T.N.; Prasad, Y.R.; Anoop, K. Green chemistry. World J. Pharm. Pharm. Sci., 2015, 4, 353-367.
[75]
Vosough, M.; Rashvand, M.; Esfahani, H.M.; Kargosha, K.; Salemi, A. Direct analysis of six antibiotics in wastewater samples using rapid high-performance liquid chromatography coupled with diode array detector: a chemometric study towards green analytical chemistry. Talanta, 2015, 135, 7-17.
[http://dx.doi.org/10.1016/j.talanta.2014.12.036] [PMID: 25640119]
[76]
Ng, L.L. Validation of Chromatographic Methods, Food and Drug Administration, Proceedings of Center for Drug Evaluation and Research; CDER: Maryland, USA, 1994, pp. 1-25. Available at https://www.fda.gov/downloads/drugs/guidances/ucm134409.pdf (Accessed on October 2019)
[77]
Food and Drug Administration. Analytical procedures and methods validation, Maryland, USA. 2015, 1-8. Available at https://www.fda.gov/media/87801/download (Accessed on October 2019)
[78]
ICH. International Conference on Harmonization of technical requirements for registration of pharmaceuticals for human use Validation of analytical procedures: Text and Methodology Q2 (R1), Switzerland 2005.
[79]
INMETRO. Instituto Nacional de Metrologia, Normalização e Qualidade Industrial Orientação sobre validação de métodos de ensaios químicos, 2007. DOQ-CGCRE-008
[80]
AOAC. AOAC: Gaithesburg, 2016. Association of Official Analytical Chemists. In: Official Methods of Analysis, 20. ed;
[81]
Kogawa, A.C.; Salgado, H.R.N. Impurities and Forced Degradation Studies: A Review. Curr. Pharm. Anal., 2015, 12, 18-24.
[http://dx.doi.org/10.2174/1573412911666150519000155]
[82]
Youden, W.J.; Steiner, E.H. Statistical manual of AOAC, Association of Official Analytical Chemistry; AOAC: Washington, 1975.
[83]
J.P. Japanese Pharmacopoeia, 16th ed; Tokyo Society of Japanese Pharmacopoeia , 2011.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy