Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

Recent Trends in Development of Nanomaterials Based Green Analytical Methods for Environmental Remediation

Author(s): Sidra Amin, Amber R. Solangi*, Dilawar Hassan , Nadir Hussain , Jamil Ahmed and Hadi Baksh

Volume 17, Issue 4, 2021

Published on: 19 March, 2020

Page: [438 - 448] Pages: 11

DOI: 10.2174/1573411016666200319100707

Price: $65

Abstract

Background: In recent years, the occurrence and fate of environmental pollutants has been recognized as one of the emerging issues in environmental chemistry. A survey documented a wide variety of these pollutants, which are often detected in our environment and these are a major cause of shortened life spans and global warming. These pollutants include toxic metal, pesticides, fertilizers, drugs, and dyes released into the soil and major water bodies. The presence of these contaminants causes major disturbance in the balance of the eco-system. To tackle these issues, many technological improvements are made to detect minute contaminations. The latest issue being answered by scientists is the use of green nanomaterials as sensors which are economical, instant and give much better results at low concentrations and can be used for the field measurements resulting in no dangerous by-product that could lead to more environmental contamination. Nanomaterials are known for their wide bandgap, enhanced physical, and optical properties with the option of tuneability as per need, by optimizing certain parameters. They are proved to be a good choice for analytical/ optical sensors with high sensitivity.

Objective: This review holds information about multiple methods that use green nanomaterials for the analytical assessment of environmental pollutants. UV-Vis spectrophotometry and electrochemical analysis using green and reproducible nanomaterials are the major focus of this review article. To date, there are a number of spectrophotometric and electrochemical methods available that have been used for the detection of environmental pollutants such as toxic metals, pesticides, and dyes.

Conclusion: The use of nanomaterials can drastically change the detection limits due to having a large surface area, strong catalytic properties, and tunable possibility. With the use of nanomaterials, lower than the marked limit of detection and limit of quantification were seen when compared with previously reported work. The used nanomaterials could be washed, dried, and reused, which makes the methods more proficient, cost-effective, and environmentally friendly.

Keywords: Alcohol, contaminants, cyclic voltammetry, drugs, dyes, green analysis, green nanomaterials, UV-Vis spectrophotometry, wine.

Graphical Abstract
[1]
Tölgyessy, J. 2 Water, air and soil-fundamental sources of the biosphere. Studies in Environmental Science; Elsevier, 1993, Vol. 53, pp. 3-13.
[2]
Jones, D.L.; Cross, P.; Withers, P.J.A.; DeLuca, T.H.; Robinson, D.A.; Quilliam, R.S.; Harris, I.M.; Chadwick, D.R.; Edwards-Jones, G. Review: Nutrient stripping: the global disparity between food security and soil nutrient stocks. J. Appl. Ecol., 2013, 50(4), 851-862.
[http://dx.doi.org/10.1111/1365-2664.12089]
[3]
Hu, B.; Zhao, R.; Chen, S.; Zhou, Y.; Jin, B.; Li, Y.; Shi, Z. Heavy metal pollution delineation based on uncertainty in a coastal industrial city in the yangtze river delta, China. Int. J. Environ. Res. Public Health, 2018, 15(4), 710.
[http://dx.doi.org/10.3390/ijerph15040710] [PMID: 29642623]
[4]
Silalahi, M.; Mawengkang, H.; Syahputri, N.I. Multi-objective model of waste transportation management for crude palm oil industry. IOP Conf. Series Mater. Sci. Eng., 2018, 300012086
[http://dx.doi.org/10.1088/1757-899X/300/1/012086]]
[5]
Zaccheo, A.; Palmaccio, E.; Venable, M.; Locarnini-Sciaroni, I.; Parisi, S. The Complex Relationships Between Humans, Food, Water, and Hygiene Food Hygiene and Applied Food Microbiology in an Anthropological Cross Cultural Perspective; Zaccheo, A.; Palmaccio, E.; Venable, M.; Locarnini-Sciaroni, I; Parisi, S., Ed.; Springer International Publishing: Cham, 2017, pp. 3-5.
[http://dx.doi.org/10.1007/978-3-319-44975-3_1]
[6]
Eslami, A.; Amini, M.M.; Yazdanbakhsh, A.R.; Rastkari, N.; Mohseni-Bandpei, A.; Nasseri, S.; Piroti, E.; Asadi, A. Occurrence of non-steroidal anti-inflammatory drugs in Tehran source water, municipal and hospital wastewaters, and their ecotoxicological risk assessment. Environ. Monit. Assess., 2015, 187(12), 734.
[http://dx.doi.org/10.1007/s10661-015-4952-1] [PMID: 26553436]
[7]
Qadri, R.; Faiq, M.A. Freshwater pollution: Effects on aquatic life and human health. Fresh Water Pollution Dynamics and Remediation; Qadri, H.; Bhat, R.A.; Mehmood, M.A.; Dar, G.H. Eds; Springer Singapore: Singapore, 2020, pp. 15-26.
[http://dx.doi.org/10.1007/978-981-13-8277-2_2]
[8]
Fan, Y.; Ma, W.; Han, D.; Gan, S.; Dong, X.; Niu, L. Convenient recycling of 3D AgX/graphene aerogels (X = Br, Cl) for efficient photocatalytic degradation of water pollutants. Adv. Mater., 2015, 27(25), 3767-3773.
[http://dx.doi.org/10.1002/adma.201500391] [PMID: 25994835]
[9]
Showkat, A.; Bhat, D.s.; Hassan, T.; Majid, S. heavy metal toxicity and their harmful effects on living organisms - A Review. Int. J. Med. Sci. Diagn. Res., 2019, 3(1), 106-122.
[10]
United Nations. D. o. E. a. S. A., Population Division, World Population Prospects 2019 Data Booklet. 2019. (ST/ESA/SER.A/424)
[11]
Alexander, P.; Rounsevell, M.D.A.; Dislich, C.; Dodson, J.R.; Engström, K.; Moran, D. Drivers for global agricultural land use change: The nexus of diet, population, yield and bioenergy. Glob. Environ. Change, 2015, 35, 138-147.
[http://dx.doi.org/10.1016/j.gloenvcha.2015.08.011]
[12]
Pei, H.; Scanlon, B.R.; Shen, Y.; Reedy, R.C.; Long, D.; Liu, C. Impacts of varying agricultural intensification on crop yield and groundwater resources: Comparison of the North China plain and US High Plains. Environ. Res. Lett., 2015, 10(4)044013
[http://dx.doi.org/10.1088/1748-9326/10/4/044013]]
[13]
Savci, S. investigation of effect of chemical fertilizers on environment. APCBEE Procedia, 2012, 1, 287-292.
[http://dx.doi.org/10.1016/j.apcbee.2012.03.047]
[14]
Savcı, S. An Agricultural pollutant: Chemical fertilizer. Int. J. Environ. Sci. Dev., 2012, 3, 1.
[15]
Smith, L.E.D.; Siciliano, G. A comprehensive review of constraints to improved management of fertilizers in China and mitigation of diffuse water pollution from agriculture. Agric. Ecosyst. Environ., 2015, 209, 15-25.
[http://dx.doi.org/10.1016/j.agee.2015.02.016]
[16]
Xu, J.; Liu, C.; Hsu, P-C.; Liu, K.; Zhang, R.; Liu, Y.; Cui, Y. Roll-to-Roll transfer of electrospun nanofiber film for high-efficiency transparent air filter. Nano Lett., 2016, 16(2), 1270-1275.
[http://dx.doi.org/10.1021/acs.nanolett.5b04596] [PMID: 26789781]
[17]
Wang, C.; Wu, S.; Jian, M.; Xie, J.; Xu, L.; Yang, X.; Zheng, Q.; Zhang, Y. Silk nanofibers as high efficient and lightweight air filter. Nano Res., 2016, 9(9), 2590-2597.
[http://dx.doi.org/10.1007/s12274-016-1145-3]
[18]
Gunatilake, U.B.; Bandara, J. Efficient removal of oil from oil contaminated water by superhydrophilic and underwater superoleophobic nano/micro structured TiO2 nanofibers coated mesh. Chemosphere, 2017, 171, 134-141.
[http://dx.doi.org/10.1016/j.chemosphere.2016.12.031 PMID: 28013074]
[19]
Yang, Z.; Fang, Z.; Zheng, L.; Cheng, W.; Tsang, P.E.; Fang, J.; Zhao, D. Remediation of lead contaminated soil by biochar-supported nano-hydroxyapatite. Ecotoxicol. Environ. Saf., 2016, 132, 224-230.
[http://dx.doi.org/10.1016/j.ecoenv.2016.06.008] [PMID: 27337496]
[20]
Tasca, A.L.; Puccini, M. Leather tanning: Life cycle assessment of retanning, fatliquoring and dyeing. J. Clean. Prod., 2019, 226, 720-729.
[http://dx.doi.org/10.1016/j.jclepro.2019.03.335]
[21]
Kumar, S.S.; Shantkriti, S.; Muruganandham, T.; Murugesh, E.; Rane, N.; Govindwar, S.P. Bioinformatics aided microbial approach for bioremediation of wastewater containing textile dyes. Ecol. Inform., 2016, 31, 112-121.
[http://dx.doi.org/10.1016/j.ecoinf.2015.12.001]
[22]
Martin, F.; Oberson, J-M.; Meschiari, M.; Munari, C. Determination of 18 water-soluble artificial dyes by LC-MS in selected matrices. Food Chem., 2016, 197(Pt B), 1249-1255.
[http://dx.doi.org/10.1016/j.foodchem.2015.11.067] [PMID: 26675864]
[23]
Chung, K-T. Azo dyes and human health: A review. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev., 2016, 34(4), 233-261.
[http://dx.doi.org/10.1080/10590501.2016.1236602 PMID: 27635691]
[24]
Gupta, V.K.; Khamparia, S.; Tyagi, I.; Jaspal, D.; Malviya, A. Decolorization of mixture of dyes: A critical review. Global J. Environ. Sci. Manag., 2015, 1(1), 71-94.
[25]
Zubair, M.; Jarrah, N. Ihsanullah; Khalid, A.; Manzar, M. S.; Kazeem, T. S.; Al-Harthi, M. A., Starch-NiFe-layered double hydroxide composites: Efficient removal of methyl orange from aqueous phase. J. Mol. Liq., 2018, 249, 254-264.
[http://dx.doi.org/10.1016/j.molliq.2017.11.022]
[26]
Faccini, M.; Borja, G.; Boerrigter, M.; Mart, D.M.; Mart, S.; Crespiera, V.S. Zquez-Campos; Aubouy, L.; Amantia, D. Electrospun carbon nanofiber membranes for filtration of nanoparticles from water. J. Nanomater., 2015, 2015, 22.
[http://dx.doi.org/10.1155/2015/247471]
[27]
Kumar, S.; Guria, C.; Mandal, A. Synthesis, characterization and performance studies of polysulfone/bentonite nanoparticles mixed-matrix ultra-filtration membranes using oil field produced water. Separ. Purif. Tech., 2015, 150, 145-158.
[http://dx.doi.org/10.1016/j.seppur.2015.06.029]
[28]
Maharubin, S.; Zhou, Y.; Tan, G.Z. Integration of silver nanoparticles and microcurrent for water filtration. Separ. Purif. Tech., 2019, 212, 57-64.
[http://dx.doi.org/10.1016/j.seppur.2018.11.016]
[29]
Lv, D.; Wang, R.; Tang, G.; Mou, Z.; Lei, J.; Han, J.; De Smedt, S.; Xiong, R.; Huang, C. Ecofriendly electrospun membranes loaded with visible-light-responding nanoparticles for multifunctional usages: highly efficient air filtration, dye scavenging, and bactericidal activity. ACS Appl. Mater. Interfaces, 2019, 11(13), 12880-12889.
[http://dx.doi.org/10.1021/acsami.9b01508] [PMID: 30869859]
[30]
Rajendran, S.; Khan, M.M.; Gracia, F.; Qin, J.; Gupta, V.K.; Arumainathan, S. Ce(3+)-ion-induced visible-light photocatalytic degradation and electrochemical activity of ZnO/CeO2 nanocomposite. Sci. Rep., 2016, 6, 31641.
[http://dx.doi.org/10.1038/srep31641] [PMID: 27528264]
[31]
Keivani, Z.; Shabani-Nooshabadi, M.; Karimi-Maleh, H. An electrochemical strategy to determine thiosulfate, 4-chlorophenol and nitrite as three important pollutants in water samples via a nanostructure modified sensor. J. Colloid Interface Sci., 2017, 507, 11-17.
[http://dx.doi.org/10.1016/j.jcis.2017.07.098] [PMID: 28779648]
[32]
Jafari, S.M.; McClements, D.J. Chapter One-Nanotechnology Approaches for Increasing Nutrient Bioavailability. Advances in Food and Nutrition Research; Toldrá, F., Ed.; Academic Press, 2017, Vol. 81, pp. 1-30.
[33]
Caracciolo, G.; Vali, H.; Moore, A.; Mahmoudi, M. Challenges in molecular diagnostic research in cancer nanotechnology. Nano Today, 2019, 27, 6-10.
[http://dx.doi.org/10.1016/j.nantod.2019.06.001]
[34]
Parvinzadeh Gashti, M.; Pakdel, E.; Alimohammadi, F. 11-Nanotechnology-based coating techniques for smart textiles. Active Coatings for Smart Textiles; Hu, J., Ed.; Woodhead Publishing, 2016, pp. 243-268.
[http://dx.doi.org/10.1016/B978-0-08-100263-6.00011-3]
[35]
Contreras, J.E.; Rodriguez, E.A.; Taha-Tijerina, J. Nanotechnology applications for electrical transformers-A review. Electr. Power Syst. Res., 2017, 143, 573-584.
[http://dx.doi.org/10.1016/j.epsr.2016.10.058]
[36]
Contreras, J.E.; Rodríguez, E.A. Nanostructured insulators-A review of nanotechnology concepts for outdoor ceramic insulators. Ceram. Int., 2017, 43(12), 8545-8550.
[http://dx.doi.org/10.1016/j.ceramint.2017.04.105]
[37]
Hassan, D.; Khalil, A.T.; Solangi, A.R.; El-Mallul, A.; Shinwari, Z.K.; Maaza, M. Physiochemical properties and novel biological applications of Callistemon viminalis-mediated α-Cr2O3 nanoparticles. Appl. Organomet. Chem., 2019, 0(0)e5041
[38]
Hassan, D.; Khalil, A. T.; Saleem, J.; Diallo, A.; Khamlich, S.; Shinwari, Z. K.; Maaza, M. Biosynthesis of pure hematite phase magnetic iron oxide nanoparticles using floral extracts of Callistemon viminalis (bottlebrush): Their physical properties and novel biological applications. Artificial Cells, Nanomedicine, and Biotechnology, 2018, 46(sup1), 693-707.
[39]
Khalil, A.T.; Ovais, M.; Ullah, I.; Ali, M.; Shinwari, Z.K.; Hassan, D.; Maaza, M. Sageretia thea (Osbeck.) modulated biosynthesis of NiO nanoparticles and their in vitro pharmacognostic, antioxidant and cytotoxic potential. Artif. Cells Nanomed. Biotechnol., 2017, 2017, 1-15.
[PMID: 28687045]
[40]
Khalil, A.T.; Ovais, M.; Ullah, I.; Ali, M.; Shinwari, Z.K.; Maaza, M. Biosynthesis of iron oxide (Fe2O3) nanoparticles via aqueous extracts of Sageretia thea (Osbeck.) and their pharmacognostic properties. Green Chem. Lett. Rev., 2017, 10(4), 186-201.
[http://dx.doi.org/10.1080/17518253.2017.1339831]
[41]
Khalil, A.T.; Ovais, M.; Ullah, I.; Ali, M.; Shinwari, Z.K.; Khamlich, S.; Maaza, M. Sageretia thea (Osbeck.) mediated synthesis of zinc oxide nanoparticles and its biological applications. Nanomedicine (Lond.), 2017, 12(15), 1767-1789.
[http://dx.doi.org/10.2217/nnm-2017-0124] [PMID: 28699838]
[42]
Shayegan, M.E.; Sorbiun, M.; Ramazani, A.; Taghavi, F.S. Plant-mediated synthesis of zinc oxide and copper oxide nanoparticles by using ferulago angulata (schlecht) boiss extract and comparison of their photocatalytic degradation of Rhodamine B (RhB) under visible light irradiation. J. Mater. Sci. Mater. Electron., 2018, 29(2), 1333-1340.
[http://dx.doi.org/10.1007/s10854-017-8039-3]
[43]
Azeez, F.; Al-Hetlani, E.; Arafa, M.; Abdelmonem, Y.; Nazeer, A.A.; Amin, M.O.; Madkour, M. The effect of surface charge on photocatalytic degradation of methylene blue dye using chargeable titania nanoparticles. Sci. Rep., 2018, 8(1), 7104.
[http://dx.doi.org/10.1038/s41598-018-25673-5] [PMID: 29740107]
[44]
Magdalane, C.M.; Kanimozhi, K.; Arularasu, M.V.; Ramalingam, G.; Kaviyarasu, K. Self-cleaning mechanism of synthesized SnO2/TiO2 nanostructure for photocatalytic activity application for waste water treatment. Surf. Interfaces, 2019, 17100346
[http://dx.doi.org/10.1016/j.surfin.2019.100346]]
[45]
Sone, B.T.; Manikandan, E.; Gurib-Fakim, A.; Maaza, M. Single-phase α-Cr2O3 nanoparticles’ green synthesis using Callistemon viminalis’ red flower extract. Green Chem. Lett. Rev., 2016, 9(2), 85-90.
[http://dx.doi.org/10.1080/17518253.2016.1151083]
[46]
Bharti, D.B.; Bharati, A.V.; Wankhade, A.V. Synthesis, characterization and optical property investigation of CdS nanoparticles. Luminescence, 2018, 33(8), 1445-1449.
[http://dx.doi.org/10.1002/bio.3572] [PMID: 30378241]
[47]
He, W.; Jia, H.; Cai, J.; Han, X.; Zheng, Z.; Wamer, W.G.; Yin, J-J. Production of reactive oxygen species and electrons from photoexcited ZnO and ZnS nanoparticles: A comparative study for unraveling their distinct photocatalytic activities. J. Phys. Chem. C, 2016, 120(6), 3187-3195.
[http://dx.doi.org/10.1021/acs.jpcc.5b11456]
[48]
Ng, K.K.; Zheng, G. Molecular interactions in organic nanoparticles for phototheranostic applications. Chem. Rev., 2015, 115(19), 11012-11042.
[http://dx.doi.org/10.1021/acs.chemrev.5b00140] [PMID: 26244706]
[49]
Chan, M.Y.; Leng, W.; Vikesland, P.J. Surface-enhanced raman spectroscopy characterization of salt-induced aggregation of gold nanoparticles. ChemPhysChem, 2018, 19(1), 24-28.
[http://dx.doi.org/10.1002/cphc.201700798] [PMID: 29068113]
[50]
Hassan, D.S.A. Amber Rehana, Solangi; Saima, Q. Memon, Focused ion beam tomography. [Online First] IntechOpen, 2019, 2019, 13.
[51]
Ovais, M.; Khalil, A.T.; Raza, A.; Islam, N.U.; Ayaz, M.; Saravanan, M.; Ali, M.; Ahmad, I.; Shahid, M.; Shinwari, Z.K. Multifunctional theranostic applications of biocompatible green-synthesized colloidal nanoparticles. Appl. Microbiol. Biotechnol., 2018, 102(10), 4393-4408.
[http://dx.doi.org/10.1007/s00253-018-8928-2] [PMID: 29594356]
[52]
Khalil, A.T.; Ovais, M.; Ullah, I.; Ali, M.; Shinwari, Z.K.; Maaza, M. Physical properties, biological applications and biocompatibility studies on biosynthesized single phase cobalt oxide (Co3O4) nanoparticles via Sageretia thea (Osbeck.). Arab. J. Chem., 2017, 2017, 1.
[53]
Khan, H.A.; Sakharkar, M.K.; Nayak, A.; Kishore, U.; Khan, A. 14-Nanoparticles for biomedical applications: An overview. Nanobiomaterials; Narayan, R., Ed.; Woodhead Publishing, 2018, pp. 357-384.
[http://dx.doi.org/10.1016/B978-0-08-100716-7.00014-3]
[54]
Azam, A.; Arshad, M.; Dwivedi, S.; Ashraf, M.T. Antibacterial Applications of Nanomaterials.Recent Trends in Nanomaterials: Synthesis and Properties; Khan, Z.H. Ed; Springer Singapore: Singapore, 2017, pp. 143-158.
[http://dx.doi.org/10.1007/978-981-10-3842-6_6]
[55]
Hao, Y.; Cao, X.; Ma, C.; Zhang, Z.; Zhao, N.; Ali, A.; Hou, T.; Xiang, Z.; Zhuang, J.; Wu, S.; Xing, B.; Zhang, Z.; Rui, Y. Potential applications and antifungal activities of engineered nanomaterials against gray mold disease agent Botrytis cinerea on Rose Petals. Front. Plant Sci., 2017, 8, 1332-1332.
[http://dx.doi.org/10.3389/fpls.2017.01332] [PMID: 28824670]
[56]
Singh, L.; Kruger, H.G.; Maguire, G.E.M.; Govender, T.; Parboosing, R. The role of nanotechnology in the treatment of viral infections. Ther. Adv. Infect. Dis., 2017, 4(4), 105-131.
[http://dx.doi.org/10.1177/2049936117713593] [PMID: 28748089]
[57]
Bajpai, V.K.; Kamle, M.; Shukla, S.; Mahato, D.K.; Chandra, P.; Hwang, S.K.; Kumar, P.; Huh, Y.S.; Han, Y-K. Prospects of using nanotechnology for food preservation, safety, and security. Yao Wu Shi Pin Fen Xi, 2018, 26(4), 1201-1214.
[http://dx.doi.org/10.1016/j.jfda.2018.06.011] [PMID: 30249319]
[58]
Guerra, F.D.; Attia, M.F.; Whitehead, D.C.; Alexis, F. Nanotechnology for environmental remediation: Materials and applications. Molecules, 2018, 23(7), 1760.
[http://dx.doi.org/10.3390/molecules23071760] [PMID: 30021974]
[59]
Pandey, G.; Madhuri, S. Heavy metals causing toxicity in animals and fishes. Res. J. Animal Veter. Fisher. Sci., 2014, 2(2), 17-23.
[60]
Jain, A.; Wadhawan, S.; Kumar, V.; Mehta, S.K. Colorimetric sensing of Fe3+ ions in aqueous solution using magnesium oxide nanoparticles synthesized using green approach. Chem. Phys. Lett., 2018, 706, 53-61.
[http://dx.doi.org/10.1016/j.cplett.2018.05.069]
[61]
Kim, H.J.; Lee, S.J.; Park, S.Y.; Jung, J.H.; Kim, J.S. Detection of CuII by a Chemodosimeter-Functionalized monolayer on mesoporous silica. Adv. Mater., 2008, 20(17), 3229-3234.
[http://dx.doi.org/10.1002/adma.200800246]
[62]
Qin, X.; Lu, W.; Asiri, A.M.; Al-Youbi, A.O.; Sun, X. Microwave-assisted rapid green synthesis of photoluminescent carbon nanodots from flour and their applications for sensitive and selective detection of mercury (II) ions. Sens. Actuators B Chem., 2013, 184, 156-162.
[http://dx.doi.org/10.1016/j.snb.2013.04.079]
[63]
Bindhu, M.; Umadevi, M. Green Synthesized Gold Nanoparticles as a Probe for the Detection of Fe 3+ Ions in Water. J. Cluster Sci., 2014, 25(4), 969-978.
[http://dx.doi.org/10.1007/s10876-013-0679-8]
[64]
Tripathi, R.; Gupta, R.K.; Singh, P.; Bhadwal, A.S.; Shrivastav, A.; Kumar, N.; Shrivastav, B. Ultra-sensitive detection of mercury (II) ions in water sample using gold nanoparticles synthesized by Trichoderma harzianum and their mechanistic approach. Sens. Actuators B Chem., 2014, 204, 637-646.
[http://dx.doi.org/10.1016/j.snb.2014.08.015]
[65]
Wang, W.; Lu, Y-C.; Huang, H.; Wang, A-J.; Chen, J-R.; Feng, J-J. Solvent-free synthesis of sulfur-and nitrogen-co-doped fluorescent carbon nanoparticles from glutathione for highly selective and sensitive detection of mercury (II) ions. Sens. Actuators B Chem., 2014, 202, 741-747.
[http://dx.doi.org/10.1016/j.snb.2014.06.010]
[66]
Zhou, C.; Jiang, W.; Via, B.K. Facile synthesis of soluble graphene quantum dots and its improved property in detecting heavy metal ions. Colloids Surf. B Biointerfaces, 2014, 118, 72-76.
[http://dx.doi.org/10.1016/j.colsurfb.2014.03.038] [PMID: 24732395]
[67]
Vinod Kumar, V.; Anbarasan, S.; Christena, L.R. SaiSubramanian, N.; Philip Anthony, S. Bio-functionalized silver nanoparticles for selective colorimetric sensing of toxic metal ions and antimicrobial studies. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 129, 35-42.
[http://dx.doi.org/10.1016/j.saa.2014.03.020] [PMID: 24717716]
[68]
Dar, R.A.; Khare, N.G.; Cole, D.P.; Karna, S.P.; Srivastava, A.K. Green synthesis of a silver nanoparticle-graphene oxide composite and its application for As (III) detection. RSC Advances, 2014, 4(28), 14432-14440.
[http://dx.doi.org/10.1039/C4RA00934G]
[69]
Alam, A.; Ravindran, A.; Chandran, P.; Sudheer Khan, S. Highly selective colorimetric detection and estimation of Hg2+ at nano-molar concentration by silver nanoparticles in the presence of glutathione. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 137, 503-508.
[http://dx.doi.org/10.1016/j.saa.2014.09.004] [PMID: 25240142]
[70]
Singh, V.; Mishra, A.K. Green and cost-effective fluorescent carbon nanoparticles for the selective and sensitive detection of iron (III) ions in aqueous solution: Mechanistic insights and cell line imaging studies. Sens. Actuators B Chem., 2016, 227, 467-474.
[http://dx.doi.org/10.1016/j.snb.2015.12.071]
[71]
Edison, T.N.J.I.; Atchudan, R.; Shim, J-J.; Kalimuthu, S.; Ahn, B-C.; Lee, Y.R. Turn-off fluorescence sensor for the detection of ferric ion in water using green synthesized N-doped carbon dots and its bio-imaging. J. Photochem. Photobiol. B, 2016, 158, 235-242.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.03.010] [PMID: 26994332]
[72]
Liu, W.; Diao, H.; Chang, H.; Wang, H.; Li, T.; Wei, W. Green synthesis of carbon dots from rose-heart radish and application for Fe3+ detection and cell imaging. Sens. Actuators B Chem., 2017, 241, 190-198.
[http://dx.doi.org/10.1016/j.snb.2016.10.068]
[73]
Priyanka, U.K.M. A. G.; Elisha, M.; Nitish, N., Biologically synthesized PbS nanoparticles for the detection of arsenic in water. Int. Biodeterior. Biodegradation, 2017, 119, 78-86.
[http://dx.doi.org/10.1016/j.ibiod.2016.10.009]
[74]
Uddin, I.; Ahmad, K.; Khan, A.A.; Kazmi, M.A. Synthesis of silver nanoparticles using Matricaria recutita (Babunah) plant extract and its study as mercury ions sensor. Sens. Biosensing Res., 2017, 16, 62-67.
[http://dx.doi.org/10.1016/j.sbsr.2017.11.005]
[75]
Gangapuram, B.R.; Bandi, R.; Dadigala, R.; Kotu, G.M.; Guttena, V. Facile green synthesis of gold nanoparticles with carboxymethyl gum karaya, selective and sensitive colorimetric detection of copper (II) ions. J. Cluster Sci., 2017, 28(5), 2873-2890.
[http://dx.doi.org/10.1007/s10876-017-1264-3]
[76]
Liang, M.; Fan, K.; Pan, Y.; Jiang, H.; Wang, F.; Yang, D.; Lu, D.; Feng, J.; Zhao, J.; Yang, L.; Yan, X. Fe3O4 magnetic nanoparticle peroxidase mimetic-based colorimetric assay for the rapid detection of organophosphorus pesticide and nerve agent. Anal. Chem., 2013, 85(1), 308-312.
[http://dx.doi.org/10.1021/ac302781r] [PMID: 23153113]
[77]
Garcia, S.J.; Abu-Qare, A.W.; Meeker-O’Connell, W.A.; Borton, A.J.; Abou-Donia, M.B. Methyl parathion: A review of health effects. J. Toxicol. Environ. Health B Crit. Rev., 2003, 6(2), 185-210.
[http://dx.doi.org/10.1080/10937400306471] [PMID: 12554434]
[78]
Balasubramanian, P.; Balamurugan, T.; Chen, S-M.; Chen, T-W.; Sharmila, G.; Yu, M-C. One-step green synthesis of colloidal gold nano particles: A potential electrocatalyst towards high sensitive electrochemical detection of methyl parathion in food samples. J. Taiwan Inst. Chem. Eng., 2018, 87, 83-90.
[http://dx.doi.org/10.1016/j.jtice.2018.03.014]
[79]
Zhu, W.; Liu, W.; Li, T.; Yue, X.; Liu, T.; Zhang, W.; Yu, S.; Zhang, D.; Wang, J. Facile green synthesis of graphene-Au nanorod nanoassembly for on-line extraction and sensitive stripping analysis of methyl parathion. Electrochim. Acta, 2014, 146, 419-428.
[http://dx.doi.org/10.1016/j.electacta.2014.09.085]
[80]
Liu, Y.; Yang, S.; Niu, W. Simple, rapid and green one-step strategy to synthesis of graphene/carbon nanotubes/chitosan hybrid as solid-phase extraction for square-wave voltammetric detection of methyl parathion. Colloids Surf. B Biointerfaces, 2013, 108, 266-270.
[http://dx.doi.org/10.1016/j.colsurfb.2013.03.003] [PMID: 23563293]
[81]
Yu, J.; Guo, T.; Zhang, W.; Li, B.; Liu, L.; Hua, R. Green upconversion nanoparticles for 2, 4-dichlorophenoxyacetic acid and fenitrothion detection. J. Alloys Compd., 2019, 771, 187-194.
[http://dx.doi.org/10.1016/j.jallcom.2018.08.202]
[82]
Liu, F.; Xu, Q.; Huang, W.; Zhang, Z.; Xiang, G.; Zhang, C.; Liang, C.; Lian, H.; Peng, J. Green synthesis of porous graphene and its application for sensitive detection of hydrogen peroxide and 2, 4-dichlorophenoxyacetic acid. Electrochim. Acta, 2019, 295, 615-623.
[http://dx.doi.org/10.1016/j.electacta.2018.10.177]
[83]
Zheng, M.; Wang, C.; Wang, Y.; Wei, W.; Ma, S.; Sun, X.; He, J. Green synthesis of carbon dots functionalized silver nanoparticles for the colorimetric detection of phoxim. Talanta, 2018, 185, 309-315.
[http://dx.doi.org/10.1016/j.talanta.2018.03.066] [PMID: 29759205]
[84]
Wang, L.; Bi, Y.; Hou, J.; Li, H.; Xu, Y.; Wang, B.; Ding, H.; Ding, L. Facile, green and clean one-step synthesis of carbon dots from wool: Application as a sensor for glyphosate detection based on the inner filter effect. Talanta, 2016, 160, 268-275.
[http://dx.doi.org/10.1016/j.talanta.2016.07.020] [PMID: 27591613]
[85]
Li, L.; Zhang, Z. Biosynthesis of gold nanoparticles using green alga pithophora oedogoniawith their electrochemical performance for determining carbendazim in soil. Int. J. Electrochem. Sci., 2016, 11, 4550-4559.
[http://dx.doi.org/10.20964/2016.06.13]
[86]
Yin, H.; Zhou, Y.; Ai, S.; Liu, X.; Zhu, L.; Lu, L. Electrochemical oxidative determination of 4-nitrophenol based on a glassy carbon electrode modified with a hydroxyapatite nanopowder. Mikrochim. Acta, 2010, 169(1-2), 87-92.
[87]
Guo, X.; Wang, Z.; Zhou, S. The separation and determination of nitrophenol isomers by high-performance capillary zone electrophoresis. Talanta, 2004, 64(1), 135-139.
[http://dx.doi.org/10.1016/j.talanta.2004.01.020] [PMID: 18969578]
[88]
Lipczynska-Kochany, E. Degradation of aqueous nitrophenols and nitrobenzene by means of the Fenton reaction. Chemosphere, 1991, 22(5-6), 529-536.
[http://dx.doi.org/10.1016/0045-6535(91)90064-K]
[89]
Singh, S.; Kumar, N.; Kumar, M.; Agarwal, A.; Mizaikoff, B. Electrochemical sensing and remediation of 4-nitrophenol using bio-synthesized copper oxide nanoparticles. Chem. Eng. J., 2017, 313, 283-292.
[http://dx.doi.org/10.1016/j.cej.2016.12.049]
[90]
Karuppiah, C.; Palanisamy, S.; Chen, S-M.; Emmanuel, R.; Ali, M.A.; Muthukrishnan, P.; Prakash, P.; Al-Hemaid, F.M. Green biosynthesis of silver nanoparticles and nanomolar detection of p-nitrophenol. J. Solid State Electrochem., 2014, 18(7), 1847-1854.
[http://dx.doi.org/10.1007/s10008-014-2425-z]
[91]
Naik, G.K.; Mishra, P.M.; Parida, K. Green synthesis of Au/TiO2 for effective dye degradation in aqueous system. Chem. Eng. J., 2013, 229, 492-497.
[http://dx.doi.org/10.1016/j.cej.2013.06.053]
[92]
Vidhu, V.K.; Philip, D. Catalytic degradation of organic dyes using biosynthesized silver nanoparticles. Micron, 2014, 56, 54-62.
[http://dx.doi.org/10.1016/j.micron.2013.10.006] [PMID: 24210247]
[93]
Huang, L.; Weng, X.; Chen, Z.; Megharaj, M.; Naidu, R. Synthesis of iron-based nanoparticles using oolong tea extract for the degradation of malachite green. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 117, 801-804.
[http://dx.doi.org/10.1016/j.saa.2013.09.054] [PMID: 24094918]
[94]
Sankar, R.; Manikandan, P.; Malarvizhi, V.; Fathima, T.; Shivashangari, K.S.; Ravikumar, V. Green synthesis of colloidal copper oxide nanoparticles using Carica papaya and its application in photocatalytic dye degradation. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 121, 746-750.
[http://dx.doi.org/10.1016/j.saa.2013.12.020] [PMID: 24388701]
[95]
Joseph, S.; Mathew, B. Facile synthesis of silver nanoparticles and their application in dye degradation. Mater. Sci. Eng. B, 2015, 195, 90-97.
[http://dx.doi.org/10.1016/j.mseb.2015.02.007]
[96]
Sinha, T.; Ahmaruzzaman, M. Biogenic synthesis of Cu nanoparticles and its degradation behavior for methyl red. Mater. Lett., 2015, 159, 168-171.
[http://dx.doi.org/10.1016/j.matlet.2015.06.099]
[97]
Fowsiya, J.; Madhumitha, G.; Al-Dhabi, N.A.; Arasu, M.V. Photocatalytic degradation of Congo red using Carissa edulis extract capped zinc oxide nanoparticles. J. Photochem. Photobiol. B, 2016, 162, 395-401.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.07.011] [PMID: 27434698]
[98]
Vidya, C.; Prabha, M.C.; Raj, M.A. Green mediated synthesis of zinc oxide nanoparticles for the photocatalytic degradation of Rose Bengal dye. Environ. Nanotechnol. Monit. Manag., 2016, 6, 134-138.
[http://dx.doi.org/10.1016/j.enmm.2016.09.004]
[99]
Bogireddy, N.K.R.; Kumar, H.A.K.; Mandal, B.K. Biofabricated silver nanoparticles as green catalyst in the degradation of different textile dyes. J. Environ. Chem. Eng., 2016, 4(1), 56-64.
[http://dx.doi.org/10.1016/j.jece.2015.11.004]
[100]
Elango, G.; Roopan, S.M. Efficacy of SnO2 nanoparticles toward photocatalytic degradation of methylene blue dye. J. Photochem. Photobiol. B, 2016, 155, 34-38.
[http://dx.doi.org/10.1016/j.jphotobiol.2015.12.010 PMID: 26724726]
[101]
Fardood, S.T.; Ramazani, A.; Moradi, S.; Asiabi, P.A. Green synthesis of zinc oxide nanoparticles using arabic gum and photocatalytic degradation of direct blue 129 dye under visible light. J. Mater. Sci. Mater. Electron., 2017, 28(18), 13596-13601.
[http://dx.doi.org/10.1007/s10854-017-7199-5]
[102]
Moradi, S.; Fardood, S.T.; Ramazani, A. Green synthesis and characterization of magnetic NiFe 2 O 4@ ZnO nanocomposite and its application for photocatalytic degradation of organic dyes. J. Mater. Sci. Mater. Electron., 2018, 29(16), 14151-14160.
[http://dx.doi.org/10.1007/s10854-018-9548-4]
[103]
Veisi, H.; Azizi, S.; Mohammadi, P. Green synthesis of the silver nanoparticles mediated by Thymbra spicata extract and its application as a heterogeneous and recyclable nanocatalyst for catalytic reduction of a variety of dyes in water. J. Clean. Prod., 2018, 170, 1536-1543.
[http://dx.doi.org/10.1016/j.jclepro.2017.09.265]
[104]
Nakkala, J.R.; Mata, R.; Raja, K.; Khub Chandra, V.; Sadras, S.R. Green synthesized silver nanoparticles: Catalytic dye degradation, in vitro anticancer activity and in vivo toxicity in rats. Mater. Sci. Eng. C, 2018, 91, 372-381.
[http://dx.doi.org/10.1016/j.msec.2018.05.048] [PMID: 30033267]
[105]
Vasantharaj, S.; Sathiyavimal, S.; Saravanan, M.; Senthilkumar, P.; Gnanasekaran, K.; Shanmugavel, M.; Manikandan, E.; Pugazhendhi, A. Synthesis of ecofriendly copper oxide nanoparticles for fabrication over textile fabrics: Characterization of antibacterial activity and dye degradation potential. J. Photochem. Photobiol. B, 2019, 191, 143-149.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.12.026] [PMID: 30639996]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy