Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Production of Recombinant HIV-1 p24-Nef Protein in Two Forms as Potential Candidate Vaccines in Three Vehicles

Author(s): Mona Sadat Larijani, Mohammad Hassan Pouriayevali , Seyed Mehdi Sadat* and Amitis Ramezani*

Volume 17, Issue 5, 2020

Page: [387 - 395] Pages: 9

DOI: 10.2174/1567201817666200317121728

Price: $65

Abstract

Background: Different approaches have been investigated to develop a preventive or therapeutic vaccine, although none of them has been fully practical. Therapeutic vaccines against HIV-1 have been studied with the aim of eliminating the virus from reservoir cells with or without HAART (Highly Active Antiretroviral Therapy). Fusion proteins with the most immunogenic features among conserved regions can facilitate this achievement in such a variable virus. To achieve the most immunogenic and also conserved regions, bioinformatics tools are widely used to predict antigens’ features before applying them.

Objective: This study aimed at the in vitro evaluation of p24 -Nef fusion protein based on the previous in silico design to achieve a potential therapeutic subunit vaccine against HIV-1.

Methods: The truncated form of p24-Nef using AAY flexible linker and the full protein were expressed and evaluated in the prokaryotic system and confirmed by western blotting. We also used pcDNA3.1 to transfect Lenti-X 293T cells. Moreover, lentiviral vectors were applied to produce recombinant virions harboring the genes of interest and cell transduction.

Results: Both fusion proteins in a truncated and a full form were expressed and confirmed by Anti Nef polyclonal antibody in western blotting. Recombinant virions were generated and transduced Lenti-X 293T cells confirming by immunofluorescence microscope and p24 ELISA assay kit. Transduced cells were analyzed by SDS-PAGE and western blotting, which resulted in approved protein expression.

Conclusion: Fusion protein of p24 and Nef is well expressed in eukaryotic cell lines according to its pre-evaluated features by bioinformatics tools.

Keywords: HIV-1, p24-Nef, fusion protein, expression, lentiviral vector, vaccine.

Graphical Abstract
[1]
Koff, W.C. A shot at AIDS. Curr. Opin. Biotechnol., 2016, 42, 147-151.
[http://dx.doi.org/10.1016/j.copbio.2016.03.007] [PMID: 27153215]
[2]
HIV/AIDS.. UNAIDS, 2017.
[3]
Baeten, J.M.; Donnell, D.; Ndase, P.; Mugo, N.R.; Campbell, J.D.; Wangisi, J.; Tappero, J.W.; Bukusi, E.A.; Cohen, C.R.; Katabira, E.; Ronald, A.; Tumwesigye, E.; Were, E.; Fife, K.H.; Kiarie, J.; Farquhar, C.; John-Stewart, G.; Kakia, A.; Odoyo, J.; Mucunguzi, A.; Nakku-Joloba, E.; Twesigye, R.; Ngure, K.; Apaka, C.; Tamooh, H.; Gabona, F.; Mujugira, A.; Panteleeff, D.; Thomas, K.K.; Kidoguchi, L.; Krows, M.; Revall, J.; Morrison, S.; Haugen, H.; Emmanuel-Ogier, M.; Ondrejcek, L.; Coombs, R.W.; Frenkel, L.; Hendrix, C.; Bumpus, N.N.; Bangsberg, D.; Haberer, J.E.; Stevens, W.S.; Lingappa, J.R.; Celum, C.; Partners Pr, E.P.S.T. Partners PrEP Study Team. Antiretroviral prophylaxis for HIV prevention in heterosexual men and women. N. Engl. J. Med., 2012, 367(5), 399-410.
[http://dx.doi.org/10.1056/NEJMoa1108524] [PMID: 22784037]
[4]
Shin, S.Y. Recent update in HIV vaccine development. Clin. Exp. Vaccine Res., 2016, 5(1), 6-11.
[http://dx.doi.org/10.7774/cevr.2016.5.1.6] [PMID: 26866018]
[5]
Rios, A. Fundamental challenges to the development of a preventive HIV vaccine. Curr. Opin. Virol., 2018, 29, 26-32.
[http://dx.doi.org/10.1016/j.coviro.2018.02.004] [PMID: 29549802]
[6]
Gray, G.E.; Laher, F.; Lazarus, E.; Ensoli, B.; Corey, L. Approaches to preventative and therapeutic HIV vaccines. Curr. Opin. Virol., 2016, 17, 104-109.
[http://dx.doi.org/10.1016/j.coviro.2016.02.010] [PMID: 26985884]
[7]
Rahman, M.A.; Robert-Guroff, M. Accelerating HIV vaccine development using non-human primate models. Expert Rev. Vaccines, 2019, 18(1), 61-73.
[http://dx.doi.org/10.1080/14760584.2019.1557521] [PMID: 30526159]
[8]
Barry, M.S. Trial, error, and breakthrough: a review of HIV vaccine development. J. AIDS Clin. Res., 2014, 5, 11.
[http://dx.doi.org/10.4172/2155-6113.1000359]
[9]
Fischer, W.; Perkins, S.; Theiler, J.; Bhattacharya, T.; Yusim, K.; Funkhouser, R.; Kuiken, C.; Haynes, B.; Letvin, N.L.; Walker, B.D.; Hahn, B.H.; Korber, B.T. Polyvalent vaccines for optimal coverage of potential T-cell epitopes in global HIV-1 variants. Nat. Med., 2007, 13(1), 100-106.
[http://dx.doi.org/10.1038/nm1461] [PMID: 17187074]
[10]
Cohen, K.W.; Frahm, N. Current views on the potential for development of a HIV vaccine. Expert Opin. Biol. Ther., 2017, 17(3), 295-303.
[http://dx.doi.org/10.1080/14712598.2017.1282457] [PMID: 28095712]
[11]
Milani, A; Bolhassani, A; Shahbazi, S; Motevalli, F; Sadat, SM; Soleymani, S Small heat shock protein 27: An effective adjuvant for enhancement of HIV-1 Nef antigen-specific immunity. Immunol. Lett., 2017, 191, 16-22.
[12]
Mona Sadat, L.; Seyed Mehdi, S.; Amitis, R. HIV-1 Immune evasion: the main obstacle toward a successful vaccine. Archiv. Asthma, Allergy Immunol., 2018, 2(1), 013-015.
[13]
Hsu, D.C.; O’Connell, R.J. Progress in HIV vaccine development. Hum. Vaccin. Immunother., 2017, 13(5), 1018-1030.
[http://dx.doi.org/10.1080/21645515.2016.1276138] [PMID: 28281871]
[14]
Shamriz, S.; Ofoghi, H. Design, structure prediction and molecular dynamics simulation of a fusion construct containing malaria pre-erythrocytic vaccine candidate, PfCelTOS, and human interleukin 2 as adjuvant. BMC Bioinformatics, 2016, 17, 71.
[http://dx.doi.org/10.1186/s12859-016-0918-8] [PMID: 26851942]
[15]
Liu, Y.; Rao, U.; McClure, J.; Konopa, P.; Manocheewa, S.; Kim, M.; Chen, L.; Troyer, R.M.; Tebit, D.M.; Holte, S.; Arts, E.J.; Mullins, J.I. Impact of mutations in highly conserved amino acids of the HIV-1 Gag-p24 and Env-gp120 proteins on viral replication in different genetic backgrounds. PLoS One, 2014, 9(4) e94240
[http://dx.doi.org/10.1371/journal.pone.0094240] [PMID: 24713822]
[16]
Kang, C.Y.; Gao, Y. Killed whole-HIV vaccine; employing a well established strategy for antiviral vaccines. AIDS Res. Ther., 2017, 14(1), 47.
[http://dx.doi.org/10.1186/s12981-017-0176-5] [PMID: 28893272]
[17]
Courant, T.; Bayon, E.; Reynaud-Dougier, H.L.; Villiers, C.; Menneteau, M.; Marche, P.N.; Navarro, F.P. Tailoring nanostructured lipid carriers for the delivery of protein antigens: Physicochemical properties versus immunogenicity studies. Biomaterials, 2017, 136, 29-42.
[http://dx.doi.org/10.1016/j.biomaterials.2017.05.001] [PMID: 28511142]
[18]
McMichael, A.J.; Haynes, B.F. Lessons learned from HIV-1 vaccine trials: new priorities and directions. Nat. Immunol., 2012, 13(5), 423-427.
[http://dx.doi.org/10.1038/ni.2264] [PMID: 22513323]
[19]
Larijani, M.S.; Ramezani, A.; Sadat, S.M. Updated studies on the development of HIV therapeutic vaccine. Curr. HIV Res., 2019, 17(2), 75-84.
[http://dx.doi.org/10.2174/1570162X17666190618160608] [PMID: 31210114]
[20]
Steers, N.J.; Peachman, K.K.; McClain, S.R.; Alving, C.R.; Rao, M. Human immunodeficiency virus type 1 Gag p24 alters the composition of immunoproteasomes and affects antigen presentation. J. Virol., 2009, 83(14), 7049-7061.
[http://dx.doi.org/10.1128/JVI.00327-09] [PMID: 19403671]
[21]
Krupka, M.; Zachova, K.; Cahlikova, R.; Vrbkova, J.; Novak, Z.; Sebela, M.; Weigl, E.; Raska, M. Endotoxin-minimized HIV-1 p24 fused to murine hsp70 activates dendritic cells, facilitates endocytosis and p24-specific Th1 response in mice. Immunol. Lett., 2015, 166(1), 36-44.
[http://dx.doi.org/10.1016/j.imlet.2015.05.010] [PMID: 26021827]
[22]
Gandhi, R.T.; Kwon, D.S.; Macklin, E.A.; Shopis, J.R.; McLean, A.P.; McBrine, N.; Flynn, T.; Peter, L.; Sbrolla, A.; Kaufmann, D.E.; Porichis, F.; Walker, B.D.; Bhardwaj, N.; Barouch, D.H.; Kavanagh, D.G. Immunization of HIV-1-infected persons with autologous dendritic cells transfected with mRNA encoding HIV-1 Gag and Nef: results of a randomized, placebo-controlled clinical trial. J. Acquir. Immune Defic. Syndr., 2016, 71(3), 246-253.
[23]
Salabert, N.; Todorova, B.; Martinon, F.; Boisgard, R.; Zurawski, G.; Zurawski, S.; Dereuddre-Bosquet, N.; Cosma, A.; Kortulewski, T.; Banchereau, J.; Levy, Y.; Le Grand, R.; Chapon, C. Intradermal injection of an anti-Langerin-HIVGag fusion vaccine targets epidermal Langerhans cells in nonhuman primates and can be tracked in vivo. Eur. J. Immunol., 2016, 46(3), 689-700.
[http://dx.doi.org/10.1002/eji.201545465] [PMID: 26678013]
[24]
Epaulard, O.; Adam, L.; Poux, C.; Zurawski, G.; Salabert, N.; Rosenbaum, P.; Dereuddre-Bosquet, N.; Zurawski, S.; Flamar, A. L.; Oh, S.; Romain, G.; Chapon, C.; Banchereau, J.; Levy, Y.; Le Grand, R.; Martinon, F. Macrophage- and neutrophil-derived TNF-alpha instructs skin langerhans cells to prime antiviral immune responses. J. Immunol. (Baltimore, Md. : 1950), 2014, 193(5), 2416-26.
[25]
Ataman-Onal, Y.; Munier, S.; Ganee, A.; Terrat, C.; Durand, P.Y.; Battail, N.; Martinon, F.; Le Grand, R.; Charles, M.H.; Delair, T.; Verrier, B. Surfactant-free anionic PLA nanoparticles coated with HIV-1 p24 protein induced enhanced cellular and humoral immune responses in various animal models. J. Control. Release Soc., 2006, 112(2), 175-185.
[26]
Kulkarni, V.; Valentin, A.; Rosati, M.; Rolland, M.; Mullins, J.I.; Pavlakis, G.N.; Felber, B.K. HIV-1 conserved elements p24CE DNA vaccine induces humoral immune responses with broad epitope recognition in macaques. PLoS One, 2014, 9(10) e111085
[http://dx.doi.org/10.1371/journal.pone.0111085] [PMID: 25338098]
[27]
Rolland, M.; Heckerman, D.; Deng, W.; Rousseau, C.M.; Coovadia, H.; Bishop, K.; Goulder, P.J.; Walker, B.D.; Brander, C.; Mullins, J.I. Broad and Gag-biased HIV-1 epitope repertoires are associated with lower viral loads. PLoS One, 2008, 3(1) e1424
[http://dx.doi.org/10.1371/journal.pone.0001424] [PMID: 18183304]
[28]
Kiepiela, P.; Ngumbela, K.; Thobakgale, C.; Ramduth, D.; Honeyborne, I.; Moodley, E.; Reddy, S.; de Pierres, C.; Mncube, Z.; Mkhwanazi, N.; Bishop, K.; van der Stok, M.; Nair, K.; Khan, N.; Crawford, H.; Payne, R.; Leslie, A.; Prado, J.; Prendergast, A.; Frater, J.; McCarthy, N.; Brander, C.; Learn, G.H.; Nickle, D.; Rousseau, C.; Coovadia, H.; Mullins, J.I.; Heckerman, D.; Walker, B.D.; Goulder, P. CD8+ T-cell responses to different HIV proteins have discordant associations with viral load. Nat. Med., 2007, 13(1), 46-53.
[http://dx.doi.org/10.1038/nm1520] [PMID: 17173051]
[29]
Zuñiga, R.; Lucchetti, A.; Galvan, P.; Sanchez, S.; Sanchez, C.; Hernandez, A.; Sanchez, H.; Frahm, N.; Linde, C.H.; Hewitt, H.S.; Hildebrand, W.; Altfeld, M.; Allen, T.M.; Walker, B.D.; Korber, B.T.; Leitner, T.; Sanchez, J.; Brander, C. Relative dominance of Gag p24-specific cytotoxic T lymphocytes is associated with human immunodeficiency virus control. J. Virol., 2006, 80(6), 3122-3125.
[http://dx.doi.org/10.1128/JVI.80.6.3122-3125.2006] [PMID: 16501126]
[30]
Bayon, E.; Morlieras, J.; Dereuddre-Bosquet, N.; Gonon, A.; Gosse, L.; Courant, T.; Le Grand, R.; Marche, P.N.; Navarro, F.P. Overcoming immunogenicity issues of HIV p24 antigen by the use of innovative nanostructured lipid carriers as delivery systems: evidences in mice and non-human primates. NPJ Vaccines, 2018, 3, 46-46.
[http://dx.doi.org/10.1038/s41541-018-0086-0]
[31]
Veillette, M.; Désormeaux, A.; Medjahed, H.; Gharsallah, N.E.; Coutu, M.; Baalwa, J.; Guan, Y.; Lewis, G.; Ferrari, G.; Hahn, B.H.; Haynes, B.F.; Robinson, J.E.; Kaufmann, D.E.; Bonsignori, M.; Sodroski, J.; Finzi, A. Interaction with cellular CD4 exposes HIV-1 envelope epitopes targeted by antibody-dependent cell-mediated cytotoxicity. J. Virol., 2014, 88(5), 2633-2644.
[http://dx.doi.org/10.1128/JVI.03230-13] [PMID: 24352444]
[32]
Pawlak, E.N.; Dikeakos, J.D. HIV-1 Nef: a master manipulator of the membrane trafficking machinery mediating immune evasion. Biochim. Biophys. Acta, 2015, 1850(4), 733-741.
[http://dx.doi.org/10.1016/j.bbagen.2015.01.003] [PMID: 25585010]
[33]
Chaudhuri, R.; Lindwasser, O.W.; Smith, W.J.; Hurley, J.H.; Bonifacino, J.S. Downregulation of CD4 by human immunodeficiency virus type 1 Nef is dependent on clathrin and involves direct interaction of Nef with the AP2 clathrin adaptor. J. Virol., 2007, 81(8), 3877-3890.
[http://dx.doi.org/10.1128/JVI.02725-06] [PMID: 17267500]
[34]
Dekaban, G.A.; Dikeakos, J.D. HIV-I Nef inhibitors: a novel class of HIV-specific immune adjuvants in support of a cure. AIDS Res. Ther., 2017, 14(1), 53.
[http://dx.doi.org/10.1186/s12981-017-0175-6] [PMID: 28893294]
[35]
Park, S.Y.; Mack, W.J.; Lee, H.Y. Enhancement of viral escape in HIV-1 Nef by STEP vaccination. AIDS, 2016, 30(16), 2449-2458.
[http://dx.doi.org/10.1097/QAD.0000000000001202] [PMID: 27427874]
[36]
Lundstrom, K. Viral vectors in gene therapy. Diseases, 2018, 6(2), 42.
[http://dx.doi.org/10.3390/diseases6020042] [PMID: 29883422]
[37]
Sadat, S.M.; Zabihollahi, R.; Aghasadeghi, M.R.; Vahabpour, R.; Siadat, S.D.; Memarnejadian, A.; Azadmanesh, K.; Parivar, K. Application of SCR priming VLP boosting as a novel vaccination strategy against HIV-1. Curr. HIV Res., 2011, 9(3), 140-147.
[http://dx.doi.org/10.2174/157016211795945223] [PMID: 21443517]
[38]
Milani, M.; Annoni, A.; Moalli, F.; Liu, T.; Cesana, D.; Calabria, A.; Bartolaccini, S.; Biffi, M.; Russo, F.; Visigalli, I.; Raimondi, A.; Patarroyo-White, S.; Drager, D.; Cristofori, P.; Ayuso, E.; Montini, E.; Peters, R.; Iannacone, M.; Cantore, A.; Naldini, L. Phagocytosis-shielded lentiviral vectors improve liver gene therapy in nonhuman primates. Sci. Transl. Med., 2019, 11(493) eaav7325
[http://dx.doi.org/10.1126/scitranslmed.aav7325] [PMID: 31118293]
[39]
Karda, R.; Counsell, J.R.; Karbowniczek, K.; Caproni, L.J.; Tite, J.P.; Waddington, S.N. Production of lentiviral vectors using novel, enzymatically produced, linear DNA. Gene Ther., 2019, 26(3-4), 86-92.
[http://dx.doi.org/10.1038/s41434-018-0056-1] [PMID: 30643205]
[40]
Beignon, A.S.; Mollier, K.; Liard, C.; Coutant, F.; Munier, S.; Rivière, J.; Souque, P.; Charneau, P. Lentiviral vector-based prime/boost vaccination against AIDS: pilot study shows protection against Simian immunodeficiency virus SIVmac251 challenge in macaques. J. Virol., 2009, 83(21), 10963-10974.
[http://dx.doi.org/10.1128/JVI.01284-09] [PMID: 19706700]
[41]
Buffa, V.; Negri, D.R.; Leone, P.; Bona, R.; Borghi, M.; Bacigalupo, I.; Carlei, D.; Sgadari, C.; Ensoli, B.; Cara, A. A single administration of lentiviral vectors expressing either full-length human immunodeficiency virus 1 (HIV-1)(HXB2) Rev/Env or codon-optimized HIV-1(JR-FL) gp120 generates durable immune responses in mice. J. Gen. Virol., 2006, 87(Pt 6), 1625-1634.
[http://dx.doi.org/10.1099/vir.0.81706-0] [PMID: 16690927]
[42]
Lemiale, F.; Asefa, B.; Ye, D.; Chen, C.; Korokhov, N.; Humeau, L. An HIV-based lentiviral vector as HIV vaccine candidate: Immunogenic characterization. Vaccine, 2010, 28(8), 1952-1961.
[http://dx.doi.org/10.1016/j.vaccine.2009.10.089] [PMID: 20188251]
[43]
Norton, T.D.; Miller, E.A. Recent advances in lentiviral vaccines for HIV-1 infection. Front. Immunol., 2016, 7, 243-243.
[PMID: 27446074]
[44]
Larijani, M.S.; Sadat, S.M.; Bolhassani, A.; Pouriayevali, M.H.; Bahramali, G.; Ramezani, A. In silico design and immunologic evaluation of HIV-1 p24-Nef fusion protein to approach a therapeutic vaccine candidate. Curr. HIV Res., 2018, 16(5), 322-337.
[http://dx.doi.org/10.2174/1570162X17666190102151717] [PMID: 30605062]
[45]
Sambrook, J.R.D. Molecular cloning, 3rd edition; CSHL press: New York, 2001, p. 200.
[46]
Gray, G.E.; Allen, M.; Moodie, Z.; Churchyard, G.; Bekker, L.G.; Nchabeleng, M.; Mlisana, K.; Metch, B.; de Bruyn, G.; Latka, M.H.; Roux, S.; Mathebula, M.; Naicker, N.; Ducar, C.; Carter, D.K.; Puren, A.; Eaton, N.; McElrath, M.J.; Robertson, M.; Corey, L.; Kublin, J.G. HVTN 503/Phambili study team. Safety and efficacy of the HVTN 503/Phambili study of a clade-B-based HIV-1 vaccine in South Africa: a double-blind, randomised, placebo-controlled test-of-concept phase 2b study. Lancet Infect. Dis., 2011, 11(7), 507-515.
[http://dx.doi.org/10.1016/S1473-3099(11)70098-6] [PMID: 21570355]
[47]
Buchbinder, S.P.; Mehrotra, D.V.; Duerr, A.; Fitzgerald, D.W.; Mogg, R.; Li, D.; Gilbert, P.B.; Lama, J.R.; Marmor, M.; Del Rio, C.; McElrath, M.J.; Casimiro, D.R.; Gottesdiener, K.M.; Chodakewitz, J.A.; Corey, L.; Robertson, M.N. Step Study Protocol Team. Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the Step Study): a double-blind, randomised, placebo-controlled, test-of-concept trial. Lancet, 2008, 372(9653), 1881-1893.
[http://dx.doi.org/10.1016/S0140-6736(08)61591-3] [PMID: 19012954]
[48]
Rerks-Ngarm, S.; Pitisuttithum, P.; Nitayaphan, S.; Kaewkungwal, J.; Chiu, J.; Paris, R.; Premsri, N.; Namwat, C.; de Souza, M.; Adams, E.; Benenson, M.; Gurunathan, S.; Tartaglia, J.; McNeil, J.G.; Francis, D.P.; Stablein, D.; Birx, D.L.; Chunsuttiwat, S.; Khamboonruang, C.; Thongcharoen, P.; Robb, M.L.; Michael, N.L.; Kunasol, P.; Kim, J.H. MOPH-TAVEG Investigators. Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N. Engl. J. Med., 2009, 361(23), 2209-2220.
[http://dx.doi.org/10.1056/NEJMoa0908492] [PMID: 19843557]
[49]
Ensoli, F.; Cafaro, A.; Casabianca, A.; Tripiciano, A.; Bellino, S.; Longo, O.; Francavilla, V.; Picconi, O.; Sgadari, C.; Moretti, S.; Cossut, M.R.; Arancio, A.; Orlandi, C.; Sernicola, L.; Maggiorella, M.T.; Paniccia, G.; Mussini, C.; Lazzarin, A.; Sighinolfi, L.; Palamara, G.; Gori, A.; Angarano, G.; Di Pietro, M.; Galli, M.; Mercurio, V.S.; Castelli, F.; Di Perri, G.; Monini, P.; Magnani, M.; Garaci, E.; Ensoli, B. HIV-1 Tat immunization restores immune homeostasis and attacks the HAART-resistant blood HIV DNA: results of a randomized phase II exploratory clinical trial. Retrovirology, 2015, 12, 33.
[http://dx.doi.org/10.1186/s12977-015-0151-y] [PMID: 25924841]
[50]
Tarosso, L.F.; Vieira, V.A.; Sauer, M.M.; Tomiyama, H.I.; Kalil, J.; Kallas, E.G. Conserved HIV-1 gag p24 epitopes elicit cellular immune responses that impact disease outcome. AIDS Res. Hum. Retroviruses, 2017, 33(8), 832-842.
[http://dx.doi.org/10.1089/aid.2016.0168] [PMID: 28594230]
[51]
Kelleher, A.D.; Roggensack, M.; Jaramillo, A.B.; Smith, D.E.; Walker, A.; Gow, I.; McMurchie, M.; Harris, J.; Patou, G.; Cooper, D.A. Community HIV Research Network Investigators. Safety and immunogenicity of a candidate therapeutic vaccine, p24 virus-like particle, combined with zidovudine, in asymptomatic subjects. AIDS, 1998, 12(2), 175-182.
[http://dx.doi.org/10.1097/00002030-199802000-00007] [PMID: 9468366]
[52]
Omosa-Manyonyi, G.; Mpendo, J.; Ruzagira, E.; Kilembe, W.; Chomba, E.; Roman, F.; Bourguignon, P.; Koutsoukos, M.; Collard, A.; Voss, G.; Laufer, D.; Stevens, G.; Hayes, P.; Clark, L.; Cormier, E.; Dally, L.; Barin, B.; Ackland, J.; Syvertsen, K.; Zachariah, D.; Anas, K.; Sayeed, E.; Lombardo, A.; Gilmour, J.; Cox, J.; Fast, P.; Priddy, F. A Phase I double blind, placebo-controlled, randomized study of the safety and immunogenicity of an adjuvanted HIV-1 Gag-Pol-Nef fusion protein and adenovirus 35 Gag-RT-Int-Nef vaccine in healthy HIV-uninfected african adults. PLoS One, 2015, 10(5) e0125954
[http://dx.doi.org/10.1371/journal.pone.0125954] [PMID: 25961283]
[53]
Mahdavi, M.; Ebtekar, M.; Azadmanesh, K.; Khorramkhorshid, H.R.; Rahbarizadeh, F.; Yazdi, M.H.; Zabihollahi, R.; Abolhassani, M.; Hassan, Z.M. HIV-1 Gag p24-Nef fusion peptide induces cellular and humoral immune response in a mouse model. Acta Virol., 2010, 54(2), 131-136.
[http://dx.doi.org/10.4149/av_2010_02_131] [PMID: 20545443]
[54]
Gonzalez-Rabade, N.; McGowan, E.G.; Zhou, F.; McCabe, M.S.; Bock, R.; Dix, P.J.; Gray, J.C.; Ma, J.K. Immunogenicity of chloroplast-derived HIV-1 p24 and a p24-Nef fusion protein following subcutaneous and oral administration in mice. Plant Biotechnol. J., 2011, 9(6), 629-638.
[http://dx.doi.org/10.1111/j.1467-7652.2011.00609.x] [PMID: 21443546]
[55]
Naldini, L. Lentiviruses as gene transfer agents for delivery to non dividing cells. Curr. Opin. Biotechnol., 1998, 9(5), 457-463.
[http://dx.doi.org/10.1016/S0958-1669(98)80029-3] [PMID: 9821272]
[56]
Delviks-Frankenberry, K.A.; Ackerman, D.; Timberlake, N.D.; Hamscher, M.; Nikolaitchik, O.A.; Hu, W-S.; Torbett, B.E.; Pathak, V.K. Development of lentiviral vectors for HIV-1 gene therapy with Vif resistant APOBEC3G. Mol. Ther. Nucleic Acids, 2019, 18, 1023-1038.
[http://dx.doi.org/10.1016/j.omtn.2019.10.024] [PMID: 31778955]
[57]
Alayo, Q.A.; Provine, N.M.; Penaloza-MacMaster, P. Novel concepts for HIV vaccine vector design. MSphere, 2017, 2(6), e00415-e00417.
[http://dx.doi.org/10.1128/mSphere.00415-17] [PMID: 29242831]
[58]
Dai, B.; Yang, L.; Yang, H.; Hu, B.; Baltimore, D.; Wang, P. HIV-1 Gag-specific immunity induced by a lentivector-based vaccine directed to dendritic cells. Proc. Natl. Acad. Sci. USA, 2009, 106(48), 20382-20387.
[http://dx.doi.org/10.1073/pnas.0911742106] [PMID: 19918062]
[59]
Norton, T.D.; Zhen, A.; Tada, T.; Kim, J.; Kitchen, S.; Landau, N.R. Lentiviral vector-based dendritic cell vaccine suppresses HIV replication in humanized mice. Mol. Ther., 2019, 27(5), 960-973.
[http://dx.doi.org/10.1016/j.ymthe.2019.03.008] [PMID: 30962161]
[60]
Andersson, A.C.; Schwerdtfeger, M.; Holst, P.J. Virus-Like-Vaccines against HIV. Vaccines (Basel), 2018, 6(1) E10
[http://dx.doi.org/10.3390/vaccines6010010] [PMID: 29439476]
[61]
Vzorov, A.N.; Compans, R.W. [VLP vaccines and effects of HIV-1 Env protein modifications on their antigenic properties]. Mol. Biol. (Mosk.), 2016, 50(3), 406-415.
[PMID: 27414779]
[62]
Tohidi, F.; Sadat, S.M.; Bolhassani, A.; Yaghobi, R. Construction and production of HIV-VLP harboring MPER-V3 for potential vaccine study. Curr. HIV Res., 2017, 15(6), 434-439.
[PMID: 29046160]
[63]
Fuenmayor, J.; Cervera, L.; Rigau, C.; Gòdia, F. Enhancement of HIV-1 VLP production using gene inhibition strategies. Appl. Microbiol. Biotechnol., 2018, 102(10), 4477-4487.
[http://dx.doi.org/10.1007/s00253-018-8930-8] [PMID: 29574615]
[64]
Calazans, A.; Boggiano, C.; Lindsay, R. Retraction: A DNA inducing VLP vaccine designed for HIV and tested in mice. PLoS One, 2018, 13(8) e0203635
[http://dx.doi.org/10.1371/journal.pone.0203635] [PMID: 30170323]
[65]
Tohidi, F.; Sadat, S.M.; Bolhassani, A.; Yaghobi, R.; Larijani, M.S. Induction of a robust humoral response using HIV-1 VLPMPER-V3as a novel candidate vaccine in BALB/c mice. Curr. HIV Res., 2019, 17(1), 33-41.
[http://dx.doi.org/10.2174/1570162X17666190306124218] [PMID: 30843489]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy