Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Clinical Trial

Red Grape Polyphenol Oral Administration Improves Immune Response in Women Affected by Nickel-Mediated Allergic Contact Dermatitis

Author(s): Thea Magrone*, Emilio Jirillo, Manrico Magrone, Matteo A. Russo, Paolo Romita , Francesco Massari and Caterina Foti

Volume 21, Issue 2, 2021

Published on: 13 March, 2020

Page: [374 - 384] Pages: 11

DOI: 10.2174/1871530320666200313152648

Price: $65

Abstract

Background: Our previous findings demonstrated that in vitro supplementation of polyphenols, extracted from seeds of red grape (Nero di Troia cultivar), to peripheral lymphomonocytes from patients affected by allergic contact dermatitis (ACD) to nickel (Ni) could reduce the release of proinflammatory cytokines and nitric oxide (NO), while increasing the levels of interleukin (IL)-10, an anti-inflammatory cytokine.

Objective: To assess whether an intervention with oral administration of polyphenols leads to a reduction of peripheral biomarkers in ACD patients.

Methods: At T0, 25 patients affected by ACD to Ni were orally administered with 300 mg polyphenols prodie extracted from seeds of red grape (Nero di Troia cultivar) (NATUR-OX®) for 3 months (T1). The other 25 patients affected by ACD to Ni received placebo only for the same period of time. Serum biomarkers were analyzed at T0 and T1. In both groups, seven dropouts were recorded.

Results: At T1 in comparison to T0, in treated patients, values of interferon-γ, IL-4, IL-17, pentraxin 3 and NO decreased, while IL-10 levels increased when compared with T0 values. Conversely, in placebo- treated patients, no modifications of biomarkers were evaluated at T1.

Conclusion: Present laboratory data rely on the anti-oxidant, anti-inflammatory and anti-allergic properties of polyphenols.

Keywords: Allergic contact dermatitis, cellular and molecular rehabilitation, cytokines, immune response, nickel, polyphenols.

« Previous
Graphical Abstract
[1]
Thyssen, J.P.; Menné, T. Metal allergy-a review on exposures, penetration, genetics, prevalence, and clinical implications. Chem. Res. Toxicol., 2010, 23(2), 309-318.
[http://dx.doi.org/10.1021/tx9002726] [PMID: 19831422]
[2]
Swietlik, J.; Reeder, M. Current quality-of-life tools available for use in contact dermatitis. Dermatitis, 2016, 27(4), 176-185.
[http://dx.doi.org/10.1097/DER.0000000000000192] [PMID: 27427819]
[3]
Alinaghi, F.; Bennike, N.H.; Egeberg, A.; Thyssen, J.P.; Johansen, J.D. Prevalence of contact allergy in the general population: A systematic review and meta-analysis. Contact Dermat., 2019, 80(2), 77-85.
[http://dx.doi.org/10.1111/cod.13119] [PMID: 30370565]
[4]
Thyssen, J.P.; Linneberg, A.; Menné, T.; Johansen, J.D. The epidemiology of contact allergy in the general population-prevalence and main findings. Contact Dermat., 2007, 57(5), 287-299.
[http://dx.doi.org/10.1111/j.1600-0536.2007.01220.x] [PMID: 17937743]
[5]
Thyssen, J.P.; Menné, T.; Johansen, J.D. Identification of metallic items that caused nickel dermatitis in Danish patients. Contact Dermat., 2010, 63(3), 151-156.
[http://dx.doi.org/10.1111/j.1600-0536.2010.01767.x] [PMID: 20690938]
[6]
Schuttelaar, M.L.A.; Ofenloch, R.F.; Bruze, M.; Cazzaniga, S.; Elsner, P.; Gonçalo, M.; Naldi, L.; Svensson, Å.; Diepgen, T.L. Prevalence of contact allergy to metals in the European general population with a focus on nickel and piercings: The EDEN Fragrance Study. Contact Dermat., 2018, 79(1), 1-9.
[http://dx.doi.org/10.1111/cod.12983] [PMID: 29635802]
[7]
Uter, W.; Pfahlberg, A.; Gefeller, O.; Geier, J.; Schnuch, A. Risk factors for contact allergy to nickel - results of a multifactorial analysis. Contact Dermat., 2003, 48(1), 33-38.
[http://dx.doi.org/10.1034/j.1600-0536.46.s4.29_102.x] [PMID: 12641576]
[8]
Kersh, A.E.; Helms, S.; de la Feld, S. Glove-related allergic contact dermatitis. Dermatitis, 2018, 29(1), 13-21.
[http://dx.doi.org/10.1097/DER.0000000000000335] [PMID: 29901500]
[9]
Dhingra, N.; Shemer, A.; Correa da Rosa, J.; Rozenblit, M.; Fuentes-Duculan, J.; Gittler, J.K.; Finney, R.; Czarnowicki, T.; Zheng, X.; Xu, H.; Estrada, Y.D.; Cardinale, I.; Suárez-Fariñas, M.; Krueger, J.G.; Guttman-Yassky, E. Molecular profiling of contact dermatitis skin identifies allergen-dependent differences in immune response. J. Allergy Clin. Immunol., 2014, 134(2), 362-372.
[http://dx.doi.org/10.1016/j.jaci.2014.03.009] [PMID: 24768652]
[10]
Saito, M.; Arakaki, R.; Yamada, A.; Tsunematsu, T.; Kudo, Y.; Ishimaru, N. Molecular mechanisms of Nickel allergy. Int. J. Mol. Sci., 2016, 17(2)E202
[http://dx.doi.org/10.3390/ijms17020202] [PMID: 26848658]
[11]
Kaplan, D.H.; Igyártó, B.Z.; Gaspari, A.A. Early immune events in the induction of allergic contact dermatitis. Nat. Rev. Immunol., 2012, 12(2), 114-124.
[http://dx.doi.org/10.1038/nri3150] [PMID: 22240625]
[12]
Silvestre, M.C.; Reis, V.M.S.D. Evaluation of the profile of inflammatory cytokines, through immunohistochemistry, in the skin of patients with allergic contact dermatitis to nickel in the acute and chronic phases. An. Bras. Dermatol., 2018, 93(6), 829-835.
[http://dx.doi.org/10.1590/abd1806-4841.20187126] [PMID: 30484527]
[13]
Vocanson, M.; Hennino, A.; Rozières, A.; Poyet, G.; Nicolas, J.F. Effector and regulatory mechanisms in allergic contact dermatitis. Allergy, 2009, 64(12), 1699-1714.
[http://dx.doi.org/10.1111/j.1398-9995.2009.02082.x] [PMID: 19839974]
[14]
Silvestre, M.C.; Sato, M.N.; Reis, V.M.S.D. Innate immunity and effector and regulatory mechanisms involved in allergic contact dermatitis. An. Bras. Dermatol., 2018, 93(2), 242-250.
[http://dx.doi.org/10.1590/abd1806-4841.20186340] [PMID: 29723367]
[15]
Medzhitov, R.; Preston-Hurlburt, P.; Janeway, C.A. Jr A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature, 1997, 388(6640), 394-397.
[http://dx.doi.org/10.1038/41131] [PMID: 9237759]
[16]
Kumar, H.; Kawai, T.; Akira, S. Pathogen recognition by the innate immune system. Int. Rev. Immunol., 2011, 30(1), 16-34.
[http://dx.doi.org/10.3109/08830185.2010.529976] [PMID: 21235323]
[17]
Schmidt, M.; Raghavan, B.; Müller, V.; Vogl, T.; Fejer, G.; Tchaptchet, S.; Keck, S.; Kalis, C.; Nielsen, P.J.; Galanos, C.; Roth, J.; Skerra, A.; Martin, S.F.; Freudenberg, M.A.; Goebeler, M. Crucial role for human Toll-like receptor 4 in the development of contact allergy to nickel. Nat. Immunol., 2010, 11(9), 814-819.
[http://dx.doi.org/10.1038/ni.1919] [PMID: 20711192]
[18]
Zoroddu, M.A.; Peana, M.; Medici, S.; Potocki, S.; Kozlowski, H. Ni(II) binding to the 429-460 peptide fragment from human Toll like receptor (hTLR4): a crucial role for nickel-induced contact allergy? Dalton Trans., 2014, 43(7), 2764-2771.
[http://dx.doi.org/10.1039/C3DT52187G] [PMID: 24169691]
[19]
Schmidt, M.; Goebeler, M. Nickel allergies: paying the Toll for innate immunity. J. Mol. Med. (Berl.), 2011, 89(10), 961-970.
[http://dx.doi.org/10.1007/s00109-011-0780-0] [PMID: 21698426]
[20]
Peana, M.; Zdyb, K.; Medici, S.; Pelucelli, A.; Simula, G.; Gumienna-Kontecka, E.; Zoroddu, M.A. Ni(II) interaction with a peptide model of the human TLR4 ectodomain. J. Trace Elem. Med. Biol., 2017, 44, 151-160.
[http://dx.doi.org/10.1016/j.jtemb.2017.07.006] [PMID: 28965571]
[21]
Martin, S.F.; Esser, P.R.; Weber, F.C.; Jakob, T.; Freudenberg, M.A.; Schmidt, M.; Goebeler, M. Mechanisms of chemical-induced innate immunity in allergic contact dermatitis. Allergy, 2011, 66(9), 1152-1163.
[http://dx.doi.org/10.1111/j.1398-9995.2011.02652.x] [PMID: 21599706]
[22]
Oblak, A.; Jerala, R. The molecular mechanism of species-specific recognition of lipopolysaccharides by the MD-2/TLR4 receptor complex. Mol. Immunol., 2015, 63(2), 134-142.
[http://dx.doi.org/10.1016/j.molimm.2014.06.034] [PMID: 25037631]
[23]
Wolff, K.; Goldsmith, L.A.; Katz, S.I.; Gilchrest, B.A.; Paller, A.S.; Leffell, D.J. Fitzpatrick’s Dermatology in General Medicine, 7th ed; The McGraw-Hill Companies: New York, 2008.
[24]
Antille, C.; Saurat, J.H.; Lübbe, J. Induction of rosaceiform dermatitis during treatment of facial inflammatory dermatoses with tacrolimus ointment. Arch. Dermatol., 2004, 140(4), 457-460.
[http://dx.doi.org/10.1001/archderm.140.4.457] [PMID: 15096374]
[25]
Fujiwara, S.; Okubo, Y.; Irisawa, R.; Tsuboi, R. Rosaceiform dermatitis associated with topical tacrolimus treatment. J. Am. Acad. Dermatol., 2010, 62(6), 1050-1052.
[http://dx.doi.org/10.1016/j.jaad.2009.01.029] [PMID: 20466178]
[26]
Teraki, Y.; Hitomi, K.; Sato, Y.; Izaki, S. Tacrolimus-induced rosacea-like dermatitis: a clinical analysis of 16 cases associated with tacrolimus ointment application. Dermatology (Basel), 2012, 224(4), 309-314.
[http://dx.doi.org/10.1159/000338693] [PMID: 22626964]
[27]
Diepgen, T.L.; Andersen, K.E.; Chosidow, O.; Coenraads, P.J.; Elsner, P.; English, J.; Fartasch, M.; Gimenez-Arnau, A.; Nixon, R.; Sasseville, D.; Agner, T. Guidelines for diagnosis, prevention and treatment of hand eczema. J. Dtsch. Dermatol. Ges., 2015, 13(1), e1-e22.
[http://dx.doi.org/10.1111/ddg.12510_1] [PMID: 25763418]
[28]
Won, C.H.; Seo, P.G.; Park, Y.M.; Yang, J.M.; Lee, K.H.; Sung, K.J.; Park, C.W.; Kim, D.W.; Chang, H.S.; Won, Y.H.; Kim, K.H. A multicenter trial of the efficacy and safety of 0.03% tacrolimus ointment for atopic dermatitis in Korea. J. Dermatolog. Treat., 2004, 15(1), 30-34.
[http://dx.doi.org/10.1080/09546630310020812] [PMID: 14754647]
[29]
Veien, N.K.; Menne, T. Treatment of hand eczema. Skin Therapy Lett., 2003, 8(5), 4-7.
[PMID: 12910323]
[30]
Antonov, D.; Schliemann, S.; Elsner, P. Hand dermatitis: a review of clinical features, prevention and treatment. Am. J. Clin. Dermatol., 2015, 16(4), 257-270.
[http://dx.doi.org/10.1007/s40257-015-0130-z] [PMID: 25920436]
[31]
Lynde, C.; Guenther, L.; Diepgen, T.L.; Sasseville, D.; Poulin, Y.; Gulliver, W.; Agner, T.; Barber, K.; Bissonnette, R.; Ho, V.; Shear, N.H.; Toole, J. Canadian hand dermatitis management guidelines. J. Cutan. Med. Surg., 2010, 14(6), 267-284.
[http://dx.doi.org/10.2310/7750.2010.09094] [PMID: 21084020]
[32]
Jankowska-Konsur, A.; Reich, A.; Szepietowski, J.C. Systemic antihistamines-a common outside the guidelines therapeutic strategy in hand eczema management. J. Eur. Acad. Dermatol. Venereol., 2016, 30(1), 67-71.
[http://dx.doi.org/10.1111/jdv.13060] [PMID: 25731585]
[33]
Magrone, T.; Tafaro, A.; Jirillo, F.; Panaro, M.A.; Cuzzuol, P.; Cuzzuol, A.C.; Pugliese, V.; Amati, L.; Jirillo, E.; Covelli, V. Red wine consumption and prevention of atherosclerosis: an in vitro model using human peripheral blood mononuclear cells. Curr. Pharm. Des., 2007, 13(36), 3718-3725.
[http://dx.doi.org/10.2174/138161207783018581] [PMID: 18220811]
[34]
Magrone, T.; Panaro, M.A.; Jirillo, E.; Covelli, V. Molecular effects elicited in vitro by red wine on human healthy peripheral blood mononuclear cells: potential therapeutical application of polyphenols to diet-related chronic diseases. Curr. Pharm. Des., 2008, 14(26), 2758-2766.
[http://dx.doi.org/10.2174/138161208786264179] [PMID: 18991694]
[35]
Magrone, T.; Salvatore, R.; Spagnoletta, A.; Magrone, M.; Russo, M.A.; Jirillo, E. In vitro effects of Nickel on healthy non-allergic peripheral blood mononuclear cells. The role of red grape polyphenols. Endocr. Metab. Immune Disord. Drug Targets, 2017, 17(2), 166-173.
[http://dx.doi.org/10.2174/1871530317666170713145350] [PMID: 28707594]
[36]
Magrone, T.; Romita, P.; Verni, P.; Salvatore, R.; Spagnoletta, A.; Magrone, M.; Russo, M.A.; Jirillo, E.; Foti, C. In vitro effects of polyphenols on the peripheral immune responses in Nickel-sensitized patients. Endocr. Metab. Immune Disord. Drug Targets, 2017, 17(4), 324-331.
[http://dx.doi.org/10.2174/1871530317666171003161314] [PMID: 28982342]
[37]
Schroder, K.; Hertzog, P.J.; Ravasi, T.; Hume, D.A. Interferon-gamma: an overview of signals, mechanisms and functions. J. Leukoc. Biol., 2004, 75(2), 163-189.
[http://dx.doi.org/10.1189/jlb.0603252] [PMID: 14525967]
[38]
Nakayama, T.; Hirahara, K.; Onodera, A.; Endo, Y.; Hosokawa, H.; Shinoda, K.; Tumes, D.J.; Okamoto, Y. Th2 Cells in health and disease. Annu. Rev. Immunol., 2017, 35, 53-84.
[http://dx.doi.org/10.1146/annurev-immunol-051116-052350] [PMID: 27912316]
[39]
Magrone, T.; Jirillo, E. Intestinal regulatory T cells: their function and modulation by dietary nutrients. Nutr. Ther. & Metab., 2014, 32(4), 157-165.
[40]
Castillo, P.; Kolls, J.K. IL-10: A Paradigm for counterregulatory cytokines. J. Immunol., 2016, 197(5), 1529-1530.
[http://dx.doi.org/10.4049/jimmunol.1601192] [PMID: 27543665]
[41]
Iwakura, Y.; Ishigame, H.; Saijo, S.; Nakae, S. Functional specialization of interleukin-17 family members. Immunity, 2011, 34(2), 149-162.
[http://dx.doi.org/10.1016/j.immuni.2011.02.012] [PMID: 21349428]
[42]
Larsen, J.M.; Bonefeld, C.M.; Poulsen, S.S.; Geisler, C.; Skov, L. IL-23 and T(H)17-mediated inflammation in human allergic contact dermatitis. J. Allergy Clin. Immunol., 2009, 123(2), 486-492.
[http://dx.doi.org/10.1016/j.jaci.2008.09.036] [PMID: 18986691]
[43]
García-Ortiz, A.; Serrador, J.M. Nitric oxide signaling in T cell-mediated immunity. Trends Mol. Med., 2018, 24(4), 412-427.
[http://dx.doi.org/10.1016/j.molmed.2018.02.002] [PMID: 29519621]
[44]
Lee, M.; Rey, K.; Besler, K.; Wang, C.; Choy, J. Immunobiology of nitric oxide and regulation of inducible nitric oxide synthase. Results Probl. Cell Differ., 2017, 62, 181-207.
[http://dx.doi.org/10.1007/978-3-319-54090-0_8] [PMID: 28455710]
[45]
Bogdan, C. Nitric oxide synthase in innate and adaptive immunity: an update. Trends Immunol., 2015, 36(3), 161-178.
[http://dx.doi.org/10.1016/j.it.2015.01.003] [PMID: 25687683]
[46]
Johansen, J.D.; Aalto-Korte, K.; Agner, T.; Andersen, K.E.; Bircher, A.; Bruze, M.; Cannavó, A.; Giménez-Arnau, A.; Gonçalo, M.; Goossens, A.; John, S.M.; Lidén, C.; Lindberg, M.; Mahler, V.; Matura, M.; Rustemeyer, T.; Serup, J.; Spiewak, R.; Thyssen, J.P.; Vigan, M.; White, I.R.; Wilkinson, M.; Uter, W. European society of contact dermatitis guideline for diagnostic patch testing - recommendations on best practice. Contact Dermat., 2015, 73(4), 195-221.
[http://dx.doi.org/10.1111/cod.12432] [PMID: 26179009]
[47]
Magrone, T.; Jirillo, E. Effects of Polyphenols on InflammatoryAllergic Conditions: Experimental and Clinical Evidences. In: In: Watson R, Preedy V. Polyphenols: Prevention and Treatment of Human Disease; Second Edition,; Elsevier, , Ed.;, 2018; 2, pp. 253-259.
[48]
GutiErrez-Grijalva. E.P.; Ambriz-Pere, D.L.; Leyva-Lopez, N.; Castillo-Lopez, R.I.; Heiedia, J.B. Review: dietary phenolic compounds, health benefits and bioaccessibility. Arch. Latinoam. Nutr., 2016, 66(2), 87-100.
[PMID: 29737665]
[49]
López-Vélez, M.; Martínez-Martínez, F.; Del Valle-Ribes, C. The study of phenolic compounds as natural antioxidants in wine. Crit. Rev. Food Sci. Nutr., 2003, 43(3), 233-244.
[http://dx.doi.org/10.1080/727072831] [PMID: 12822671]
[50]
Magrone, T.; Jirillo, E. Polyphenols from red wine are potent modulators of innate and adaptive immune responsiveness. Proc. Nutr. Soc., 2010, 69(3), 279-285.
[http://dx.doi.org/10.1017/S0029665110000121] [PMID: 20522276]
[51]
Magrone, T.; Candore, G.; Caruso, C.; Jirillo, E.; Covelli, V. Polyphenols from red wine modulate immune responsiveness: biological and clinical significance. Curr. Pharm. Des., 2008, 14(26), 2733-2748.
[http://dx.doi.org/10.2174/138161208786264098] [PMID: 18991692]
[52]
Snopek, L.; Mlcek, J.; Sochorova, L.; Baron, M.; Hlavacova, I.; Jurikova, T.; Kizek, R.; Sedlackova, E.; Sochor, J. Contribution of red wine consumption to human health protection. Molecules, 2018, 23(7)E1684
[http://dx.doi.org/10.3390/molecules23071684] [PMID: 29997312]
[53]
Wierzejska, R. Tea and health-a review of the current state of knowledge. Przegl. Epidemiol., 2014, 68(3), 501-506, 595-599.
[PMID: 25391016]
[54]
Zhu, F. Interactions between cell wall polysaccharides and polyphenols. Crit. Rev. Food Sci. Nutr., 2018, 58(11), 1808-1831.
[http://dx.doi.org/10.1080/10408398.2017.1287659] [PMID: 28362107]
[55]
Magrone, T.; Spagnoletta, A.; Salvatore, R.; Magrone, M.; Dentamaro, F.; Russo, M.A.; Difonzo, G.; Summo, C.; Caponio, F.; Jirillo, E. Olive leaf extracts act as modulators of the human immune response. Endocr. Metab. Immune Disord. Drug Targets, 2018, 18(1), 85-93.
[http://dx.doi.org/10.2174/1871530317666171116110537;] [PMID: 29149822]
[56]
Casas, R.; Estruch, R.; Sacanella, E. The protective effects of extra virgin olive oil on immune-mediated inflammatory responses. Endocr. Metab. Immune Disord. Drug Targets, 2018, 18(1), 23-35.
[http://dx.doi.org/10.2174/1871530317666171114115632;] [PMID: 29141575]
[57]
Magrone, T.; Jirillo, E.; Spagnoletta, A.; Magrone, M.; Russo, M.A.; Fontana, S.; Laforgia, F.; Donvito, I.; Campanella, A.; Silvestris, F.; De Pergola, G. Immune profile of obese people and in vitro effects of red grape polyphenols on peripheral blood mononuclear cells. Oxid. Med. Cell. Longev., 2017, 20179210862
[http://dx.doi.org/10.115/2017/9210862;] [PMID: 28243360]
[58]
Marzulli, G.; Magrone, T.; Vonghia, L.; Kaneko, M.; Takimoto, H.; Kumazawa, Y.; Jirillo, E. Immunomodulating and anti-allergic effects of Negroamaro and Koshu Vitis vinifera fermented grape marc (FGM). Curr. Pharm. Des., 2014, 20(6), 864-868.
[http://dx.doi.org/10.2174/138161282006140220120640] [PMID: 23701568]
[59]
Magrone, T.; Jirillo, E. Influence of polyphenols on allergic immune reactions: mechanisms of action. Proc. Nutr. Soc., 2012, 71(2), 316-321.
[http://dx.doi.org/10.1017/S0029665112000109] [PMID: 22369886]
[60]
Magrone, T.; Jirillo, E. Potential application of dietary polyphenols from red wine to attaining healthy ageing. Curr. Top. Med. Chem., 2011, 11(14), 1780-1796.
[http://dx.doi.org/10.2174/156802611796235116] [PMID: 21506931]
[61]
Bordignon, V.; Palamara, F.; Altomonte, G.; Sperduti, I.; Pietravalle, M.; Cavallotti, C.; Cordiali-Fei, P.; Fuggetta, M.P.; Cristaudo, A.; Ensoli, F. A laboratory test based on determination of cytokine profiles: a promising assay to identify exposition to contact allergens and predict the clinical outcome in occupational allergic contact dermatitis. BMC Immunol., 2015, 16, 4.
[http://dx.doi.org/10.1186/s12865-015-0066-3] [PMID: 25651756]
[62]
Vilahur, G.; Badimon, L. Biological actions of pentraxins. Vascul. Pharmacol., 2015, 73, 38-44.
[http://dx.doi.org/10.1016/j.vph.2015.05.001] [PMID: 25962566]
[63]
Ortega-Hernandez, O.D.; Bassi, N.; Shoenfeld, Y.; Anaya, J.M. The long pentraxin 3 and its role in autoimmunity. Semin. Arthritis Rheum., 2009, 39(1), 38-54.
[http://dx.doi.org/10.1016/j.semarthrit.2008.03.006] [PMID: 18614204]
[64]
Bonacina, F.; Baragetti, A.; Catapano, A.L.; Norata, G.D. Long pentraxin 3: experimental and clinical relevance in cardiovascular diseases. Mediators Inflamm., 2013, 2013725102
[http://dx.doi.org/10.1155/2013/725102] [PMID: 23690668]
[65]
Casula, M.; Montecucco, F.; Bonaventura, A.; Liberale, L.; Vecchié, A.; Dallegri, F.; Carbone, F. Update on the role of pentraxin 3 in atherosclerosis and cardiovascular diseases. Vascul. Pharmacol., 2017, 99, 1-12.
[http://dx.doi.org/10.1016/j.vph.2017.10.003] [PMID: 29051088]
[66]
Cieślik, P.; Hrycek, A. Pentraxin 3 as a biomarker of local inflammatory response to vascular injury in systemic lupus erythematosus. Autoimmunity, 2015, 48(4), 242-250.
[http://dx.doi.org/10.3109/08916934.2014.983264] [PMID: 25401491]
[67]
Selmi, C. Autoimmunity in 2017. Clin. Rev. Allergy Immunol., 2018, 55(3), 239-253.
[http://dx.doi.org/10.1007/s12016-018-8699-7] [PMID: 30051260]
[68]
Marschner, J.A.; Mulay, S.R.; Steiger, S.; Anguiano, L.; Zhao, Z.; Boor, P.; Rahimi, K.; Inforzato, A.; Garlanda, C.; Mantovani, A.; Anders, H.J. The long pentraxin PTX3 is an endogenous inhibitor of hyperoxaluria-related nephrocalcinosis and chronic kidney disease. Front. Immunol., 2018, 9, 2173.
[http://dx.doi.org/10.3389/fimmu.2018.02173] [PMID: 30319631]
[69]
Ketter, P.; Yu, J.J.; Cap, A.P.; Forsthuber, T.; Arulanandam, B. Pentraxin 3: an immune modulator of infection and useful marker for disease severity assessment in sepsis. Expert Rev. Clin. Immunol., 2016, 12(5), 501-507.
[http://dx.doi.org/10.1586/1744666X.2016.1166957] [PMID: 26982005]
[70]
McHale, C.; Mohammed, Z.; Gomez, G. Human skin-derived mast cells spontaneously secrete several angiogenesis-related factors. Front. Immunol., 2019, 10, 1445.
[http://dx.doi.org/10.3389/fimmu.2019.01445] [PMID: 31293594]
[71]
Cieślik, P.; Hrycek, A. Long pentraxin 3 (PTX3) in the light of its structure, mechanism of action and clinical implications. Autoimmunity, 2012, 45(2), 119-128.
[http://dx.doi.org/10.3109/08916934.2011.611549] [PMID: 21988562]
[72]
Doni, A.; Michela, M.; Bottazzi, B.; Peri, G.; Valentino, S.; Polentarutti, N.; Garlanda, C.; Mantovani, A. Regulation of PTX3, a key component of humoral innate immunity in human dendritic cells: stimulation by IL-10 and inhibition by IFN-gamma. J. Leukoc. Biol., 2006, 79(4), 797-802.
[http://dx.doi.org/10.1189/jlb.0905493] [PMID: 16461742]
[73]
Razvina, O.; Jiang, S.; Matsubara, K.; Ohashi, R.; Hasegawa, G.; Aoyama, T.; Daigo, K.; Kodama, T.; Hamakubo, T.; Naito, M. Differential expression of pentraxin 3 in neutrophils. Exp. Mol. Pathol., 2015, 98(1), 33-40.
[http://dx.doi.org/10.1016/j.yexmp.2014.11.009] [PMID: 25449330]
[74]
Norata, G.D.; Garlanda, C.; Catapano, A.L. The long pentraxin PTX3: a modulator of the immunoinflammatory response in atherosclerosis and cardiovascular diseases. Trends Cardiovasc. Med., 2010, 20(2), 35-40.
[http://dx.doi.org/10.1016/j.tcm.2010.03.005] [PMID: 20656213]
[75]
Rodrigues, P.F.; Matarazzo, S.; Maccarinelli, F.; Foglio, E.; Giacomini, A.; Silva Nunes, J.P.; Presta, M.; Dias, A.A.M.; Ronca, R. Long Pentraxin 3-mediated fibroblast growth factor trapping impairs fibrosarcoma growth. Front. Oncol., 2018, 8, 472.
[http://dx.doi.org/10.3389/fonc.2018.00472] [PMID: 30443492]
[76]
Balhara, J.; Koussih, L.; Zhang, J.; Gounni, A.S. Pentraxin 3: an immuno-regulator in the lungs. Front. Immunol., 2013, 4, 127.
[http://dx.doi.org/10.3389/fimmu.2013.00127] [PMID: 23755050]
[77]
He, X.; Han, B.; Liu, M. Long pentraxin 3 in pulmonary infection and acute lung injury. Am. J. Physiol. Lung Cell. Mol. Physiol., 2007, 292(5), L1039-L1049.
[http://dx.doi.org/10.1152/ajplung.00490.2006] [PMID: 17277044]
[78]
Bozza, S.; Campo, S.; Arseni, B.; Inforzato, A.; Ragnar, L.; Bottazzi, B.; Mantovani, A.; Moretti, S.; Oikonomous, V.; De Santis, R.; Carvalho, A.; Salvatori, G.; Romani, L. PTX3 binds MD-2 and promotes TRIF-dependent immune protection in aspergillosis. J. Immunol., 2014, 193(5), 2340-2348.
[http://dx.doi.org/10.4049/jimmunol.1400814] [PMID: 25049357]
[79]
Bogdan, C. Nitric oxide and the immune response. Nat. Immunol., 2001, 2(10), 907-916.
[http://dx.doi.org/10.1038/ni1001-907] [PMID: 11577346]
[80]
Xiong, H.; Pamer, E.G. Monocytes and infection: modulator, messenger and effector. Immunobiology, 2015, 220(2), 210-214.
[http://dx.doi.org/10.1016/j.imbio.2014.08.007] [PMID: 25214476]
[81]
Ganster, R.W.; Taylor, B.S.; Shao, L.; Geller, D.A. Complex regulation of human inducible nitric oxide synthase gene transcription by Stat 1 and NF-kappa B. Proc. Natl. Acad. Sci. USA, 2001, 98(15), 8638-8643.
[http://dx.doi.org/10.1073/pnas.151239498] [PMID: 11438703]
[82]
Guo, Z.; Shao, L.; Du, Q.; Park, K.S.; Geller, D.A. Identification of a classic cytokine-induced enhancer upstream in the human iNOS promoter. FASEB J., 2007, 21(2), 535-542.
[http://dx.doi.org/10.1096/fj.06-6739com] [PMID: 17158780]
[83]
Pautz, A.; Art, J.; Hahn, S.; Nowag, S.; Voss, C.; Kleinert, H. Regulation of the expression of inducible nitric oxide synthase. Nitric Oxide, 2010, 23(2), 75-93.
[http://dx.doi.org/10.1016/j.niox.2010.04.007] [PMID: 20438856]
[84]
Bonaterra, G.A.; Heinrich, E.U.; Kelber, O.; Weiser, D.; Metz, J.; Kinscherf, R. Anti-inflammatory effects of the willow bark extract STW 33-I (Proaktiv(®)) in LPS-activated human monocytes and differentiated macrophages. Phytomedicine, 2010, 17(14), 1106-1113.
[http://dx.doi.org/10.1016/j.phymed.2010.03.022] [PMID: 20570123]
[85]
Ermakova, S.; Choi, B.Y.; Choi, H.S.; Kang, B.S.; Bode, A.M.; Dong, Z. The intermediate filament protein vimentin is a new target for epigallocatechin gallate. J. Biol. Chem., 2005, 280(17), 16882-16890.
[http://dx.doi.org/10.1074/jbc.M414185200] [PMID: 15713670]
[86]
Shukla, S.; MacLennan, G.T.; Fu, P.; Gupta, S. Apigenin attenuates insulin-like growth factor-I signaling in an autochthonous mouse prostate cancer model. Pharm. Res., 2012, 29(6), 1506-1517.
[http://dx.doi.org/10.1007/s11095-011-0625-0] [PMID: 22139534]
[87]
Cipolletti, M.; Solar Fernandez, V.; Montalesi, E.; Marino, M.; Fiocchetti, M. Beyond the antioxidant activity of dietary polyphenols in cancer: the modulation of estrogen receptors (ERs) signaling. Int. J. Mol. Sci., 2018, 19(9)E2624
[http://dx.doi.org/10.3390/ijms19092624] [PMID: 30189583]
[88]
Yin, Y.; Chen, C.; Chen, J.; Zhan, R.; Zhang, Q.; Xu, X.; Li, D.; Li, M. Cell surface GRP78 facilitates hepatoma cells proliferation and migration by activating IGF-IR. Cell. Signal., 2017, 35, 154-162.
[http://dx.doi.org/10.1016/j.cellsig.2017.04.003] [PMID: 28389416]
[89]
Hou, D.X.; Kumamoto, T. Flavonoids as protein kinase inhibitors for cancer chemoprevention: direct binding and molecular modeling. Antioxid. Redox Signal., 2010, 13(5), 691-719.
[http://dx.doi.org/10.1089/ars.2009.2816] [PMID: 20070239]
[90]
Fujimura, Y.; Sumida, M.; Sugihara, K.; Tsukamoto, S.; Yamada, K.; Tachibana, H. Green tea polyphenol EGCG sensing motif on the 67-kDa laminin receptor. PLoS One, 2012, 7(5)e37942
[http://dx.doi.org/10.1371/journal.pone.0037942] [PMID: 22666419]
[91]
Hong Byun, E.; Fujimura, Y.; Yamada, K.; Tachibana, H. TLR4 signaling inhibitory pathway induced by green tea polyphenol epigallocatechin-3-gallate through 67-kDa laminin receptor. J. Immunol., 2010, 185(1), 33-45.
[http://dx.doi.org/10.4049/jimmunol.0903742] [PMID: 20511545]
[92]
Li, Y.F.; Wang, H.; Fan, Y.; Shi, H.J.; Wang, Q.M.; Chen, B.R.; Khurwolah, M.R.; Long, Q.Q.; Wang, S.B.; Wang, Z.M.; Wang, L.S. Epigallocatechin-3-gallate inhibits matrix metalloproteinase-9 and monocyte chemotactic protein-1 expression through the 67-κDa laminin receptor and the TLR4/MAPK/NF-κB signalling pathway in Lipopolysaccharide-induced macrophages. Cell. Physiol. Biochem., 2017, 43(3), 926-936.
[http://dx.doi.org/10.1159/000481643] [PMID: 28957799]
[93]
Thompson, H.L.; Burbelo, P.D.; Metcalfe, D.D. Regulation of adhesion of mouse bone marrow-derived mast cells to laminin. J. Immunol., 1990, 145(10), 3425-3431.
[PMID: 2146320]
[94]
Chen, A.; Ganor, Y.; Rahimipour, S.; Ben-Aroya, N.; Koch, Y.; Levite, M. The neuropeptides GnRH-II and GnRH-I are produced by human T cells and trigger laminin receptor gene expression, adhesion, chemotaxis and homing to specific organs. Nat. Med., 2002, 8(12), 1421-1426.
[http://dx.doi.org/10.1038/nm1202-801] [PMID: 12447356]
[95]
Simpson, E.L. Atopic dermatitis: a review of topical treatment options. Curr. Med. Res. Opin., 2010, 26(3), 633-640.
[http://dx.doi.org/10.1185/03007990903512156] [PMID: 20070141]
[96]
Kim, M.; Jung, M.; Hong, S.P.; Jeon, H.; Kim, M.J.; Cho, M.Y.; Lee, S.H.; Man, M.Q.; Elias, P.M.; Choi, E.H. Topical calcineurin inhibitors compromise stratum corneum integrity, epidermal permeability and antimicrobial barrier function. Exp. Dermatol., 2010, 19(6), 501-510.
[http://dx.doi.org/10.1111/j.1600-0625.2009.00941.x] [PMID: 19703225]
[97]
Kao, J.S.; Fluhr, J.W.; Man, M.Q.; Fowler, A.J.; Hachem, J.P.; Crumrine, D.; Ahn, S.K.; Brown, B.E.; Elias, P.M.; Feingold, K.R. Short-term glucocorticoid treatment compromises both permeability barrier homeostasis and stratum corneum integrity: inhibition of epidermal lipid synthesis accounts for functional abnormalities. J. Invest. Dermatol., 2003, 120(3), 456-464.
[http://dx.doi.org/10.1046/j.1523-1747.2003.12053.x] [PMID: 12603860]
[98]
Balmert, S.C.; Donahue, C.; Vu, J.R.; Erdos, G.; Falo, L.D., Jr; Little, S.R. In vivo induction of regulatory T cells promotes allergen tolerance and suppresses allergic contact dermatitis. J. Control. Release, 2017, 261, 223-233.
[http://dx.doi.org/10.1016/j.jconrel.2017.07.006] [PMID: 28694031]
[99]
Mehta, A.B.; Nadkarni, N.J.; Patil, S.P.; Godse, K.V.; Gautam, M.; Agarwal, S. Topical corticosteroids in dermatology. Indian J. Dermatol. Venereol. Leprol., 2016, 82(4), 371-378.
[http://dx.doi.org/10.4103/0378-6323.178903] [PMID: 27279294]
[100]
Coondoo, A.; Phiske, M.; Verma, S.; Lahiri, K. Side-effects of topical steroids: A long overdue revisit. Indian Dermatol. Online J., 2014, 5(4), 416-425.
[http://dx.doi.org/10.4103/2229-5178.142483] [PMID: 25396122]
[101]
Abraham, A.; Roga, G. Topical steroid-damaged skin. Indian J. Dermatol., 2014, 59(5), 456-459.
[http://dx.doi.org/10.4103/0019-5154.139872] [PMID: 25284849]
[102]
Hengge, U.R.; Ruzicka, T.; Schwartz, R.A.; Cork, M.J. Adverse effects of topical glucocorticosteroids. J. Am. Acad. Dermatol., 2006, 54(1), 1-15.
[http://dx.doi.org/10.1016/j.jaad.2005.01.010] [PMID: 16384751]
[103]
Rice, J.B.; White, A.G.; Scarpati, L.M.; Wan, G.; Nelson, W.W. Long-term systemic corticosteroid exposure: a systematic literature review. Clin. Ther., 2017, 39(11), 2216-2229.
[http://dx.doi.org/10.1016/j.clinthera.2017.09.011] [PMID: 29055500]
[104]
Dhar, S.; Seth, J.; Parikh, D. Systemic side-effects of topical corticosteroids. Indian J. Dermatol., 2014, 59(5), 460-464.
[http://dx.doi.org/10.4103/0019-5154.139874] [PMID: 25284850]
[105]
Levin, C.; Maibach, H.I. Topical corticosteroid-induced adrenocortical insufficiency: clinical implications. Am. J. Clin. Dermatol., 2002, 3(3), 141-147.
[http://dx.doi.org/10.2165/00128071-200203030-00001] [PMID: 11978135]
[106]
Sugita, K.; Kabashima, K.; Yoshiki, R.; Ikenouchi-Sugita, A.; Tsutsui, M.; Nakamura, J.; Yanagihara, N.; Tokura, Y. Inducible nitric oxide synthase downmodulates contact hypersensitivity by suppressing dendritic cell migration and survival. J. Invest. Dermatol., 2010, 130(2), 464-471.
[http://dx.doi.org/10.1038/jid.2009.288] [PMID: 19727121]
[107]
Singh, A.; Holvoet, S.; Mercenier, A. Dietary polyphenols in the prevention and treatment of allergic diseases. Clin. Exp. Allergy, 2011, 41(10), 1346-1359.
[http://dx.doi.org/10.1111/j.1365-2222.2011.03773.x] [PMID: 21623967]
[108]
Sur, R.; Nigam, A.; Grote, D.; Liebel, F.; Southall, M.D. Avenanthramides, polyphenols from oats, exhibit anti-inflammatory and anti-itch activity. Arch. Dermatol. Res., 2008, 300(10), 569-574.
[http://dx.doi.org/10.1007/s00403-008-0858-x] [PMID: 18461339]
[109]
Tomita, M.; Irwin, K.I.; Xie, Z.J.; Santoro, T.J. Tea pigments inhibit the production of type 1 (T(H1)) and type 2 (T(H2)) helper T cell cytokines in CD4(+) T cells. Phytother. Res., 2002, 16(1), 36-42.
[http://dx.doi.org/10.1002/ptr.834] [PMID: 11807963]
[110]
Nagano, T.; Ito, H. Diets containing pomegranate polyphenol and soy isoflavone attenuate contact hypersensitivity in mice. Biosci. Biotechnol. Biochem., 2019, 83(3), 525-530.
[http://dx.doi.org/10.1080/09168451.2018.1543013] [PMID: 30417760]
[111]
Nagano, T.; Wu, W.; Tsumura, K.; Yonemoto-Yano, H.; Kamada, T.; Haruma, K. The inhibitory effect of soybean and soybean isoflavone diets on 2,4-dinitrofluorobenzene-induced contact hypersensitivity in mice. Biosci. Biotechnol. Biochem., 2016, 80(5), 991-997.
[http://dx.doi.org/10.1080/09168451.2015.1132150] [PMID: 26836235]
[112]
Volke, A.; Rünkorg, K.; Wegener, G.; Vasar, E.; Volke, V. Dual effect of nickel on L-arginine/nitric oxide system in RAW 264.7 macrophages. Int. Immunopharmacol., 2013, 15(3), 511-516.
[http://dx.doi.org/10.1016/j.intimp.2013.01.019] [PMID: 23415871]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy