Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Nanoformulations of Coumarins and the Hybrid Molecules of Coumarins with Potential Anticancer Effects

Author(s): Mukerrem Betul Yerer*, Serkan Dayan, M. Ihsan Han, Ajay Sharma, Hardeep S. Tuli and Katrin Sak

Volume 20, Issue 15, 2020

Page: [1797 - 1816] Pages: 20

DOI: 10.2174/1871520620666200310094646

Price: $65

Abstract

Coumarins are the secondary metabolites of some plants, fungi, and bacteria. Coumarins and the hybrid molecules of coumarins are the compounds which have been widely studied for their potential anticancer effects. They belong to benzopyrone chemical class, more precisely benzo-α-pyrones, where benzene ring is fused to pyrone ring. In nature, coumarins are found in higher plants like Rutaceae and Umbelliferae and some essential oils like cinnamon bark oil, cassia leaf oil and lavender oil are also rich in coumarins. The six main classes of coumarins are furanocoumarins, dihydrofuranocoumarins, pyrano coumarins, pyrone substituted coumarins, phenylcoumarins and bicoumarins. As well as their wide range of biological activities, coumarins and the hybrid molecules of coumarins are proven to have an important role in anticancer drug development due to the fact that many of its derivatives have shown an anticancer activity on various cell lines. Osthol, imperatorin, esculetin, scopoletin, umbelliprenin, angelicine, bergamottin, limettin, metoxhalen, aurapten and isopimpinellin are some of these coumarins. This review summarizes the anticancer effects of coumarins and their hybrid molecules including the novel pharmaceutical formulations adding further information on the topic for the last ten years and basically focusing on the structureactivity relationship of these compounds in cancer.

Keywords: Coumarines, coumarine derivatives, coumarine nanoformulations, coumarine hybride molecules, anticancer effect, metabolites.

Graphical Abstract
[1]
Nurgali, K.; Jagoe, R.T.; Abalo, R. Adverse effects of cancer chemotherapy: Anything new to improve tolerance and reduce sequelae? Front. Pharmacol., 2018, 9, 245.
[http://dx.doi.org/10.3389/fphar.2018.00245 ] [PMID: 29623040]
[2]
Rayan, A.; Raiyn, J.; Falah, M. Nature is the best source of anticancer drugs: Indexing natural products for their anticancer bioactivity. PLoS One, 2017, 12(11), e0187925.
[http://dx.doi.org/10.1371/journal.pone.0187925] [PMID: 29121120]
[3]
Seca, A.M.L.; Pinto, D.C.G.A. Plant secondary metabolites as anticancer agents: successes in clinical trials and therapeutic application. Int. J. Mol. Sci., 2018, 19(1), 263.
[http://dx.doi.org/10.3390/ijms19010263 ] [PMID: 29337925]
[4]
Matos, M.J.; Santana, L.; Uriarte, E.; Abreu, O.A.; Molina, E.; Yordi, E.G. Coumarins-an important class of phytochemicals. in:Phytochemicals-Isolation, Characterisation and Role in Human Health; Rao, V., Ed.; InTech: UK, 2015, pp. 113-140.
[5]
Jain, P.; Joshi, H. Coumarin: Chemical and pharmacological profile. J. Appl. Pharm. Sci., 2012, 2(6), 236-240.
[6]
Kesarwani, K.; Gupta, R.; Mukerjee, A. Bioavailability enhancers of herbal origin: An overview. Asian Pac. J. Trop. Biomed., 2013, 3(4), 253-266.
[http://dx.doi.org/10.1016/S2221-1691(13)60060-X ] [PMID: 23620848]
[7]
Kallitsakis, M.G.; Carotti, A.; Catto, M.; Peperidou, A.; Hadjipavlou-Litina, D.J.; Litinas, K.E. Synthesis and biological evaluation of novel hybrid molecules containing purine, coumarin and isoxazoline or isoxazole moieties. Open Med. Chem. J., 2017, 11, 196-211.
[http://dx.doi.org/10.2174/1874104501711010196 ] [PMID: 29387274]
[8]
Kahveci, B.; Yılmaz, F.; Menteşe, E.; Ülker, S. Design, synthesis, and biological evaluation of coumarin–triazole hybrid molecules as potential antitumor and pancreatic lipase agents. Arch. Pharm. (Weinheim), 2017, 350(8), 1600369.
[http://dx.doi.org/10.1002/ardp.201600369] [PMID: 28543820]
[9]
Singh, H.; Singh, J.V.; Gupta, M.K.; Saxena, A.K.; Sharma, S.; Nepali, K.; Bedi, P.M.S. Triazole tethered isatin-coumarin based molecular hybrids as novel antitubulin agents: Design, synthesis, biological investigation and docking studies. Bioorg. Med. Chem. Lett., 2017, 27(17), 3974-3979.
[http://dx.doi.org/10.1016/j.bmcl.2017.07.069 ] [PMID: 28797799]
[10]
Thakur, A.; Singla, R.; Jaitak, V. Coumarins as anticancer agents: a review on synthetic strategies, mechanism of action and SAR studies. Eur. J. Med. Chem., 2015, 101, 476-495.
[http://dx.doi.org/10.1016/j.ejmech.2015.07.010 ] [PMID: 26188907]
[11]
Teiten, M-H.; Dicato, M.; Diederich, M. Hybrid curcumin compounds: a new strategy for cancer treatment. Molecules, 2014, 19(12), 20839-20863.
[http://dx.doi.org/10.3390/molecules191220839 ] [PMID: 25514225]
[12]
Piekuś-Słomka, N.; Mikstacka, R.; Ronowicz, J.; Sobiak, S. Hybrid cis-stilbene molecules: Novel anticancer agents. Int. J. Mol. Sci., 2019, 20(6), 1300.
[http://dx.doi.org/10.3390/ijms20061300 ] [PMID: 30875859]
[13]
Ansari, S.H.; Islam, F.; Sameem, M. Influence of nanotechnology on herbal drugs: A review. J. Adv. Pharm. Technol. Res., 2012, 3(3), 142-146.
[http://dx.doi.org/10.4103/2231-4040.101006 ] [PMID: 23057000]
[14]
Bonifácio, B.V.; Silva, P.B.; Ramos, M.A.; Negri, K.M.S.; Bauab, T.M.; Chorilli, M. Nanotechnology-based drug delivery systems and herbal medicines: A review. Int. J. Nanomedicine, 2014, 9, 1-15.
[PMID: 24363556]
[15]
Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.D.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnology, 2018, 16(1), 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8 ] [PMID: 30231877]
[16]
Sabt, A.; Abdelhafez, O.M.; El-Haggar, R.S.; Madkour, H.M.F.; Eldehna, W.M.; El-Khrisy, E.E.A.M.; Abdel-Rahman, M.A.; Rashed, L.A. Novel coumarin-6-sulfonamides as apoptotic anti-proliferative agents: Synthesis, in vitro biological evaluation, and QSAR studies. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 1095-1107.
[http://dx.doi.org/10.1080/14756366.2018.1477137 ] [PMID: 29944015]
[17]
Chuang, J-Y.; Huang, Y-F.; Lu, H-F.; Ho, H-C.; Yang, J-S.; Li, T-M.; Chang, N-W.; Chung, J-G. Coumarin induces cell cycle arrest and apoptosis in human cervical cancer HeLa cells through a mitochondria- and caspase-3 dependent mechanism and NF-kappaB down-regulation. In Vivo, 2007, 21(6), 1003-1009.
[PMID: 18210747]
[18]
Kimura, Y.; Sumiyoshi, M. Antitumor and antimetastatic actions of dihydroxycoumarins (esculetin or fraxetin) through the inhibition of M2 macrophage differentiation in tumor-associated macrophages and/or G1 arrest in tumor cells. Eur. J. Pharmacol., 2015, 746, 115-125.
[http://dx.doi.org/10.1016/j.ejphar.2014.10.048 ] [PMID: 25445053]
[19]
Lee, S.; Sivakumar, K.; Shin, W-S.; Xie, F.; Wang, Q. Synthesis and anti-angiogenesis activity of coumarin derivatives. Bioorg. Med. Chem. Lett., 2006, 16(17), 4596-4599.
[http://dx.doi.org/10.1016/j.bmcl.2006.06.007 ] [PMID: 16793260]
[20]
Khan, S.; Shehzad, O.; Cheng, M-S.; Li, R-J.; Kim, Y.S. Pharmacological mechanism underlying anti-inflammatory properties of two structurally divergent coumarins through the inhibition of pro-inflammatory enzymes and cytokines. J. Inflamm. (Lond.), 2015, 12(1), 47.
[http://dx.doi.org/10.1186/s12950-015-0087-y ] [PMID: 26221081]
[21]
Musa, M.A.; Cooperwood, J.S.; Khan, M.O.F. A review of coumarin derivatives in pharmacotherapy of breast cancer. Curr. Med. Chem., 2008, 15(26), 2664-2679.
[http://dx.doi.org/10.2174/092986708786242877 ] [PMID: 18991629]
[22]
Govindaiah, P.; Dumala, N.; Grover, P.; Jaya Prakash, M. Synthesis and biological evaluation of novel 4,7-dihydroxycoumarin derivatives as anticancer agents. Bioorg. Med. Chem. Lett., 2019, 29(14), 1819-1824.
[http://dx.doi.org/10.1016/j.bmcl.2019.05.008 ] [PMID: 31104996]
[23]
Bhagat, K.; Bhagat, J.; Gupta, M.K.; Singh, J.V.; Gulati, H.K.; Singh, A.; Kaur, K.; Kaur, G.; Sharma, S.; Rana, A.; Singh, H.; Sharma, S.; Singh Bedi, P.M. Design, synthesis, antimicrobial evaluation, and molecular modeling studies of novel indolinedione-coumarin molecular hybrids. ACS Omega, 2019, 4(5), 8720-8730.
[http://dx.doi.org/10.1021/acsomega.8b02481 ] [PMID: 31459961]
[24]
Goud, N.S.; Ghouse, M.S.; Vishnu, J.; Pranay, J.; Alvala, R.; Talla, V.; Qureshi, I.A.; Alvala, M. Synthesis and biological evaluation of novel heterocyclic imines linked coumarin- thiazole hybrids as anticancer agents. Anticancer. Agents Med. Chem., 2019, 19(4), 557-566.
[http://dx.doi.org/10.2174/1871520619666190207140120 ] [PMID: 30734685]
[25]
Cavalcanti, E.B.V.S.; Félix, M.B.; Scotti, L.; Scotti, M.T. Virtual screening of natural products to select compounds with potential anticancer activity. Anticancer. Agents Med. Chem., 2019, 19(2), 154-171.
[http://dx.doi.org/10.2174/1871520618666181119110934 ] [PMID: 30451120]
[26]
Karataş, M.O.; Olgundeniz, B.; Günal, S.; Özdemir, İ.; Alıcı, B.; Çetinkaya, E. Synthesis, characterization and antimicrobial activities of novel silver(I) complexes with coumarin substituted N-heterocyclic carbene ligands. Bioorg. Med. Chem., 2016, 24(4), 643-650.
[http://dx.doi.org/10.1016/j.bmc.2015.12.032 ] [PMID: 26740157]
[27]
Lacy, A.; O’Kennedy, R. Studies on coumarins and coumarin-related compounds to determine their therapeutic role in the treatment of cancer. Curr. Pharm. Des., 2004, 10(30), 3797-3811.
[http://dx.doi.org/10.2174/1381612043382693 ] [PMID: 15579072]
[28]
Karataş, M.O.; Uslu, H.; Sarı, S.; Alagöz, M.A.; Karakurt, A.; Alıcı, B.; Bilen, C.; Yavuz, E.; Gencer, N.; Arslan, O. Coumarin or benzoxazinone based novel carbonic anhydrase inhibitors: Synthesis, molecular docking and anticonvulsant studies. J. Enzyme Inhib. Med. Chem., 2016, 31(5), 760-772.
[http://dx.doi.org/10.3109/14756366.2015.1063624 ] [PMID: 26207513]
[29]
Innocenti, A.; Durdagi, S.; Doostdar, N.; Strom, T.A.; Barron, A.R.; Supuran, C.T. Nanoscale enzyme inhibitors: Fullerenes inhibit carbonic anhydrase by occluding the active site entrance. Bioorg. Med. Chem., 2010, 18(8), 2822-2828.
[http://dx.doi.org/10.1016/j.bmc.2010.03.026 ] [PMID: 20363143]
[30]
Karatas, M.O.; Alici, B.; Cakir, U.; Cetinkaya, E.; Demir, D.; Ergün, A.; Gençer, N.; Arslan, O. Synthesis and carbonic anhydrase inhibitory properties of novel coumarin derivatives. J. Enzyme Inhib. Med. Chem., 2013, 28(2), 299-304.
[http://dx.doi.org/10.3109/14756366.2012.677838 ] [PMID: 22512727]
[31]
Solarova, Z.; Kello, M.; Hamul’akova, S.; Mirossay, L.; Solar, P. Anti-cancer effect of tacrine-coumarin derivatives on diverse human and mouse cancer cell lines. Acta Chim. Slov., 2018, 65(4), 875-881.
[http://dx.doi.org/10.17344/acsi.2018.4519]
[32]
Kostova, I.; Raleva, S.; Genova, P.; Argirova, R. Structure-activity relationships of synthetic coumarins as HIV-1 inhibitors. Bioinorg. Chem. Appl., 2006, 2006, Article ID, 68274.
[http://dx.doi.org/10.1155/BCA/2006/68274 ] [PMID: 17497014]
[33]
Bedoya, L.M.; Beltrán, M.; Sancho, R.; Olmedo, D.A.; Sánchez-Palomino, S.; del Olmo, E.; López-Pérez, J.L.; Muñoz, E.; San Feliciano, A.; Alcamí, J. 4-Phenylcoumarins as HIV transcription inhibitors. Bioorg. Med. Chem. Lett., 2005, 15(20), 4447-4450.
[http://dx.doi.org/10.1016/j.bmcl.2005.07.041 ] [PMID: 16137881]
[34]
Thomas, V.; Giles, D.; Basavarajaswamy, G.P.M.; Das, A.K.; Patel, A. Coumarin derivatives as anti-inflammatory and anticancer agents. Anticancer. Agents Med. Chem., 2017, 17(3), 415-423.
[http://dx.doi.org/10.2174/1871520616666160902094739 ] [PMID: 27592545]
[35]
Kasumbwe, K.; Venugopala, K.N.; Mohanlall, V.; Odhav, B. Synthetic Mono/di-halogenated coumarin derivatives and their anticancer properties. Anticancer. Agents Med. Chem., 2017, 17(2), 276-285.
[http://dx.doi.org/10.2174/1871520616666160926112508 ] [PMID: 27671300]
[36]
Wang, Y.; Yan, W.; Chen, Q.; Huang, W.; Yang, Z.; Li, X.; Wang, X. Inhibition viral RNP and anti-inflammatory activity of coumarins against influenza virus. Biomed. Pharmacother., 2017, 87, 583-588.
[http://dx.doi.org/10.1016/j.biopha.2016.12.117 ] [PMID: 28081470]
[37]
Liu, H.; Wang, L.; Gao, H.; Qi, H.; Gao, Q.; Zhang, C. Aggregation-induced enhanced electrochemiluminescence from organic nanoparticles of donor-acceptor based coumarin derivatives. ACS Appl. Mater. Interfaces, 2017, 9(51), 44324-44331.
[http://dx.doi.org/10.1021/acsami.7b15434 ] [PMID: 29171261]
[38]
Traven, V.F.; Cheptsov, D.A.; Solovjova, N.P.; Chibisova, T.A.; Voronov, I.I.; Dolotov, S.M.; Ivanov, I.V. Photoinduced formation of the laser dye coumarin 6 from its dihydro derivatives. Dyes Pigments, 2017, 146, 159-168.
[http://dx.doi.org/10.1016/j.dyepig.2017.07.001]
[39]
Karatas, M.O.; Di Giuseppe, A.; Passarelli, V.; Alici, B.; Perez-Torrente, J.J.; Oro, L.A.; Ozdemir, I.; Castarlenas, R. Pentacoordinated Rhodium(I) complexes supported by coumarin-functionalized N-heterocyclic carbene ligands. Organometallics, 2018, 37(2), 191-202.
[http://dx.doi.org/10.1021/acs.organomet.7b00750]
[40]
Liu, X.G.; Zhang, S.S.; Jiang, C.Y.; Wu, J.Q.; Li, Q.; Wang, H. Cp*Co(III)-catalyzed annulations of 2-alkenylphenols with CO: Mild access to coumarin derivatives. Org. Lett., 2015, 17(21), 5404-5407.
[http://dx.doi.org/10.1021/acs.orglett.5b02728 ] [PMID: 26451846]
[41]
Mahdaviani, P.; Bahadorikhalili, S.; Navaei-Nigjeh, M.; Vafaei, S.Y.; Esfandyari-Manesh, M.; Abdolghaffari, A.H.; Daman, Z.; Atyabi, F.; Ghahremani, M.H.; Amini, M.; Lavasanifar, A.; Dinarvand, R. Peptide functionalized poly ethylene glycol-poly caprolactone nanomicelles for specific cabazitaxel delivery to metastatic breast cancer cells. Mater. Sci. Eng. C, 2017, 80, 301-312.
[http://dx.doi.org/10.1016/j.msec.2017.05.126 ] [PMID: 28866169]
[42]
Abdul Manaf, S.A.; Hegde, G.; Mandal, U.K.; Wui, T.W.; Roy, P. Functionalized carbon nano-scale drug delivery systems from biowaste sago bark for cancer cell imaging. Curr. Drug Deliv., 2017, 14(8), 1071-1077.
[http://dx.doi.org/10.2174/1567201813666161017130612 ] [PMID: 27745545]
[43]
Alam, N.; Qayum, A.; Kumar, A.; Khare, V.; Sharma, P.R.; Andotra, S.S.; Singh, S.K.; Koul, S.; Gupta, P.N. Improved efficacy of cisplatin in combination with a nano-formulation of pentacyclic triterpenediol. Mater. Sci. Eng. C, 2016, 68, 109-116.
[http://dx.doi.org/10.1016/j.msec.2016.05.093 ] [PMID: 27524002]
[44]
Tao, W.; Zeng, X.W.; Zhang, J.X.; Zhu, H.J.; Chang, D.F.; Zhang, X.D.; Gao, Y.F.; Tang, J.; Huang, L.Q.; Mei, L. Synthesis of cholic acid-core poly(epsilon-caprolactone-ran-lactide)-b-poly(ethylene glycol) 1000 random copolymer as a chemotherapeutic nanocarrier for liver cancer treatment. Biomater Sci-UK, 2014, 2(9), 1262-1274.
[http://dx.doi.org/10.1039/C4BM00134F]
[45]
Li, Z.; Liu, K.; Sun, P.; Mei, L.; Hao, T.; Tian, Y.; Tang, Z.; Li, L.; Chen, D. Poly(D, L-lactide-co-glycolide)/montmorillonite nanoparticles for improved oral delivery of exemestane. J. Microencapsul., 2013, 30(5), 432-440.
[http://dx.doi.org/10.3109/02652048.2012.746749 ] [PMID: 23517067]
[46]
Wang, J.; Liu, W.; Tu, Q.; Wang, J.; Song, N.; Zhang, Y.; Nie, N.; Wang, J. Folate-decorated hybrid polymeric nanoparticles for chemically and physically combined paclitaxel loading and targeted delivery. Biomacromolecules, 2011, 12(1), 228-234.
[http://dx.doi.org/10.1021/bm101206g ] [PMID: 21158381]
[47]
Paiva, A.M.; Pinto, R.A.; Teixeira, M.; Barbosa, C.M.; Lima, R.T.; Vasconcelos, M.H.; Sousa, E.; Pinto, M. Development of noncytotoxic PLGA nanoparticles to improve the effect of a new inhibitor of p53-MDM2 interaction. Int. J. Pharm., 2013, 454(1), 394-402.
[http://dx.doi.org/10.1016/j.ijpharm.2013.07.017 ] [PMID: 23856033]
[48]
Bazylińska, U.; Zieliński, W.; Kulbacka, J.; Samoć, M.; Wilk, K.A. New diamidequat-type surfactants in fabrication of long-sustained theranostic nanocapsules: Colloidal stability, drug delivery and bioimaging. Colloids Surf. B Biointerfaces, 2016, 137, 121-132.
[http://dx.doi.org/10.1016/j.colsurfb.2015.06.043 ] [PMID: 26164204]
[49]
Zhao, T.; Chen, H.; Dong, Y.; Zhang, J.; Huang, H.; Zhu, J.; Zhang, W. Paclitaxel-loaded poly(glycolide-co-ε-caprolactone)-b-D-α-tocopheryl polyethylene glycol 2000 succinate nanoparticles for lung cancer therapy. Int. J. Nanomedicine, 2013, 8, 1947-1957.
[PMID: 23696703]
[50]
Su, Y.; Hu, J.; Huang, Z.; Huang, Y.; Peng, B.; Xie, N.; Liu, H. Paclitaxel-loaded star-shaped copolymer nanoparticles for enhanced malignant melanoma chemotherapy against multidrug resistance. Drug Des. Devel. Ther., 2017, 11, 659-668.
[http://dx.doi.org/10.2147/DDDT.S127328 ] [PMID: 28293102]
[51]
Kushwah, V.; Katiyar, S.S.; Dora, C.P.; Kumar Agrawal, A.; Lamprou, D.A.; Gupta, R.C.; Jain, S. Co-delivery of docetaxel and gemcitabine by anacardic acid modified self-assembled albumin nanoparticles for effective breast cancer management. Acta Biomater., 2018, 73, 424-436.
[http://dx.doi.org/10.1016/j.actbio.2018.03.057 ] [PMID: 29649635]
[52]
Lv, J.; Qiao, W.; Li, Z. Vesicles from pH-regulated reversible gemini amino-acid surfactants as nanocapsules for delivery. Colloids Surf. B Biointerfaces, 2016, 146, 523-531.
[http://dx.doi.org/10.1016/j.colsurfb.2016.06.054 ] [PMID: 27419647]
[53]
Catti, L.; Kishida, N.; Kai, T.; Akita, M.; Yoshizawa, M. Polyaromatic nanocapsules as photoresponsive hosts in water. Nat. Commun., 2019, 10(1), 1948.
[http://dx.doi.org/10.1038/s41467-019-09928-x ] [PMID: 31019192]
[54]
Attia, M.F.; Anton, N.; Bouchaala, R.; Didier, P.; Arntz, Y.; Messaddeq, N.; Klymchenko, A.S.; Mely, Y.; Vandamme, T.F. Functionalization of nano-emulsions with an amino-silica shell at the oil-water interface. RSC Adv., 2015, 5(91), 74353-74361.
[http://dx.doi.org/10.1039/C5RA12676B]
[55]
Lee, J.H.; Kim, K.Y.; Jin, H.; Baek, Y.E.; Choi, Y.; Jung, S.H.; Lee, S.S.; Bae, J.; Jung, J.H. Self-assembled coumarin nanoparticle in aqueous solution as selective mitochondrial-targeting drug delivery system. ACS Appl. Mater. Interfaces, 2018, 10(4), 3380-3391.
[http://dx.doi.org/10.1021/acsami.7b17711 ] [PMID: 29302967]
[56]
Maiti, S.; Park, N.; Han, J.H.; Jeon, H.M.; Lee, J.H.; Bhuniya, S.; Kang, C.; Kim, J.S. Gemcitabine-coumarin-biotin conjugates: a target specific theranostic anticancer prodrug. J. Am. Chem. Soc., 2013, 135(11), 4567-4572.
[http://dx.doi.org/10.1021/ja401350x ] [PMID: 23461361]
[57]
Khaghanzadeh, N.; Samiei, A.; Ramezani, M.; Mojtahedi, Z.; Hosseinzadeh, M.; Ghaderi, A. Umbelliprenin induced production of IFN-γ and TNF-α, and reduced IL-10, IL-4, Foxp3 and TGF-β in a mouse model of lung cancer. Immunopharmacol. Immunotoxicol., 2014, 36(1), 25-32.
[http://dx.doi.org/10.3109/08923973.2013.863912 ] [PMID: 24325354]
[58]
Karthik, S.; Puvvada, N.; Kumar, B.N.; Rajput, S.; Pathak, A.; Mandal, M.; Singh, N.D. Photoresponsive coumarin-tethered multifunctional magnetic nanoparticles for release of anticancer drug. ACS Appl. Mater. Interfaces, 2013, 5(11), 5232-5238.
[http://dx.doi.org/10.1021/am401059k ] [PMID: 23730930]
[59]
Dlugosz, A.; Gach-Janczak, K.; Szymanski, J.; Deredas, D.; Krawczyk, H.; Janecki, T.; Janecka, A. Anti-Cancer properties of a new hybrid analog AD-013 combining a coumarin scaffold with an α-methylene-δ-lactone motif. Anticancer. Agents Med. Chem., 2018, 18(3), 450-457.
[60]
Lalitha, K.; Nagarajan, S. Strongly fluorescent organogels and self-assembled nanostructures from pyrene coupled coumarin derivatives: application in cell imaging. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(28), 5690-5701.
[http://dx.doi.org/10.1039/C5TB00694E]
[61]
Ji, W.; Liu, G.; Wang, F.; Zhu, Z.; Feng, C. Galactose-decorated light-responsive hydrogelator precursors for selectively killing cancer cells. Chem. Commun. (Camb.), 2016, 52(85), 12574-12577.
[http://dx.doi.org/10.1039/C6CC05707A ] [PMID: 27477036]
[62]
Gao, X.; Wang, S.; Wang, B.; Deng, S.; Liu, X.; Zhang, X.; Luo, L.; Fan, R.; Xiang, M.; You, C.; Wei, Y.; Qian, Z.; Guo, G. Improving the anti-ovarian cancer activity of docetaxel with biodegradable self-assembly micelles through various evaluations. Biomaterials, 2015, 53, 646-658.
[http://dx.doi.org/10.1016/j.biomaterials.2015.02.108 ] [PMID: 25890760]
[63]
Xu, G.; Shi, C.; Guo, D.; Wang, L.; Ling, Y.; Han, X.; Luo, J. Functional-segregated coumarin-containing telodendrimer nanocarriers for efficient delivery of SN-38 for colon cancer treatment. Acta Biomater., 2015, 21, 85-98.
[http://dx.doi.org/10.1016/j.actbio.2015.04.021 ] [PMID: 25910639]
[64]
Paolini, M.; Poul, L.; Darmon, A.; Germain, M.; Pottier, A.; Levy, L.; Vibert, E. A new opportunity for nanomedicines: Micellar cytochrome P450 inhibitors to improve drug efficacy in a cancer therapy model. Nanomedicine (Lond.), 2017, 13(5), 1715-1723.
[http://dx.doi.org/10.1016/j.nano.2017.03.006 ] [PMID: 28343019]
[65]
Aas, Z.; Babaei, E.; Hosseinpour Feizi, M.A.; Dehghan, G. Anti-proliferative and apoptotic effects of dendrosomal farnesiferol C on gastric cancer cells. Asian Pac. J. Cancer Prev., 2015, 16(13), 5325-5329.
[http://dx.doi.org/10.7314/APJCP.2015.16.13.5325 ] [PMID: 26225673]
[66]
Bhattacharyya, S.S.; Paul, S.; De, A.; Das, D.; Samadder, A.; Boujedaini, N.; Khuda-Bukhsh, A.R. Poly (lactide-co-glycolide) acid nanoencapsulation of a synthetic coumarin: Cytotoxicity and bio-distribution in mice, in cancer cell line and interaction with calf thymus DNA as target. Toxicol. Appl. Pharmacol., 2011, 253(3), 270-281.
[http://dx.doi.org/10.1016/j.taap.2011.04.010 ] [PMID: 21549736]
[67]
Gangopadhyay, M.; Singh, T.; Behara, K.K.; Karwa, S.; Ghosh, S.K.; Singh, N.D. Coumarin-containing-star-shaped 4-arm-polyethylene glycol: targeted fluorescent organic nanoparticles for dual treatment of photodynamic therapy and chemotherapy. Photochem. Photobiol. Sci., 2015, 14(7), 1329-1336.
[http://dx.doi.org/10.1039/C5PP00057B ] [PMID: 26066468]
[68]
He, G.; Yang, L.; Qian, X.; Li, J.; Yuan, Z.; Li, C. A coumarin-based fluorescence resonance energy transfer probe targeting matrix metalloproteinase-2 for the detection of cervical cancer. Int. J. Mol. Med., 2017, 39(6), 1571-1579.
[http://dx.doi.org/10.3892/ijmm.2017.2974 ] [PMID: 28487974]
[69]
Stefanello, T.F.; Couturaud, B.; Szarpak-Jankowska, A.; Fournier, D.; Louage, B.; Garcia, F.P.; Nakamura, C.V.; De Geest, B.G.; Woisel, P.; van der Sanden, B.; Auzély-Velty, R. Coumarin-containing thermoresponsive hyaluronic acid-based nanogels as delivery systems for anticancer chemotherapy. Nanoscale, 2017, 9(33), 12150-12162.
[http://dx.doi.org/10.1039/C7NR03964F ] [PMID: 28805867]
[70]
Chaudhuri, A.; Venkatesh, Y.; Das, J.; Behara, K.K.; Mandal, S.; Maiti, T.K.; Singh, N.P. Squaric acid-coumarin-chlorambucil: Photoresponsive single-component fluorescent organic nanoconjugates for self-monitored therapeutics. ACS Appl. Nano Mater., 2018, 1(11), 6312-6319.
[http://dx.doi.org/10.1021/acsanm.8b01533]
[71]
Khorramizadeh, M.; Esmail-Nazari, Z.; Zarei-Ghaane, Z.; Shakibaie, M.; Mollazadeh-Moghaddam, K.; Iranshahi, M.; Shahverdi, A. Umbelliprenin-coated Fe3O4 magnetite nanoparticles: Antiproliferation evaluation on human Fibrosarcoma cell line (HT-1080). Mater. Sci. Eng. C, 2010, 30(7), 1038-1042.
[http://dx.doi.org/10.1016/j.msec.2010.05.005]
[72]
Liu, P.Y.; Chang, D.C.; Lo, Y.S.; Hsi, Y.T.; Lin, C.C.; Chuang, Y.C.; Lin, S.H.; Hsieh, M.J.; Chen, M.K. Osthole induces human nasopharyngeal cancer cells apoptosis through Fas-Fas ligand and mitochondrial pathway. Environ. Toxicol., 2018, 33(4), 446-453.
[http://dx.doi.org/10.1002/tox.22530 ] [PMID: 29319219]
[73]
Xu, X-M.; Zhang, Y.; Qu, D.; Feng, X-W.; Chen, Y.; Zhao, L. Osthole suppresses migration and invasion of A549 human lung cancer cells through inhibition of matrix metalloproteinase-2 and matrix metallopeptidase-9 in vitro. Mol. Med. Rep., 2012, 6(5), 1018-1022.
[http://dx.doi.org/10.3892/mmr.2012.1044 ] [PMID: 22923177]
[74]
Le Zou, T.; Wang, H.F.; Ren, T.; Shao, Z.Y.; Yuan, R.Y.; Gao, Y.; Zhang, Y.J.; Wang, X.A.; Liu, Y.B. Osthole inhibits the progression of human gallbladder cancer cells through JAK/STAT3 signal pathway both in vitro and in vivo. Anticancer Drugs, 2019, 30(10), 1022-1030.
[http://dx.doi.org/10.1097/CAD.0000000000000812 ] [PMID: 31283543]
[75]
Ju, A.-H.; Gong, W.-J.; Su, Y.; Mou, Z.-B. Imperatorin shows selective antitumor effects in SGC-7901 human gastric adenocarcinoma cells by inducing apoptosis, cell cycle arrest and targeting PI3K/Akt/m-TOR signalling pathway. J. BU ON. Offic. J. Balkan Union Oncol., 2017, 22(6), 1471-1476.
[76]
Mi, C.; Ma, J.; Wang, K.S.; Zuo, H.X.; Wang, Z.; Li, M.Y.; Piao, L.X.; Xu, G.H.; Li, X.; Quan, Z.S.; Jin, X. Imperatorin suppresses proliferation and angiogenesis of human colon cancer cell by targeting HIF-1α via the mTOR/p70S6K/4E-BP1 and MAPK pathways. J. Ethnopharmacol., 2017, 203, 27-38.
[http://dx.doi.org/10.1016/j.jep.2017.03.033 ] [PMID: 28341244]
[77]
Kawaii, S.; Tomono, Y.; Ogawa, K.; Sugiura, M.; Yano, M.; Yoshizawa, Y.; Ito, C.; Furukawa, H. Antiproliferative effect of isopentenylated coumarins on several cancer cell lines. Anticancer Res., 2001, 21(3B), 1905-1911.
[PMID: 11497276]
[78]
Żamojć, K.; Zdrowowicz, M.; Hać, A.; Witwicki, M.; Rudnicki-Velasquez, P.B.; Wyrzykowski, D.; Wiczk, W.; Chmurzyński, L. Dihydroxy-substituted coumarins as fluorescent probes for nanomolar-level detection of the 4-amino-TEMPO spin label. Int. J. Mol. Sci., 2019, 20(15), 3802.
[http://dx.doi.org/10.3390/ijms20153802 ] [PMID: 31382639]
[79]
Gong, J.; Zhang, W.-G.; Feng, X.-F.; Shao, M.-J.; Xing, C. Aesculetin (6, 7-dihydroxycoumarin) exhibits potent and se-lective antitumor activity in human acute myeloid leukemia cells (THP-1) via induction of mitochondrial mediated apop-tosis and cancer cell migration inhibition. J. BU ON. Offic. J. Balkan Union Oncol., 2017, 22(6), 1563-1569.
[80]
Arora, R.; Sawney, S.; Saini, V.; Steffi, C.; Tiwari, M.; Saluja, D. Esculetin induces antiproliferative and apoptotic response in pancreatic cancer cells by directly binding to KEAP1. Mol. Cancer, 2016, 15(1), 64.
[http://dx.doi.org/10.1186/s12943-016-0550-2 ] [PMID: 27756327]
[81]
Tian, Q.; Wang, L.; Sun, X.; Zeng, F.; Pan, Q.; Xue, M. Scopoletin exerts anticancer effects on human cervical cancer cell lines by triggering apoptosis, cell cycle arrest, inhibition of cell invasion and PI3K/AKT signalling pathway. J. BU ON. Offic. J. Balkan Union Oncol., 2019, 24(3), 997-1002.
[82]
Tabana, Y.M.; Hassan, L.E.A.; Ahamed, M.B.K.; Dahham, S.S.; Iqbal, M.A.; Saeed, M.A.; Khan, M.S.S.; Sandai, D.; Majid, A.S.A.; Oon, C.E.; Majid, A.M. Scopoletin, an active principle of tree tobacco (Nicotiana glauca) inhibits human tumor vascularization in xenograft models and modulates ERK1, VEGF-A, and FGF-2 in computer model. Microvasc. Res., 2016, 107, 17-33.
[http://dx.doi.org/10.1016/j.mvr.2016.04.009 ] [PMID: 27133199]
[83]
Rahman, M.A.; Kim, N-H.; Yang, H.; Huh, S-O. Angelicin induces apoptosis through intrinsic caspase-dependent pathway in human SH-SY5Y neuroblastoma cells. Mol. Cell. Biochem., 2012, 369(1-2), 95-104.
[http://dx.doi.org/10.1007/s11010-012-1372-1 ] [PMID: 22766766]
[84]
Wu, H-J.; Wu, H-B.; Zhao, Y-Q.; Chen, L-J.; Zou, H-Z. Bergamottin isolated from Citrus bergamia exerts in vitro and in vivo antitumor activity in lung adenocarcinoma through the induction of apoptosis, cell cycle arrest, mitochondrial membrane potential loss and inhibition of cell migration and invasion. Oncol. Rep., 2016, 36(1), 324-332.
[http://dx.doi.org/10.3892/or.2016.4833 ] [PMID: 27222242]
[85]
Gismondi, A.; Nanni, V.; Reina, G.; Orlanducci, S.; Terranova, M.L.; Canini, A. Nanodiamonds coupled with 5,7-dimethoxycoumarin, a plant bioactive metabolite, interfere with the mitotic process in B16F10 cells altering the actin organization. Int. J. Nanomedicine, 2016, 11, 557-574.
[http://dx.doi.org/10.2147/IJN.S96614 ] [PMID: 26893562]
[86]
Wu, J-Y.; Li, Y-J.; Liu, T-T.; Ou, G.; Hu, X-B.; Tang, T-T.; Wang, J-M.; Liu, X-Y.; Xiang, D-X. Microemulsions vs chitosan derivative-coated microemulsions for dermal delivery of 8-methoxypsoralen. Int. J. Nanomedicine, 2019, 14, 2327-2340.
[http://dx.doi.org/10.2147/IJN.S191940 ] [PMID: 31015760]
[87]
La, V.D.; Zhao, L.; Epifano, F.; Genovese, S.; Grenier, D. Anti-inflammatory and wound healing potential of citrus auraptene. J. Med. Food, 2013, 16(10), 961-964.
[http://dx.doi.org/10.1089/jmf.2013.0029 ] [PMID: 24070132]
[88]
Yang, X.W.; Xu, B.; Ran, F.X.; Wang, R.Q.; Wu, J.; Cui, J.R. Inhibitory effects of 11 coumarin compounds against growth of human bladder carcinoma cell line E-J in vitro. J. Chin. Integr. Med., 2007, 5(1), 56-60.
[http://dx.doi.org/10.3736/jcim20070111 ] [PMID: 17214937]
[89]
Dong, L.; Xu, W-W.; Li, H.; Bi, K-H. In vitro and in vivo anticancer effects of marmesin in U937 human leukemia cells are mediated via mitochondrial-mediated apoptosis, cell cycle arrest, and inhibition of cancer cell migration. Oncol. Rep., 2018, 39(2), 597-602.
[PMID: 29251335]
[90]
Suhaimi, S.A.; Hong, S.L.; Abdul Malek, S.N. Rutamarin, an active constituent from Ruta angustifolia Pers., induced apoptotic cell death in the HT29 colon adenocarcinoma cell line. Pharmacogn. Mag., 2017, 13(Suppl. 2), S179-S188.
[http://dx.doi.org/10.4103/pm.pm_432_16 ] [PMID: 28808378]
[91]
Fakai, M.I.; Karsani, S.A.; Malek, S.N.A. Chalepin and rutamarin isolated from Ruta angustifolia inhibit cell growth in selected cancer cell lines (MCF7, MDA-MB-231, HT29, AND HCT116). J. Inform., 2017, 2(5), 8-17.
[92]
Fakai, M.I.; Abd Malek, S.N.; Karsani, S.A. Induction of apoptosis by chalepin through phosphatidylserine externalisations and DNA fragmentation in breast cancer cells (MCF7). Life Sci., 2019, 220, 186-193.
[http://dx.doi.org/10.1016/j.lfs.2019.01.029 ] [PMID: 30682342]
[93]
Richardson, J.S.M.; Sethi, G.; Lee, G.S.; Malek, S.N.A. Chalepin: Isolated from Ruta angustifolia L. Pers induces mitochondrial mediated apoptosis in lung carcinoma cells. BMC Complement. Altern. Med., 2016, 16(1), 389.
[http://dx.doi.org/10.1186/s12906-016-1368-6 ] [PMID: 27729078]
[94]
Richardson, J.S.M.; Aminudin, N.; Abd Malek, S.N. Chalepin: A compound from Ruta angustifolia L. pers exhibits cell cycle arrest at S phase, suppresses nuclear factor-kappa B (NF-κB) pathway, signal transducer and activation of transcription 3 (STAT3) phosphorylation and extrinsic apoptotic pathway in non-small cell lung cancer carcinoma (A549). Pharmacogn. Mag., 2017, 13(Suppl. 3), S489-S498.
[http://dx.doi.org/10.4103/pm.pm_13_17 ] [PMID: 29142404]
[95]
Kang, J.I.; Hong, J-Y.; Choi, J.S.; Lee, S.K. Columbianadin inhibits cell proliferation by inducing apoptosis and necroptosis in HCT116 colon cancer cells. Biomol. Ther. (Seoul), 2016, 24(3), 320-327.
[http://dx.doi.org/10.4062/biomolther.2015.145 ] [PMID: 27098859]
[96]
Lei, P.; Liao, C.; Chen, J.; Zhou, M. In vitro and in vivo growth inhibition of human leukemia cells by Nodakenetin are mediated via mitochondrial apoptosis, cell cycle arrest and inhibition of cell migration and invasion. J. BU ON. Offic. J. Balkan Union Oncol., 2019, 24(3), 1219-1224.
[97]
Znati, M.; Debbabi, M.; Romdhane, A.; Ben Jannet, H.; Bouajila, J. Synthesis of new anticancer and anti-inflammatory isoxazolines and aziridines from the natural (-)-deltoin. J. Pharm. Pharmacol., 2018, 70(12), 1700-1712.
[http://dx.doi.org/10.1111/jphp.13013 ] [PMID: 30229910]
[98]
Ben Salem, S.; Jabrane, A.; Harzallah-Skhiri, F.; Ben Jannet, H. New bioactive dihydrofuranocoumarins from the roots of the Tunisian Ferula lutea (Poir.). Maire. Bioorg. Med. Chem. Lett., 2013, 23(14), 4248-4252.
[http://dx.doi.org/10.1016/j.bmcl.2013.04.081 ] [PMID: 23746477]
[99]
He, F.; Wang, M.; Gao, M.; Zhao, M.; Bai, Y.; Zhao, C. Chemical composition and biological activities of Gerbera anandria. Molecules, 2014, 19(4), 4046-4057.
[http://dx.doi.org/10.3390/molecules19044046 ] [PMID: 24699147]
[100]
Lü, J.; Zhang, J.; Li, L.; Jiang, C.; Xing, C. Cancer chemoprevention with Korean Angelica: Active compounds, pharmacokinetics, and human translational considerations. Curr. Pharmacol. Rep., 2015, 1(6), 373-381.
[http://dx.doi.org/10.1007/s40495-015-0033-y ] [PMID: 26623248]
[101]
Zhang, J.; Li, L.; Jiang, C.; Xing, C.; Kim, S-H.; Lu, J. Anti-Cancer and other bioactivities of Korean Angelica gigas Nakai (AGN) and its major pyranocoumarin compounds. Anticancer. Agents Med. Chem., 2012, 12(10), 1239-1254.
[102]
Reddy, C.S.; Kim, S.C.; Hur, M.; Kim, Y.B.; Park, C.G.; Lee, W.M.; Jang, J.K.; Koo, S.C. Natural Korean medicine dang-gui: Biosynthesis, effective extraction and formulations of major active pyranocoumarins, their molecular action mechanism in cancer, and other biological activities. Molecules, 2017, 22(12), 2170.
[http://dx.doi.org/10.3390/molecules22122170 ] [PMID: 29215592]
[103]
Tang, S-N.; Zhang, J.; Wu, W.; Jiang, P.; Puppala, M.; Zhang, Y.; Xing, C.; Kim, S-H.; Jiang, C.; Lü, J. Chemopreventive effects of korean angelica versus its major pyranocoumarins on two lineages of transgenic adenocarcinoma of mouse prostate carcinogenesis. Cancer Prev. Res. (Phila.), 2015, 8(9), 835-844.
[http://dx.doi.org/10.1158/1940-6207.CAPR-15-0051 ] [PMID: 26116406]
[104]
Rasul, A.; Khan, M.; Yu, B.; Ma, T.; Yang, H. Xanthoxyletin, a coumarin induces S phase arrest and apoptosis in human gastric adenocarcinoma SGC-7901 cells. Asian Pac. J. Cancer Prev., 2011, 12(5), 1219-1223.
[PMID: 21875271]
[105]
Lee, J.; Lee, Y.J.; Kim, J.; Bang, O-S. Pyranocoumarins from root extracts of Peucedanum praeruptorum Dunn with multidrug resistance reversal and anti-inflammatory activities. Molecules, 2015, 20(12), 20967-20978.
[http://dx.doi.org/10.3390/molecules201219738 ] [PMID: 26610461]
[106]
Wu, M-H.; Lin, C-L.; Chiou, H-L.; Yang, S-F.; Lin, C-Y.; Liu, C-J.; Hsieh, Y-H. Praeruptorin A inhibits human cervical cancer cell growth and invasion by suppressing MMP-2 expression and ERK1/2 signaling. Int. J. Mol. Sci., 2017, 19(1), 10.
[http://dx.doi.org/10.3390/ijms19010010 ] [PMID: 29267213]
[107]
Liang, T.; Yue, W.; Li, Q. Chemopreventive effects of Peucedanum praeruptorum DUNN and its major constituents on SGC7901 gastric cancer cells. Molecules, 2010, 15(11), 8060-8071.
[http://dx.doi.org/10.3390/molecules15118060 ] [PMID: 21063269]
[108]
Kim, J.; Kim, H-Y.; Hong, S.; Shin, S.; Kim, Y.A.; Kim, N.S.; Bang, O-S. A new herbal formula BP10A exerted an antitumor effect and enhanced anticancer effect of irinotecan and oxaliplatin in the colon cancer PDTX model. Biomed. Pharmacother., 2019, 116, 108987.
[http://dx.doi.org/10.1016/j.biopha.2019.108987] [PMID: 31112870]
[109]
Jun, N.J.; Kim, S.-C.; Song, E.-Y.; Jang, K.C.; Lee, D.S.; Cho, S.K. Isolation of anticancer compounds from Peucedanum japonicum Thunb. Roots., 2014, 27(3), 215-222.
[110]
Jung, S.; Moon, H-I.; Lee, B.S.; Kim, S.; Quynh, N.T.N.; Yu, J.; Le, D.T.; Sandag, Z.; Lee, H.; Lee, H.; Anh, N.H.; Yang, Y.; Lim, J.S.; Kim, K.I.; Lee, M.S. Anti-cancerous effect of cis-khellactone from Angelica amurensis through the induction of three programmed cell deaths. Oncotarget, 2018, 9(24), 16744-16757.
[http://dx.doi.org/10.18632/oncotarget.24686 ] [PMID: 29682182]
[111]
Arbab, I.A.; Looi, C.Y.; Abdul, A.B.; Cheah, F.K.; Wong, W.F.; Sukari, M.A.; Abdullah, R.; Mohan, S.; Syam, S.; Arya, A. Dentatin induces apoptosis in prostate cancer cells via Bcl-2, Bcl-xL, Survivin downregulation, caspase-9,-3/7 activation, and NF-κB inhibition. Evid.-Based Complement. Altern. Med. 2012. 2012, Article ID 856029.
[112]
Sharif, N.M.; Mustahil, N.; Noor, N.M.; Sukari, M.; Rahmani, M.; Taufiq-Yap, Y.; Ee, G. Cytotoxic constituents of Clausena excavata. Afr. J. Biotechnol., 2011, 10(72), 16337-16341.
[113]
Yao, G-D.; Cheng, Z-Y.; Shang, X-Y.; Gao, P-Y.; Huang, X-X.; Song, S-J. Coumarins from the bark of Juglans mandshurica exhibited anti-hepatoma activities via inducing apoptosis. J. Asian Nat. Prod. Res., 2017, 19(11), 1134-1142.
[http://dx.doi.org/10.1080/10286020.2017.1292256 ] [PMID: 28276763]
[114]
Chun, J.; Kim, J.; Kim, Y.S. 3′, 4′-Disenecioylkhellactone from Peucedanum japonicum Thunb. induces apoptosis mediated by inhibiting STAT3 signaling in human gastric cancer cells. Korean J. Pharmacogn., 2018, 49(3), 225-230.
[115]
Maleki, D.; Kyoomehr, P.; Rajabi, A.; Amin, G.; Azizi, E. Cytotoxic activity of Ammi visnaga (L.) Lam. against T47D (breast ductal carcinoma) cell line. North Khorasan Univ. Med. Sci. 2012.http://journals.nkums.ac.ir/index.php/ndnkh/article/viewFile/292/472 2. Accessed February 27, 2017.
[116]
Shen, X.; Chen, G.; Zhu, G.; Cai, J.; Wang, L.; Hu, Y.; Fong, W.F. 3′-O, 4′-O-aromatic acyl substituted 7,8-pyranocoumarins: a new class of P-glycoprotein modulators. J. Pharm. Pharmacol., 2012, 64(1), 90-100.
[http://dx.doi.org/10.1111/j.2042-7158.2011.01378.x ] [PMID: 22150676]
[117]
Kathuria, A.; Jalal, S.; Tiwari, R.; Shirazi, A.N.; Gupta, S.; Kumar, S.; Parang, K.; Sharma, S.K. Substituted coumarin derivatives: Synthesis and evaluation of antiproliferative and Src kinase inhibitory activities. Chem. Biol. Interface., 2011, 1, 279-296.
[118]
Ren, L.; Du, X.; Hu, M.; Yan, C.; Liang, T.; Li, Q. Design, synthesis and antitumor activity of novel 4-methyl-(3‘S,4’S)-cis-khellactone derivatives. Molecules, 2013, 18(4), 4158-4169.
[http://dx.doi.org/10.3390/molecules18044158 ] [PMID: 23567363]
[119]
Jóźwiak, M.; Struga, M.; Roszkowski, P.; Filipek, A.; Nowicka, G.; Olejarz, W. Anticancer effects of alloxanthoxyletin and fatty acids esters - In vitro study on cancer HTB-140 and A549 cells. Biomed. Pharmacother., 2019, 110, 618-630.
[http://dx.doi.org/10.1016/j.biopha.2018.12.005 ] [PMID: 30544062]
[120]
Ostrowska, K.; Olejarz, W.; Wrzosek, M.; Głuszko, A.; Nowicka, G.; Szczepański, M.; Materek, I.B.; Kozioł, A.E.; Struga, M. Anticancer effects of O-aminoalkyl derivatives of alloxanthoxyletin and seselin. Biomed. Pharmacother., 2017, 95, 1412-1424.
[http://dx.doi.org/10.1016/j.biopha.2017.09.050 ] [PMID: 28946189]
[121]
Shi, W.; Zhang, J.; Bao, N.; Guan, F.; Chen, L.; Sun, J. Design, synthesis, and cytotoxic evaluation of novel scopoletin derivatives. Chem. Biol. Drug Des., 2018, 91(2), 641-646.
[http://dx.doi.org/10.1111/cbdd.13120 ] [PMID: 29052945]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy