Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Neuro-Clinical Signatures of Language Impairments: A Theoretical Framework for Function-to-structure Mapping in Clinics

Author(s): Ferath Kherif* and Sandrine Muller

Volume 20, Issue 9, 2020

Page: [800 - 811] Pages: 12

DOI: 10.2174/1568026620666200302111130

Price: $65

Abstract

In the past decades, neuroscientists and clinicians have collected a considerable amount of data and drastically increased our knowledge about the mapping of language in the brain. The emerging picture from the accumulated knowledge is that there are complex and combinatorial relationships between language functions and anatomical brain regions. Understanding the underlying principles of this complex mapping is of paramount importance for the identification of the brain signature of language and Neuro-Clinical signatures that explain language impairments and predict language recovery after stroke. We review recent attempts to addresses this question of language-brain mapping. We introduce the different concepts of mapping (from diffeomorphic one-to-one mapping to many-to-many mapping). We build those different forms of mapping to derive a theoretical framework where the current principles of brain architectures including redundancy, degeneracy, pluri-potentiality and bow-tie network are described.

Keywords: Neuro-clinical signatures, Function-to-structure Mapping, Language impairments, Functional neuroimaging, Stroke, Theoretical framework, Brain structure-functions, Biological signatures.

« Previous
Graphical Abstract
[1]
Alexander, M.P.; Naeser, M.A.; Palumbo, C. Broca’s area aphasias: aphasia after lesions including the frontal operculum. Neurology, 1990, 40(2), 353-362.
[http://dx.doi.org/10.1212/WNL.40.2.353] [PMID: 2300260]
[2]
Mohr, J.P.; Pessin, M.S.; Finkelstein, S.; Funkenstein, H.H.; Duncan, G.W.; Davis, K.R. Broca aphasia: pathologic and clinical. Neurology, 1978, 28(4), 311-324.
[http://dx.doi.org/10.1212/WNL.28.4.311] [PMID: 565019]
[3]
Acheson, D.J.; Hamidi, M.; Binder, J.R.; Postle, B.R. A common neural substrate for language production and verbal working memory. J. Cogn. Neurosci., 2011, 23(6), 1358-1367.
[http://dx.doi.org/10.1162/jocn.2010.21519] [PMID: 20617889]
[4]
Bauer, P.R.; Reitsma, J.B.; Houweling, B.M.; Ferrier, C.H.; Ramsey, N.F. Can fMRI safely replace the Wada test for preoperative assessment of language lateralisation? A meta-analysis and systematic review. J. Neurol. Neurosurg. Psychiatry, 2014, 85(5), 581-588.
[http://dx.doi.org/10.1136/jnnp-2013-305659] [PMID: 23986313]
[5]
Binder, J.R. Neuroanatomy of language processing studied with functional MRI. Clin. Neurosci., 1997, 4(2), 87-94.
[PMID: 9059758]
[6]
Chai, L.R.; Mattar, M.G.; Blank, I.A.; Fedorenko, E.; Bassett, D.S. Functional Network Dynamics of the Language System. Cereb. Cortex, 2016, 26(11), 4148-4159.
[http://dx.doi.org/10.1093/cercor/bhw238] [PMID: 27550868]
[7]
Chee, M.W.L.; O’Craven, K.M.; Bergida, R.; Rosen, B.R.; Savoy, R.L. Auditory and visual word processing studied with fMRI. Hum. Brain Mapp., 1999, 7(1), 15-28.
[http://dx.doi.org/10.1002/(SICI)1097-0193(1999)7:1<15:AID-HBM2>3.0.CO;2-6] [PMID: 9882087]
[8]
Edwards, E.; Nagarajan, S.S.; Dalal, S.S.; Canolty, R.T.; Kirsch, H.E.; Barbaro, N.M.; Knight, R.T. Spatiotemporal imaging of cortical activation during verb generation and picture naming. Neuroimage, 2010, 50(1), 291-301.
[http://dx.doi.org/10.1016/j.neuroimage.2009.12.035] [PMID: 20026224]
[9]
Fedorenko, E.; Duncan, J.; Kanwisher, N. Language-selective and domain-general regions lie side by side within Broca’s area. Curr. Biol., 2012, 22(21), 2059-2062.
[http://dx.doi.org/10.1016/j.cub.2012.09.011] [PMID: 23063434]
[10]
Fedorenko, E.; Thompson-Schill, S.L. Reworking the language network. Trends Cogn. Sci. (Regul. Ed.), 2014, 18(3), 120-126.
[http://dx.doi.org/10.1016/j.tics.2013.12.006] [PMID: 24440115]
[11]
Ferstl, E.C.; Neumann, J.; Bogler, C.; von Cramon, D.Y. The extended language network: a meta-analysis of neuroimaging studies on text comprehension. Hum. Brain Mapp., 2008, 29(5), 581-593.
[http://dx.doi.org/10.1002/hbm.20422] [PMID: 17557297]
[12]
Harrington, G.S.; Buonocore, M.H.; Farias, S.T. Intrasubject reproducibility of functional MR imaging activation in language tasks. AJNR Am. J. Neuroradiol., 2006, 27(4), 938-944.
[PMID: 16611797]
[13]
Heim, S.; Opitz, B.; Friederici, A.D. Distributed cortical networks for syntax processing: Broca’s area as the common denominator. Brain Lang., 2003, 85(3), 402-408.
[http://dx.doi.org/10.1016/S0093-934X(03)00068-3] [PMID: 12744952]
[14]
Lidzba, K.; Schwilling, E.; Grodd, W.; Krägeloh-Mann, I.; Wilke, M. Language comprehension vs. language production: age effects on fMRI activation. Brain Lang., 2011, 119(1), 6-15.
[http://dx.doi.org/10.1016/j.bandl.2011.02.003] [PMID: 21450336]
[15]
Meyler, A.; Keller, T.A.; Cherkassky, V.L.; Lee, D.; Hoeft, F.; Whitfield-Gabrieli, S.; Gabrieli, J.D.E.; Just, M.A. Brain activation during sentence comprehension among good and poor readers. Cereb. Cortex, 2007, 17(12), 2780-2787.
[http://dx.doi.org/10.1093/cercor/bhm006] [PMID: 17317678]
[16]
Pugh, K.R.; Shaywitz, B.A.; Shaywitz, S.E.; Constable, R.T.; Skudlarski, P.; Fulbright, R.K.; Bronen, R.A.; Shankweiler, D.P.; Katz, L.; Fletcher, J.M.; Gore, J.C. Cerebral organization of component processes in reading. Brain, 1996, 119(Pt 4), 1221-1238.
[http://dx.doi.org/10.1093/brain/119.4.1221] [PMID: 8813285]
[17]
Rogalsky, C.; Matchin, W.; Hickok, G. Broca’s area, sentence comprehension, and working memory: an fMRI Study. Front. Hum. Neurosci., 2008, 2, 14.
[http://dx.doi.org/10.3389/neuro.09.014.2008] [PMID: 18958214]
[18]
Saur, D.; Kreher, B.W.; Schnell, S.; Kümmerer, D.; Kellmeyer, P.; Vry, M.S.; Umarova, R.; Musso, M.; Glauche, V.; Abel, S.; Huber, W.; Rijntjes, M.; Hennig, J.; Weiller, C. Ventral and dorsal pathways for language. Proc. Natl. Acad. Sci. USA, 2008, 105(46), 18035-18040.
[http://dx.doi.org/10.1073/pnas.0805234105] [PMID: 19004769]
[19]
Saur, D.; Lange, R.; Baumgaertner, A.; Schraknepper, V.; Willmes, K.; Rijntjes, M.; Weiller, C. Dynamics of language reorganization after stroke. Brain, 2006, 129(Pt 6), 1371-1384.
[http://dx.doi.org/10.1093/brain/awl090] [PMID: 16638796]
[20]
Tzourio-Mazoyer, N.; Josse, G.; Crivello, F.; Mazoyer, B. Interindividual variability in the hemispheric organization for speech. Neuroimage, 2004, 21(1), 422-435.
[http://dx.doi.org/10.1016/j.neuroimage.2003.08.032] [PMID: 14741679]
[21]
Adank, P.; Davis, M.H.; Hagoort, P. Neural dissociation in processing noise and accent in spoken language comprehension. Neuropsychologia, 2012, 50(1), 77-84.
[http://dx.doi.org/10.1016/j.neuropsychologia.2011.10.024] [PMID: 22085863]
[22]
Beaucousin, V.; Lacheret, A.; Turbelin, M.R.; Morel, M.; Mazoyer, B.; Tzourio-Mazoyer, N. FMRI study of emotional speech comprehension. Cereb. Cortex, 2007, 17(2), 339-352.
[http://dx.doi.org/10.1093/cercor/bhj151] [PMID: 16525130]
[23]
Blank, S.C.; Bird, H.; Turkheimer, F.; Wise, R.J.S. Speech production after stroke: the role of the right pars opercularis. Ann. Neurol., 2003, 54(3), 310-320.
[http://dx.doi.org/10.1002/ana.10656] [PMID: 12953263]
[24]
Davis, M.H.; Johnsrude, I.S. Hierarchical processing in spoken language comprehension. J. Neurosci., 2003, 23(8), 3423-3431.
[http://dx.doi.org/10.1523/JNEUROSCI.23-08-03423.2003] [PMID: 12716950]
[25]
Davis, M.H.; Johnsrude, I.S. Hearing speech sounds: top-down influences on the interface between audition and speech perception. Hear. Res., 2007, 229(1-2), 132-147.
[http://dx.doi.org/10.1016/j.heares.2007.01.014] [PMID: 17317056]
[26]
Fridriksson, J.; Yourganov, G.; Bonilha, L.; Basilakos, A.; Den Ouden, D.B.; Rorden, C. Revealing the dual streams of speech processing. Proc. Natl. Acad. Sci. USA, 2016, 113(52), 15108-15113.
[http://dx.doi.org/10.1073/pnas.1614038114] [PMID: 27956600]
[27]
Friederici, A.D. Towards a neural basis of auditory sentence processing. Trends Cogn. Sci. (Regul. Ed.), 2002, 6(2), 78-84.
[http://dx.doi.org/10.1016/S1364-6613(00)01839-8] [PMID: 15866191]
[28]
Gentilucci, M.; Dalla Volta, R. Spoken language and arm gestures are controlled by the same motor control system. Q J Exp Psychol (Hove), 2008, 61(6), 944-957.
[http://dx.doi.org/10.1080/17470210701625683] [PMID: 18470824]
[29]
Hickok, G. Functional anatomy of speech perception and speech production: psycholinguistic implications. J. Psycholinguist. Res., 2001, 30(3), 225-235.
[http://dx.doi.org/10.1023/A:1010486816667] [PMID: 11523272]
[30]
Hickok, G.; Poeppel, D. The cortical organization of speech processing. Nat. Rev. Neurosci., 2007, 8(5), 393-402.
[http://dx.doi.org/10.1038/nrn2113] [PMID: 17431404]
[31]
Lattner, S.; Meyer, M.E.; Friederici, A.D. Voice perception: Sex, pitch, and the right hemisphere. Hum. Brain Mapp., 2005, 24(1), 11-20.
[http://dx.doi.org/10.1002/hbm.20065] [PMID: 15593269]
[32]
LoCasto, P.C.; Krebs-Noble, D.; Gullapalli, R.P.; Burton, M.W. An fMRI investigation of speech and tone segmentation. J. Cogn. Neurosci., 2004, 16(9), 1612-1624.
[http://dx.doi.org/10.1162/0898929042568433] [PMID: 15601523]
[33]
Meyer, M.; Alter, K.; Friederici, A.D.; Lohmann, G.; von Cramon, D.Y. FMRI reveals brain regions mediating slow prosodic modulations in spoken sentences. Hum. Brain Mapp., 2002, 17(2), 73-88.
[http://dx.doi.org/10.1002/hbm.10042] [PMID: 12353242]
[34]
Meyer, M.; Zysset, S.; von Cramon, D.Y.; Alter, K. Distinct fMRI responses to laughter, speech, and sounds along the human peri-sylvian cortex. Brain Res. Cogn. Brain Res., 2005, 24(2), 291-306.
[http://dx.doi.org/10.1016/j.cogbrainres.2005.02.008] [PMID: 15993767]
[35]
Peelle, J.E.; Johnsrude, I.S.; Davis, M.H. Hierarchical processing for speech in human auditory cortex and beyond. Front. Hum. Neurosci., 2010, 4, 51.
[http://dx.doi.org/10.3389/fnhum.2010.00051] [PMID: 20661456]
[36]
Rothermich, K.; Kotz, S.A. Predictions in speech comprehension: fMRI evidence on the meter-semantic interface. Neuroimage, 2013, 70, 89-100.
[http://dx.doi.org/10.1016/j.neuroimage.2012.12.013] [PMID: 23291188]
[37]
Schirmer, A.; Kotz, S.A. Beyond the right hemisphere: brain mechanisms mediating vocal emotional processing. Trends Cogn. Sci. (Regul. Ed.), 2006, 10(1), 24-30.
[http://dx.doi.org/10.1016/j.tics.2005.11.009] [PMID: 16321562]
[38]
Schmidt, C.F.; Zaehle, T.; Meyer, M.; Geiser, E.; Boesiger, P.; Jancke, L. Silent and continuous fMRI scanning differentially modulate activation in an auditory language comprehension task. Hum. Brain Mapp., 2008, 29(1), 46-56.
[http://dx.doi.org/10.1002/hbm.20372] [PMID: 17318832]
[39]
Scott, S.K.; McGettigan, C. The neural processing of masked speech. Hear. Res., 2013, 303, 58-66.
[http://dx.doi.org/10.1016/j.heares.2013.05.001] [PMID: 23685149]
[40]
Scott, S.K.; Rosen, S.; Wickham, L.; Wise, R.J.S. A positron emission tomography study of the neural basis of informational and energetic masking effects in speech perception. J. Acoust. Soc. Am., 2004, 115(2), 813-821.
[http://dx.doi.org/10.1121/1.1639336] [PMID: 15000192]
[41]
Tremblay, P.; Small, S.L. From language comprehension to action understanding and back again. Cereb. Cortex, 2011, 21(5), 1166-1177.
[http://dx.doi.org/10.1093/cercor/bhq189] [PMID: 20940222]
[42]
Tyler, L.K.; Stamatakis, E.A.; Post, B.; Randall, B.; Marslen-Wilson, W. Temporal and frontal systems in speech comprehension: an fMRI study of past tense processing. Neuropsychologia, 2005, 43(13), 1963-1974.
[http://dx.doi.org/10.1016/j.neuropsychologia.2005.03.008] [PMID: 16168736]
[43]
Whitney, C.; Huber, W.; Klann, J.; Weis, S.; Krach, S.; Kircher, T. Neural correlates of narrative shifts during auditory story comprehension. Neuroimage, 2009, 47(1), 360-366.
[http://dx.doi.org/10.1016/j.neuroimage.2009.04.037] [PMID: 19376237]
[44]
Willems, R.M.; Frank, S.L.; Nijhof, A.D.; Hagoort, P.; van den Bosch, A. Prediction during natural language comprehension. Cereb. Cortex, 2016, 26(6), 2506-2516.
[http://dx.doi.org/10.1093/cercor/bhv075] [PMID: 25903464]
[45]
Zekveld, A.A.; Heslenfeld, D.J.; Festen, J.M.; Schoonhoven, R. Top-down and bottom-up processes in speech comprehension. Neuroimage, 2006, 32(4), 1826-1836.
[http://dx.doi.org/10.1016/j.neuroimage.2006.04.199] [PMID: 16781167]
[46]
Ali, N.; Green, D.W.; Kherif, F.; Devlin, J.T.; Price, C.J. The role of the left head of caudate in suppressing irrelevant words. J. Cogn. Neurosci., 2010, 22(10), 2369-2386.
[http://dx.doi.org/10.1162/jocn.2009.21352] [PMID: 19803688]
[47]
Amedi, A.; von Kriegstein, K.; van Atteveldt, N.M.; Beauchamp, M.S.; Naumer, M.J. Functional imaging of human crossmodal identification and object recognition. Exp. Brain Res., 2005, 166(3-4), 559-571.
[http://dx.doi.org/10.1007/s00221-005-2396-5] [PMID: 16028028]
[48]
Assaf, M.; Calhoun, V.D.; Kuzu, C.H.; Kraut, M.A.; Rivkin, P.R.; Hart, J., Jr; Pearlson, G.D. Neural correlates of the object-recall process in semantic memory. Psychiatry Res., 2006, 147(2-3), 115-126.
[http://dx.doi.org/10.1016/j.pscychresns.2006.01.002] [PMID: 16938439]
[49]
Bedny, M.; McGill, M.; Thompson-Schill, S.L. Semantic adaptation and competition during word comprehension. Cereb. Cortex, 2008, 18(11), 2574-2585.
[http://dx.doi.org/10.1093/cercor/bhn018] [PMID: 18308708]
[50]
Binder, J.R.; Desai, R.H.; Graves, W.W.; Conant, L.L. Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cereb. Cortex, 2009, 19(12), 2767-2796.
[http://dx.doi.org/10.1093/cercor/bhp055] [PMID: 19329570]
[51]
Binder, J.R.; Swanson, S.J.; Hammeke, T.A.; Sabsevitz, D.S. A comparison of five fMRI protocols for mapping speech comprehension systems. Epilepsia, 2008, 49(12), 1980-1997.
[http://dx.doi.org/10.1111/j.1528-1167.2008.01683.x] [PMID: 18513352]
[52]
Binder, J.R.; Westbury, C.F.; McKiernan, K.A.; Possing, E.T.; Medler, D.A. Distinct brain systems for processing concrete and abstract concepts. J. Cogn. Neurosci., 2005, 17(6), 905-917.
[http://dx.doi.org/10.1162/0898929054021102] [PMID: 16021798]
[53]
Bonner, M.F.; Peelle, J.E.; Cook, P.A.; Grossman, M. Heteromodal conceptual processing in the angular gyrus. Neuroimage, 2013, 71, 175-186.
[http://dx.doi.org/10.1016/j.neuroimage.2013.01.006] [PMID: 23333416]
[54]
Bookheimer, S. Functional MRI of language: new approaches to understanding the cortical organization of semantic processing. Annu. Rev. Neurosci., 2002, 25, 151-188.
[http://dx.doi.org/10.1146/annurev.neuro.25.112701.142946] [PMID: 12052907]
[55]
Borghi, A.M.; Binkofski, F.; Castelfranchi, C.; Cimatti, F.; Scorolli, C.; Tummolini, L. The challenge of abstract concepts. Psychol. Bull., 2017, 143(3), 263-292.
[http://dx.doi.org/10.1037/bul0000089] [PMID: 28095000]
[56]
Chou, T.L.; Booth, J.R.; Burman, D.D.; Bitan, T.; Bigio, J.D.; Lu, D.; Cone, N.E. Developmental changes in the neural correlates of semantic processing. Neuroimage, 2006, 29(4), 1141-1149.
[http://dx.doi.org/10.1016/j.neuroimage.2005.09.064] [PMID: 16275017]
[57]
Copland, D.A.; de Zubicaray, G.I.; McMahon, K.; Eastburn, M. Neural correlates of semantic priming for ambiguous words: an event-related fMRI study. Brain Res., 2007, 1131(1), 163-172.
[http://dx.doi.org/10.1016/j.brainres.2006.11.016] [PMID: 17173868]
[58]
Copland, D.A.; de Zubicaray, G.I.; McMahon, K.; Wilson, S.J.; Eastburn, M.; Chenery, H.J. Brain activity during automatic semantic priming revealed by event-related functional magnetic resonance imaging. Neuroimage, 2003, 20(1), 302-310.
[http://dx.doi.org/10.1016/S1053-8119(03)00279-9] [PMID: 14527590]
[59]
Costafreda, S.G.; Fu, C.H.Y.; Lee, L.; Everitt, B.; Brammer, M.J.; David, A.S. A systematic review and quantitative appraisal of fMRI studies of verbal fluency: role of the left inferior frontal gyrus. Hum. Brain Mapp., 2006, 27(10), 799-810.
[http://dx.doi.org/10.1002/hbm.20221] [PMID: 16511886]
[60]
Davis, M.H.; Ford, M.A.; Kherif, F.; Johnsrude, I.S. Does semantic context benefit speech understanding through “top-down” processes? Evidence from time-resolved sparse fMRI. J. Cogn. Neurosci., 2011, 23(12), 3914-3932.
[http://dx.doi.org/10.1162/jocn_a_00084] [PMID: 21745006]
[61]
de Zubicaray, G.I.; Wilson, S.J.; McMahon, K.L.; Muthiah, S. The semantic interference effect in the picture-word paradigm: an event-related fMRI study employing overt responses. Hum. Brain Mapp., 2001, 14(4), 218-227.
[http://dx.doi.org/10.1002/hbm.1054] [PMID: 11668653]
[62]
Duffau, H.; Gatignol, P.; Mandonnet, E.; Peruzzi, P.; Tzourio-Mazoyer, N.; Capelle, L. New insights into the anatomo-functional connectivity of the semantic system: a study using cortico-subcortical electrostimulations. Brain, 2005, 128(Pt 4), 797-810.
[http://dx.doi.org/10.1093/brain/awh423] [PMID: 15705610]
[63]
Friederici, A.D.; Opitz, B.; von Cramon, D.Y. Segregating semantic and syntactic aspects of processing in the human brain: an fMRI investigation of different word types. Cereb. Cortex, 2000, 10(7), 698-705.
[http://dx.doi.org/10.1093/cercor/10.7.698] [PMID: 10906316]
[64]
Friederici, A.D.; Rüschemeyer, S.A.; Hahne, A.; Fiebach, C.J. The role of left inferior frontal and superior temporal cortex in sentence comprehension: localizing syntactic and semantic processes. Cereb. Cortex, 2003, 13(2), 170-177.
[http://dx.doi.org/10.1093/cercor/13.2.170] [PMID: 12507948]
[65]
Gold, B.T.; Balota, D.A.; Kirchhoff, B.A.; Buckner, R.L. Common and dissociable activation patterns associated with controlled semantic and phonological processing: evidence from FMRI adaptation. Cereb. Cortex, 2005, 15(9), 1438-1450.
[http://dx.doi.org/10.1093/cercor/bhi024] [PMID: 15647526]
[66]
Goldberg, R.F.; Perfetti, C.A.; Fiez, J.A.; Schneider, W. Selective retrieval of abstract semantic knowledge in left prefrontal cortex. J. Neurosci., 2007, 27(14), 3790-3798.
[http://dx.doi.org/10.1523/JNEUROSCI.2381-06.2007] [PMID: 17409243]
[67]
Gow, D.W., Jr The cortical organization of lexical knowledge: a dual lexicon model of spoken language processing. Brain Lang., 2012, 121(3), 273-288.
[http://dx.doi.org/10.1016/j.bandl.2012.03.005] [PMID: 22498237]
[68]
Graves, W.W.; Binder, J.R.; Desai, R.H.; Conant, L.L.; Seidenberg, M.S. Neural correlates of implicit and explicit combinatorial semantic processing. Neuroimage, 2010, 53(2), 638-646.
[http://dx.doi.org/10.1016/j.neuroimage.2010.06.055] [PMID: 20600969]
[69]
Hauk, O.; Davis, M.H.; Kherif, F.; Pulvermüller, F. Imagery or meaning? Evidence for a semantic origin of category-specific brain activity in metabolic imaging. Eur. J. Neurosci., 2008, 27(7), 1856-1866.
[http://dx.doi.org/10.1111/j.1460-9568.2008.06143.x] [PMID: 18380676]
[70]
Heim, S.; Opitz, B.; Müller, K.; Friederici, A.D. Phonological processing during language production: fMRI evidence for a shared production-comprehension network. Brain Res. Cogn. Brain Res., 2003, 16(2), 285-296.
[http://dx.doi.org/10.1016/S0926-6410(02)00284-7] [PMID: 12668238]
[71]
Humphries, C.; Binder, J.R.; Medler, D.A.; Liebenthal, E. Syntactic and semantic modulation of neural activity during auditory sentence comprehension. J. Cogn. Neurosci., 2006, 18(4), 665-679.
[http://dx.doi.org/10.1162/jocn.2006.18.4.665] [PMID: 16768368]
[72]
Humphries, C.; Binder, J.R.; Medler, D.A.; Liebenthal, E. Time course of semantic processes during sentence comprehension: an fMRI study. Neuroimage, 2007, 36(3), 924-932.
[http://dx.doi.org/10.1016/j.neuroimage.2007.03.059] [PMID: 17500009]
[73]
Jackson, R.L.; Hoffman, P.; Pobric, G.; Lambon Ralph, M.A. The semantic network at work and rest: differential connectivity of anterior temporal lobe subregions. J. Neurosci., 2016, 36(5), 1490-1501.
[http://dx.doi.org/10.1523/JNEUROSCI.2999-15.2016] [PMID: 26843633]
[74]
Jefferies, E. The neural basis of semantic cognition: converging evidence from neuropsychology, neuroimaging and TMS. Cortex, 2013, 49(3), 611-625.
[http://dx.doi.org/10.1016/j.cortex.2012.10.008] [PMID: 23260615]
[75]
Just, M.A.; Newman, S.D.; Keller, T.A.; McEleney, A.; Carpenter, P.A. Imagery in sentence comprehension: an fMRI study. Neuroimage, 2004, 21(1), 112-124.
[http://dx.doi.org/10.1016/j.neuroimage.2003.08.042] [PMID: 14741648]
[76]
Kiehl, K.A.; Laurens, K.R.; Liddle, P.F. Reading anomalous sentences: an event-related fMRI study of semantic processing. Neuroimage, 2002, 17(2), 842-850.
[http://dx.doi.org/10.1006/nimg.2002.1244] [PMID: 12377158]
[77]
Koelsch, S.; Kasper, E.; Sammler, D.; Schulze, K.; Gunter, T.; Friederici, A.D. Music, language and meaning: brain signatures of semantic processing. Nat. Neurosci., 2004, 7(3), 302-307.
[http://dx.doi.org/10.1038/nn1197] [PMID: 14983184]
[78]
Kronbichler, M.; Bergmann, J.; Hutzler, F.; Staffen, W.; Mair, A.; Ladurner, G.; Wimmer, H. Taxi vs. taksi: on orthographic word recognition in the left ventral occipitotemporal cortex. J. Cogn. Neurosci., 2007, 19(10), 1584-1594.
[http://dx.doi.org/10.1162/jocn.2007.19.10.1584] [PMID: 17933023]
[79]
Mashal, N.; Faust, M.; Hendler, T.; Jung-Beeman, M. An fMRI study of processing novel metaphoric sentences. Laterality, 2009, 14(1), 30-54.
[http://dx.doi.org/10.1080/13576500802049433] [PMID: 18608849]
[80]
Mechelli, A.; Josephs, O.; Lambon Ralph, M.A.; McClelland, J.L.; Price, C.J. Dissociating stimulus-driven semantic and phonological effect during reading and naming. Hum. Brain Mapp., 2007, 28(3), 205-217.
[http://dx.doi.org/10.1002/hbm.20272] [PMID: 16767767]
[81]
Meinzer, M.; Flaisch, T.; Wilser, L.; Eulitz, C.; Rockstroh, B.; Conway, T.; Gonzalez-Rothi, L.; Crosson, B. Neural signatures of semantic and phonemic fluency in young and old adults. J. Cogn. Neurosci., 2009, 21(10), 2007-2018.
[http://dx.doi.org/10.1162/jocn.2009.21219] [PMID: 19296728]
[82]
Newman, S.D.; Just, M.A.; Keller, T.A.; Roth, J.; Carpenter, P.A. Differential effects of syntactic and semantic processing on the subregions of Broca’s area. Brain Res. Cogn. Brain Res., 2003, 16(2), 297-307.
[http://dx.doi.org/10.1016/S0926-6410(02)00285-9] [PMID: 12668239]
[83]
Raposo, A.; Moss, H.E.; Stamatakis, E.A.; Tyler, L.K. Repetition suppression and semantic enhancement: an investigation of the neural correlates of priming. Neuropsychologia, 2006, 44(12), 2284-2295.
[http://dx.doi.org/10.1016/j.neuropsychologia.2006.05.017] [PMID: 16806317]
[84]
Rapp, A.M.; Leube, D.T.; Erb, M.; Grodd, W.; Kircher, T.T.J. Neural correlates of metaphor processing. Brain Res. Cogn. Brain Res., 2004, 20(3), 395-402.
[http://dx.doi.org/10.1016/j.cogbrainres.2004.03.017] [PMID: 15268917]
[85]
Röder, B.; Stock, O.; Neville, H.; Bien, S.; Rösler, F. Brain activation modulated by the comprehension of normal and pseudo-word sentences of different processing demands: a functional magnetic resonance imaging study. Neuroimage, 2002, 15(4), 1003-1014.
[http://dx.doi.org/10.1006/nimg.2001.1026] [PMID: 11906240]
[86]
Sabsevitz, D.S.; Medler, D.A.; Seidenberg, M.; Binder, J.R. Modulation of the semantic system by word imageability. Neuroimage, 2005, 27(1), 188-200.
[http://dx.doi.org/10.1016/j.neuroimage.2005.04.012] [PMID: 15893940]
[87]
Sachs, O.; Weis, S.; Zellagui, N.; Huber, W.; Zvyagintsev, M.; Mathiak, K.; Kircher, T. Automatic processing of semantic relations in fMRI: neural activation during semantic priming of taxonomic and thematic categories. Brain Res., 2008, 1218, 194-205.
[http://dx.doi.org/10.1016/j.brainres.2008.03.045] [PMID: 18514168]
[88]
Schnur, T.T.; Schwartz, M.F.; Kimberg, D.Y.; Hirshorn, E.; Coslett, H.B.; Thompson-Schill, S.L. Localizing interference during naming: convergent neuroimaging and neuropsychological evidence for the function of Broca’s area. Proc. Natl. Acad. Sci. USA, 2009, 106(1), 322-327.
[http://dx.doi.org/10.1073/pnas.0805874106] [PMID: 19118194]
[89]
Simmons, W.K.; Hamann, S.B.; Harenski, C.L.; Hu, X.P.; Barsalou, L.W. fMRI evidence for word association and situated simulation in conceptual processing. J. Physiol. Paris, 2008, 102(1-3), 106-119.
[http://dx.doi.org/10.1016/j.jphysparis.2008.03.014] [PMID: 18468869]
[90]
Simons, J.S.; Koutstaal, W.; Prince, S.; Wagner, A.D.; Schacter, D.L. Neural mechanisms of visual object priming: evidence for perceptual and semantic distinctions in fusiform cortex. Neuroimage, 2003, 19(3), 613-626.
[http://dx.doi.org/10.1016/S1053-8119(03)00096-X] [PMID: 12880792]
[91]
Skipper, L.M.; Ross, L.A.; Olson, I.R. Sensory and semantic category subdivisions within the anterior temporal lobes. Neuropsychologia, 2011, 49(12), 3419-3429.
[http://dx.doi.org/10.1016/j.neuropsychologia.2011.07.033] [PMID: 21889520]
[92]
Strange, B.A.; Henson, R.N.A.; Friston, K.J.; Dolan, R.J. Brain mechanisms for detecting perceptual, semantic, and emotional deviance. Neuroimage, 2000, 12(4), 425-433.
[http://dx.doi.org/10.1006/nimg.2000.0637] [PMID: 10988036]
[93]
Tyler, L.K.; Chiu, S.; Zhuang, J.; Randall, B.; Devereux, B.J.; Wright, P.; Clarke, A.; Taylor, K.I. Objects and categories: feature statistics and object processing in the ventral stream. J. Cogn. Neurosci., 2013, 25(10), 1723-1735.
[http://dx.doi.org/10.1162/jocn_a_00419] [PMID: 23662861]
[94]
Tyler, L.K.; Stamatakis, E.A.; Bright, P.; Acres, K.; Abdallah, S.; Rodd, J.M.; Moss, H.E. Processing objects at different levels of specificity. J. Cogn. Neurosci., 2004, 16(3), 351-362.
[http://dx.doi.org/10.1162/089892904322926692] [PMID: 15072671]
[95]
Vigneau, M.; Jobard, G.; Mazoyer, B.; Tzourio-Mazoyer, N. Word and non-word reading: what role for the Visual Word Form Area? Neuroimage, 2005, 27(3), 694-705.
[http://dx.doi.org/10.1016/j.neuroimage.2005.04.038] [PMID: 15961322]
[96]
Visser, M.; Jefferies, E.; Lambon Ralph, M.A. Semantic processing in the anterior temporal lobes: a meta-analysis of the functional neuroimaging literature. J. Cogn. Neurosci., 2010, 22(6), 1083-1094.
[http://dx.doi.org/10.1162/jocn.2009.21309] [PMID: 19583477]
[97]
Zempleni, M.Z.; Renken, R.; Hoeks, J.C.J.; Hoogduin, J.M.; Stowe, L.A. Semantic ambiguity processing in sentence context: Evidence from event-related fMRI. Neuroimage, 2007, 34(3), 1270-1279.
[http://dx.doi.org/10.1016/j.neuroimage.2006.09.048] [PMID: 17142061]
[98]
Bozic, M.; Marslen-Wilson, W.D. Neurocognitive mechanisms for processing inflectional and derivational complexity in English. Psihologija (Beogr.), 2013, 46(4), 439-454.
[http://dx.doi.org/10.2298/PSI1304439B]
[99]
Dapretto, M.; Bookheimer, S.Y. Form and content: dissociating syntax and semantics in sentence comprehension. Neuron, 1999, 24(2), 427-432.
[http://dx.doi.org/10.1016/S0896-6273(00)80855-7] [PMID: 10571235]
[100]
Grodzinsky, Y.; Friederici, A.D. Neuroimaging of syntax and syntactic processing. Curr. Opin. Neurobiol., 2006, 16(2), 240-246.
[http://dx.doi.org/10.1016/j.conb.2006.03.007] [PMID: 16563739]
[101]
Hasson, U.; Small, S.L. Functional magnetic resonance imaging (fmri) research of language. In: Handbook of the Neuroscience of Language; Elsevier: Amsterdam, 2008, pp. 81-89.
[102]
Matchin, W.G. A neuronal retuning hypothesis of sentence-specificity in Broca’s area. Psychon. Bull. Rev., 2018, 25(5), 1682-1694.
[http://dx.doi.org/10.3758/s13423-017-1377-6] [PMID: 28940045]
[103]
Newman, A.J.; Pancheva, R.; Ozawa, K.; Neville, H.J.; Ullman, M.T. An event-related fMRI study of syntactic and semantic violations. J. Psycholinguist. Res., 2001, 30(3), 339-364.
[http://dx.doi.org/10.1023/A:1010499119393] [PMID: 11523278]
[104]
Noguchi, Y.; Takeuchi, T.; Sakai, K.L. Lateralized activation in the inferior frontal cortex during syntactic processing: event-related optical topography study. Hum. Brain Mapp., 2002, 17(2), 89-99.
[http://dx.doi.org/10.1002/hbm.10050] [PMID: 12353243]
[105]
Nuñez, S.C.; Dapretto, M.; Katzir, T.; Starr, A.; Bramen, J.; Kan, E.; Bookheimer, S.; Sowell, E.R. fMRI of syntactic processing in typically developing children: structural correlates in the inferior frontal gyrus. Dev. Cogn. Neurosci., 2011, 1(3), 313-323.
[http://dx.doi.org/10.1016/j.dcn.2011.02.004] [PMID: 21743820]
[106]
Prat, C.S.; Keller, T.A.; Just, M.A. Individual differences in sentence comprehension: a functional magnetic resonance imaging investigation of syntactic and lexical processing demands. J. Cogn. Neurosci., 2007, 19(12), 1950-1963.
[http://dx.doi.org/10.1162/jocn.2007.19.12.1950] [PMID: 17892384]
[107]
Santi, A.; Grodzinsky, Y. Working memory and syntax interact in Broca’s area. Neuroimage, 2007, 37(1), 8-17.
[http://dx.doi.org/10.1016/j.neuroimage.2007.04.047] [PMID: 17560794]
[108]
Segaert, K.; Menenti, L.; Weber, K.; Petersson, K.M.; Hagoort, P. Shared syntax in language production and language comprehension--an FMRI study. Cereb. Cortex, 2012, 22(7), 1662-1670.
[http://dx.doi.org/10.1093/cercor/bhr249] [PMID: 21934094]
[109]
Uddén, J.; Folia, V.; Forkstam, C.; Ingvar, M.; Fernandez, G.; Overeem, S.; van Elswijk, G.; Hagoort, P.; Petersson, K.M. The inferior frontal cortex in artificial syntax processing: an rTMS study. Brain Res., 2008, 1224, 69-78.
[http://dx.doi.org/10.1016/j.brainres.2008.05.070] [PMID: 18617159]
[110]
Wilson, S.M.; Galantucci, S.; Tartaglia, M.C.; Rising, K.; Patterson, D.K.; Henry, M.L.; Ogar, J.M.; DeLeon, J.; Miller, B.L.; Gorno-Tempini, M.L. Syntactic processing depends on dorsal language tracts. Neuron, 2011, 72(2), 397-403.
[http://dx.doi.org/10.1016/j.neuron.2011.09.014] [PMID: 22017996]
[111]
Alexander, M.P.; Naeser, M.A.; Palumbo, C.L. Correlations of subcortical CT lesion sites and aphasia profiles. Brain, 1987, 110(Pt 4), 961-991.
[http://dx.doi.org/10.1093/brain/110.4.961] [PMID: 3651803]
[112]
Buchsbaum, B.R.; Baldo, J.; Okada, K.; Berman, K.F.; Dronkers, N.; D’Esposito, M.; Hickok, G. Conduction aphasia, sensory-motor integration, and phonological short-term memory - an aggregate analysis of lesion and fMRI data. Brain Lang., 2011, 119(3), 119-128.
[http://dx.doi.org/10.1016/j.bandl.2010.12.001] [PMID: 21256582]
[113]
Crosson, B.; McGregor, K.; Gopinath, K.S.; Conway, T.W.; Benjamin, M.; Chang, Y.L.; Moore, A.B.; Raymer, A.M.; Briggs, R.W.; Sherod, M.G.; Wierenga, C.E.; White, K.D. Functional MRI of language in aphasia: a review of the literature and the methodological challenges. Neuropsychol. Rev., 2007, 17(2), 157-177.
[http://dx.doi.org/10.1007/s11065-007-9024-z] [PMID: 17525865]
[114]
Dell, G.S.; Schwartz, M.F.; Nozari, N.; Faseyitan, O.; Branch Coslett, H. Voxel-based lesion-parameter mapping: Identifying the neural correlates of a computational model of word production. Cognition, 2013, 128(3), 380-396.
[http://dx.doi.org/10.1016/j.cognition.2013.05.007] [PMID: 23765000]
[115]
Dronkers, N.F.; Wilkins, D.P.; Van Valin, R.D., Jr; Redfern, B.B.; Jaeger, J.J. Lesion analysis of the brain areas involved in language comprehension. Cognition, 2004, 92(1-2), 145-177.
[http://dx.doi.org/10.1016/j.cognition.2003.11.002] [PMID: 15037129]
[116]
Fridriksson, J.; den Ouden, D.B.; Hillis, A.E.; Hickok, G.; Rorden, C.; Basilakos, A.; Yourganov, G.; Bonilha, L. Anatomy of aphasia revisited. Brain, 2018, 141(3), 848-862.
[http://dx.doi.org/10.1093/brain/awx363] [PMID: 29360947]
[117]
Friederici, A.D. The brain basis of language processing: from structure to function. Physiol. Rev., 2011, 91(4), 1357-1392.
[http://dx.doi.org/10.1152/physrev.00006.2011] [PMID: 22013214]
[118]
Pedersen, P.M.; Jørgensen, H.S.; Nakayama, H.; Raaschou, H.O.; Olsen, T.S. Aphasia in acute stroke: incidence, determinants, and recovery. Ann. Neurol., 1995, 38(4), 659-666.
[http://dx.doi.org/10.1002/ana.410380416] [PMID: 7574464]
[119]
Price, C.J.; Crinion, J. The latest on functional imaging studies of aphasic stroke. Curr. Opin. Neurol., 2005, 18(4), 429-434.
[http://dx.doi.org/10.1097/01.wco.0000168081.76859.c1] [PMID: 16003120]
[120]
Price, C.J.; Moore, C.J.; Humphreys, G.W.; Frackowiak, R.S.J.; Friston, K.J. The neural regions sustaining object recognition and naming. Proc. Biol. Sci., 1996, 263(1376), 1501-1507.
[http://dx.doi.org/10.1098/rspb.1996.0219] [PMID: 8952093]
[121]
Price, C.J.; Seghier, M.L.; Leff, A.P. Predicting language outcome and recovery after stroke: the PLORAS system. Nat. Rev. Neurol., 2010, 6(4), 202-210.
[http://dx.doi.org/10.1038/nrneurol.2010.15] [PMID: 20212513]
[122]
Pustina, D.; Avants, B.; Faseyitan, O.K.; Medaglia, J.D.; Coslett, H.B. Improved accuracy of lesion to symptom mapping with multivariate sparse canonical correlations. Neuropsychologia, 2018, 115, 154-166.
[http://dx.doi.org/10.1016/j.neuropsychologia.2017.08.027] [PMID: 28882479]
[123]
Rorden, C.; Karnath, H.O. Using human brain lesions to infer function: a relic from a past era in the fMRI age? Nat. Rev. Neurosci., 2004, 5(10), 813-819.
[http://dx.doi.org/10.1038/nrn1521] [PMID: 15378041]
[124]
Walker, G.M.; Schwartz, M.F.; Kimberg, D.Y.; Faseyitan, O.; Brecher, A.; Dell, G.S.; Coslett, H.B. Support for anterior temporal involvement in semantic error production in aphasia: new evidence from VLSM. Brain Lang., 2011, 117(3), 110-122.
[http://dx.doi.org/10.1016/j.bandl.2010.09.008] [PMID: 20961612]
[125]
Warburton, E.; Price, C.J.; Swinburn, K.; Wise, R.J.S. Mechanisms of recovery from aphasia: evidence from positron emission tomography studies. J. Neurol. Neurosurg. Psychiatry, 1999, 66(2), 155-161.
[http://dx.doi.org/10.1136/jnnp.66.2.155] [PMID: 10071093]
[126]
Yourganov, G.; Smith, K.G.; Fridriksson, J.; Rorden, C. Predicting aphasia type from brain damage measured with structural MRI. Cortex, 2015, 73, 203-215.
[http://dx.doi.org/10.1016/j.cortex.2015.09.005] [PMID: 26465238]
[127]
Baier, B.; zu Eulenburg, P.; Glassl, O.; Dieterich, M. Lesions to the posterior insular cortex cause dysarthria. Eur. J. Neurol., 2011, 18(12), 1429-1431.
[http://dx.doi.org/10.1111/j.1468-1331.2011.03473.x] [PMID: 21771200]
[128]
Duffau, H.; Capelle, L.; Sichez, N.; Denvil, D.; Lopes, M.; Sichez, J.P.; Bitar, A.; Fohanno, D. Intraoperative mapping of the subcortical language pathways using direct stimulations. An anatomo-functional study. Brain, 2002, 125(Pt 1), 199-214.
[http://dx.doi.org/10.1093/brain/awf016] [PMID: 11834604]
[129]
Timmann, D.; Brandauer, B.; Hermsdörfer, J.; Ilg, W.; Konczak, J.; Gerwig, M.; Gizewski, E.R.; Schoch, B. Lesion-symptom mapping of the human cerebellum. Cerebellum, 2008, 7(4), 602-606.
[http://dx.doi.org/10.1007/s12311-008-0066-4] [PMID: 18949530]
[130]
Noppeney, U.; Friston, K.J.; Price, C.J. Degenerate neuronal systems sustaining cognitive functions. J. Anat., 2004, 205(6), 433-442.
[http://dx.doi.org/10.1111/j.0021-8782.2004.00343.x] [PMID: 15610392]
[131]
Park, H.J.; Friston, K. Structural and functional brain networks: from connections to cognition. Science, 2013, 342(6158), 1238411-1238411.
[http://dx.doi.org/10.1126/science.1238411] [PMID: 24179229]
[132]
Price, C.J. The evolution of cognitive models: From neuropsychology to neuroimaging and back. Cortex, 2018, 107, 37-49.
[http://dx.doi.org/10.1016/j.cortex.2017.12.020] [PMID: 29373117]
[133]
Price, C.J.; Friston, K.J. Scanning patients with tasks they can perform. Hum. Brain Mapp., 1999, 8(2-3), 102-108.
[http://dx.doi.org/10.1002/(SICI)1097-0193(1999)8:2/3<102:AID-HBM6>3.0.CO;2-J] [PMID: 10524600]
[134]
Rigoux, L.; Daunizeau, J. Dynamic causal modelling of brain-behaviour relationships. Neuroimage, 2015, 117, 202-221.
[http://dx.doi.org/10.1016/j.neuroimage.2015.05.041] [PMID: 26008885]
[135]
Stefaniak, J.D.; Halai, A.D.; Lambon Ralph, M.A. The neural and neurocomputational bases of recovery from post-stroke aphasia. Nat. Rev. Neurol., 2019.
[PMID: 31772339]
[136]
Campbell, C.; Aucott, S.; Ruths, J.; Ruths, D.; Shea, K.; Albert, R. Correlations in the degeneracy of structurally controllable topologies for networks. Sci. Rep., 2017, 7, 46251.
[http://dx.doi.org/10.1038/srep46251] [PMID: 28401952]
[137]
Drion, G.; O’Leary, T.; Marder, E. Ion channel degeneracy enables robust and tunable neuronal firing rates. Proc. Natl. Acad. Sci. USA, 2015, 112(38), E5361-E5370.
[http://dx.doi.org/10.1073/pnas.1516400112] [PMID: 26354124]
[138]
Edelman, G.M.; Gally, J.A. Degeneracy and complexity in biological systems. Proc. Natl. Acad. Sci. USA, 2001, 98(24), 13763-13768.
[http://dx.doi.org/10.1073/pnas.231499798] [PMID: 11698650]
[139]
Maleszka, R.; Mason, P.H.; Barron, A.B. Epigenomics and the concept of degeneracy in biological systems. Brief. Funct. Genomics, 2014, 13(3), 191-202.
[http://dx.doi.org/10.1093/bfgp/elt050] [PMID: 24335757]
[140]
Mason, P.H.; Domínguez D, J.F.; Winter, B.; Grignolio, A. Hidden in plain view: degeneracy in complex systems. Biosystems, 2015, 128, 1-8.
[http://dx.doi.org/10.1016/j.biosystems.2014.12.003] [PMID: 25543071]
[141]
Mason, P.H.; Maleszka, R.; Dominguez D, J.F. Another stage of development: Biological degeneracy and the study of bodily ageing. Mech. Ageing Dev., 2017, 163, 46-51.
[http://dx.doi.org/10.1016/j.mad.2016.12.007] [PMID: 28012731]
[142]
Rathour, R.K.; Narayanan, R. Degeneracy in hippocampal physiology and plasticity. Hippocampus, 2019, 29(10), 980-1022.
[http://dx.doi.org/10.1002/hipo.23139] [PMID: 31301166]
[143]
Tieri, P.; Grignolio, A.; Zaikin, A.; Mishto, M.; Remondini, D.; Castellani, G.C.; Franceschi, C. Network, degeneracy and bow tie. Integrating paradigms and architectures to grasp the complexity of the immune system. Theor. Biol. Med. Model., 2010, 7, 32.
[http://dx.doi.org/10.1186/1742-4682-7-32] [PMID: 20701759]
[144]
Tononi, G.; Sporns, O.; Edelman, G.M. Measures of degeneracy and redundancy in biological networks. Proc. Natl. Acad. Sci. USA, 1999, 96(6), 3257-3262.
[http://dx.doi.org/10.1073/pnas.96.6.3257] [PMID: 10077671]
[145]
Whitacre, J.M. Degeneracy: a link between evolvability, robustness and complexity in biological systems. Theor. Biol. Med. Model., 2010, 7, 6.
[http://dx.doi.org/10.1186/1742-4682-7-6] [PMID: 20167097]
[146]
Whitacre, J.M. Biological robustness: paradigms, mechanisms, and systems principles. Front. Genet., 2012, 3, 67.
[http://dx.doi.org/10.3389/fgene.2012.00067] [PMID: 22593762]
[147]
Wooldridge, L.; Ekeruche-Makinde, J.; van den Berg, H.A.; Skowera, A.; Miles, J.J.; Tan, M.P.; Dolton, G.; Clement, M.; Llewellyn-Lacey, S.; Price, D.A.; Peakman, M.; Sewell, A.K. A single autoimmune T cell receptor recognizes more than a million different peptides. J. Biol. Chem., 2012, 287(2), 1168-1177.
[http://dx.doi.org/10.1074/jbc.M111.289488] [PMID: 22102287]
[148]
Kherif, F.; Josse, G.; Seghier, M.L.; Price, C.J. The main sources of intersubject variability in neuronal activation for reading aloud. J. Cogn. Neurosci., 2009, 21(4), 654-668.
[http://dx.doi.org/10.1162/jocn.2009.21084] [PMID: 18702580]
[149]
Price, C.J. The anatomy of language: a review of 100 fMRI studies published in 2009. Ann. N. Y. Acad. Sci., 2010, 1191(1), 62-88.
[http://dx.doi.org/10.1111/j.1749-6632.2010.05444.x] [PMID: 20392276]
[150]
Price, C.J.; Friston, K.J. Degeneracy and cognitive anatomy Trends Cogn. Sci. (Regul. Ed.), 2002, 6(10), 416-421.
[http://dx.doi.org/10.1016/S1364-6613(02)01976-9 ] [PMID: 12413574]
[151]
Bonilha, L.; Fridriksson, J. Subcortical damage and white matter disconnection associated with non-fluent speech. Brain, 2009, 132(Pt 6), e108-e108.
[http://dx.doi.org/10.1093/brain/awn200] [PMID: 18723562]
[152]
Hillis, A.E.; Work, M.; Barker, P.B.; Jacobs, M.A.; Breese, E.L.; Maurer, K. Re-examining the brain regions crucial for orchestrating speech articulation. Brain, 2004, 127(Pt 7), 1479-1487.
[http://dx.doi.org/10.1093/brain/awh172] [PMID: 15090478]
[153]
Newhart, M.; Ken, L.; Kleinman, J.T.; Heidler-Gary, J.; Hillis, A.E. Neural networks essential for naming and word comprehension. Cogn. Behav. Neurol., 2007, 20(1), 25-30.
[http://dx.doi.org/10.1097/WNN.0b013e31802dc4a7] [PMID: 17356341]
[154]
Prabhakaran, S.; Zarahn, E.; Riley, C.; Speizer, A.; Chong, J.Y.; Lazar, R.M.; Marshall, R.S.; Krakauer, J.W. Inter-individual variability in the capacity for motor recovery after ischemic stroke. Neurorehabil. Neural Repair, 2008, 22(1), 64-71.
[http://dx.doi.org/10.1177/1545968307305302] [PMID: 17687024]
[155]
Duffau, H. The error of Broca: From the traditional localizationist concept to a connectomal anatomy of human brain. J. Chem. Neuroanat., 2018, 89, 73-81.
[http://dx.doi.org/10.1016/j.jchemneu.2017.04.003] [PMID: 28416459]
[156]
Henson, R. What can functional neuroimaging tell the experimental psychologist? Q. J. Exp. Psychol. A, 2005, 58(2), 193-233.
[http://dx.doi.org/10.1080/02724980443000502] [PMID: 15903115]
[157]
Abbott, D.F.; Waites, A.B.; Lillywhite, L.M.; Jackson, G.D. fMRI assessment of language lateralization: an objective approach. Neuroimage, 2010, 50(4), 1446-1455.
[http://dx.doi.org/10.1016/j.neuroimage.2010.01.059] [PMID: 20097290]
[158]
Büchel, C.; Holmes, A.P.; Rees, G.; Friston, K.J. Characterizing stimulus-response functions using nonlinear regressors in parametric fMRI experiments. Neuroimage, 1998, 8(2), 140-148.
[http://dx.doi.org/10.1006/nimg.1998.0351] [PMID: 9740757]
[159]
Bullmore, E.; Horwitz, B.; Honey, G.; Brammer, M.; Williams, S.; Sharma, T. How good is good enough in path analysis of fMRI data? Neuroimage, 2000, 11(4), 289-301.
[http://dx.doi.org/10.1006/nimg.2000.0544] [PMID: 10725185]
[160]
Durnez, J.; Moerkerke, B.; Nichols, T.E. Post-hoc power estimation for topological inference in fMRI. Neuroimage, 2014, 84, 45-64.
[http://dx.doi.org/10.1016/j.neuroimage.2013.07.072] [PMID: 23927901]
[161]
Kherif, F.; Poline, J.B.; Flandin, G.; Benali, H.; Simon, O.; Dehaene, S.; Worsley, K.J. Multivariate model specification for fMRI data. Neuroimage, 2002, 16(4), 1068-1083.
[http://dx.doi.org/10.1006/nimg.2002.1094] [PMID: 12202094]
[162]
Naselaris, T.; Kay, K.N.; Nishimoto, S.; Gallant, J.L. Encoding and decoding in fMRI. Neuroimage, 2011, 56(2), 400-410.
[http://dx.doi.org/10.1016/j.neuroimage.2010.07.073] [PMID: 20691790]
[163]
Penny, W.; Kiebel, S.; Friston, K. Variational Bayesian inference for fMRI time series. Neuroimage, 2003, 19(3), 727-741.
[http://dx.doi.org/10.1016/S1053-8119(03)00071-5] [PMID: 12880802]
[164]
Powell, J.L.; Kemp, G.J.; García-Finaña, M. Association between language and spatial laterality and cognitive ability: an fMRI study. Neuroimage, 2012, 59(2), 1818-1829.
[http://dx.doi.org/10.1016/j.neuroimage.2011.08.040] [PMID: 21889594]
[165]
Ramsey, N.F.; Sommer, I.E.C.; Rutten, G.J.; Kahn, R.S. Combined analysis of language tasks in fMRI improves assessment of hemispheric dominance for language functions in individual subjects. Neuroimage, 2001, 13(4), 719-733.
[http://dx.doi.org/10.1006/nimg.2000.0722] [PMID: 11305899]
[166]
Worsley, K.J.; Poline, J.B.; Friston, K.J.; Evans, A.C. Characterizing the response of PET and fMRI data using multivariate linear models. Neuroimage, 1997, 6(4), 305-319.
[http://dx.doi.org/10.1006/nimg.1997.0294] [PMID: 9417973]
[167]
Bannister, D. The biological basis of personality. Br. J. Psychiatry, 1970, 116(530), 103-103.
[http://dx.doi.org/10.1192/bjp.116.530.103]
[168]
Price, C.J. A review and synthesis of the first 20 years of PET and fMRI studies of heard speech, spoken language and reading. Neuroimage, 2012, 62(2), 816-847.
[http://dx.doi.org/10.1016/j.neuroimage.2012.04.062] [PMID: 22584224]
[169]
Bates, E.; Wilson, S.M.; Saygin, A.P.; Dick, F.; Sereno, M.I.; Knight, R.T.; Dronkers, N.F. Voxel-based lesion-symptom mapping. Nat. Neurosci., 2003, 6(5), 448-450.
[http://dx.doi.org/10.1038/nn1050] [PMID: 12704393]
[170]
Blasi, V.; Young, A.C.; Tansy, A.P.; Petersen, S.E.; Snyder, A.Z.; Corbetta, M. Word retrieval learning modulates right frontal cortex in patients with left frontal damage. Neuron, 2002, 36(1), 159-170.
[http://dx.doi.org/10.1016/S0896-6273(02)00936-4] [PMID: 12367514]
[171]
Corbetta, M.; Ramsey, L.; Callejas, A.; Baldassarre, A.; Hacker, C.D.; Siegel, J.S.; Astafiev, S.V.; Rengachary, J.; Zinn, K.; Lang, C.E.; Connor, L.T.; Fucetola, R.; Strube, M.; Carter, A.R.; Shulman, G.L. Common behavioral clusters and subcortical anatomy in stroke. Neuron, 2015, 85(5), 927-941.
[http://dx.doi.org/10.1016/j.neuron.2015.02.027] [PMID: 25741721]
[172]
Seghier, M. L.; Patel, E.; Prejawa, S.; Ramsden, S.; Selmer, A.; Lim, L.; Browne, R.; Rae, J.; Haigh, Z.; Ezekiel, D.; Hope, T. M. H.; Leff, A. P.; Price, C. J. The PLORAS database: a data repository for predicting language outcome and recovery after stroke. Neuroimage, 2016, 124(Pt B), 1208-1212.,
[http://dx.doi.org/10.1016/j.neuroimage.2015.03.083]
[173]
Caplan, D.; Hildebrandt, N.; Makris, N. Location of lesions in stroke patients with deficits in syntactic processing in sentence comprehension. Brain, 1996, 119(Pt 3), 933-949.
[http://dx.doi.org/10.1093/brain/119.3.933] [PMID: 8673503]
[174]
Draganski, B.; Kherif, F.; Klöppel, S.; Cook, P.A.; Alexander, D.C.; Parker, G.J.M.; Deichmann, R.; Ashburner, J.; Frackowiak, R.S.J. Evidence for segregated and integrative connectivity patterns in the human Basal Ganglia. J. Neurosci., 2008, 28(28), 7143-7152.
[http://dx.doi.org/10.1523/JNEUROSCI.1486-08.2008] [PMID: 18614684]
[175]
Tononi, G.; Sporns, O.; Edelman, G.M. A measure for brain complexity: relating functional segregation and integration in the nervous system. Proc. Natl. Acad. Sci. USA, 1994, 91(11), 5033-5037.
[http://dx.doi.org/10.1073/pnas.91.11.5033] [PMID: 8197179]
[176]
Kherif, F.; Poline, J.B.; Mériaux, S.; Benali, H.; Flandin, G.; Brett, M. Group analysis in functional neuroimaging: selecting subjects using similarity measures. Neuroimage, 2003, 20(4), 2197-2208.
[http://dx.doi.org/10.1016/j.neuroimage.2003.08.018] [PMID: 14683722]
[177]
Kherif, F.; Muller, S. Early Prognosis Models in Aphasia. In: Brain Mapping an Encyclopedic Reference; Elsevier: Amsterdam, 2015, pp. 807-811.
[http://dx.doi.org/10.1016/B978-0-12-397025-1.00093-2]
[178]
Stoyanov, D.; Kandilarova, S.; Paunova, R.; Barranco Garcia, J.; Latypova, A.; Kherif, F. Cross-validation of functional MRI and paranoid-depressive scale: results from multivariate analysis. Front. Psychiatry, 2019, 10, 869.
[http://dx.doi.org/10.3389/fpsyt.2019.00869] [PMID: 31824359]
[179]
Fornito, A.; Zalesky, A.; Breakspear, M. The connectomics of brain disorders. Nat. Rev. Neurosci., 2015, 16(3), 159-172.
[http://dx.doi.org/10.1038/nrn3901] [PMID: 25697159]
[180]
Accolla, E.A.; Dukart, J.; Helms, G.; Weiskopf, N.; Kherif, F.; Lutti, A.; Chowdhury, R.; Hetzer, S.; Haynes, J.D.; Kühn, A.A.; Draganski, B. Brain tissue properties differentiate between motor and limbic basal ganglia circuits. Hum. Brain Mapp., 2014, 35(10), 5083-5092.
[http://dx.doi.org/10.1002/hbm.22533] [PMID: 24777915]
[181]
Friston, K.J.; Penny, W.; Phillips, C.; Kiebel, S.; Hinton, G.; Ashburner, J. Classical and Bayesian inference in neuroimaging: theory. Neuroimage, 2002, 16(2), 465-483.
[http://dx.doi.org/10.1006/nimg.2002.1090] [PMID: 12030832]
[182]
Crinion, J.; Holland, A.L.; Copland, D.A.; Thompson, C.K.; Hillis, A.E. Neuroimaging in aphasia treatment research: quantifying brain lesions after stroke. Neuroimage, 2013, 73, 208-214.
[http://dx.doi.org/10.1016/j.neuroimage.2012.07.044] [PMID: 22846659]
[183]
Crinion, J.T.; Leff, A.P. Recovery and treatment of aphasia after stroke: functional imaging studies. Curr. Opin. Neurol., 2007, 20(6), 667-673.
[http://dx.doi.org/10.1097/WCO.0b013e3282f1c6fa] [PMID: 17992087]
[184]
Geva, S.; Baron, J-C.; Jones, P.S.; Price, C.J.; Warburton, E.A. A comparison of VLSM and VBM in a cohort of patients with post-stroke aphasia. Neuroimage Clin., 2012, 1(1), 37-47.
[http://dx.doi.org/10.1016/j.nicl.2012.08.003] [PMID: 24179735]
[185]
Friston, K.J.; Price, C.J. Modules and brain mapping. Cogn. Neuropsychol., 2011, 28(3-4), 241-250.
[http://dx.doi.org/10.1080/02643294.2011.558835] [PMID: 21416411]
[186]
Parr, T.; Friston, K.J. Cerebral cortex (New York, N.Y. : 1991); , 2018, 28, pp. (2)777-790.
[187]
Price, C.J.; Friston, K.J. Functional imaging studies of neuropsychological patients: applications and limitations. Neurocase, 2002, 8(5), 345-354.
[http://dx.doi.org/10.1076/neur.8.4.345.16186] [PMID: 12499409]
[188]
Friston, K.; Chu, C.; Mourão-Miranda, J.; Hulme, O.; Rees, G.; Penny, W.; Ashburner, J. Bayesian decoding of brain images. Neuroimage, 2008, 39(1), 181-205.
[http://dx.doi.org/10.1016/j.neuroimage.2007.08.013] [PMID: 17919928]
[189]
Josse, G.; Kherif, F.; Flandin, G.; Seghier, M.L.; Price, C.J. Predicting language lateralization from gray matter. J. Neurosci., 2009, 29(43), 13516-13523.
[http://dx.doi.org/10.1523/JNEUROSCI.1680-09.2009] [PMID: 19864564]
[190]
Kawasaki, Y.; Suzuki, M.; Kherif, F.; Takahashi, T.; Zhou, S.Y.; Nakamura, K.; Matsui, M.; Sumiyoshi, T.; Seto, H.; Kurachi, M. Multivariate voxel-based morphometry successfully differentiates schizophrenia patients from healthy controls. Neuroimage, 2007, 34(1), 235-242.
[http://dx.doi.org/10.1016/j.neuroimage.2006.08.018] [PMID: 17045492]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy