Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Botulinum Toxin as a Biological Warfare Agent: Poisoning, Diagnosis and Countermeasures

Author(s): Miroslav Pohanka*

Volume 20, Issue 10, 2020

Page: [865 - 874] Pages: 10

DOI: 10.2174/1389557520666200228105312

Price: $65

Abstract

Botulinum toxin is a neurotoxin produced by Clostridium botulinum and some other relative species. It causes a lethal disease called botulism. It can enter the body via infections by Clostridium (e.g. wound and children botulism) or by direct contact with the toxin or eating contaminated food (food-borne botulism). Botulinum toxin is also considered as a relevant biological warfare agent with an expected high number of causalities when misused for bioterrorist or military purposes. The current paper surveys the actual knowledge about botulinum toxin pathogenesis, the manifestation of poisoning, and current trends in diagnostics and therapeutics. Relevant and recent literature is summarized in this paper.

Keywords: Acetylcholine, antiserum, biological warfare agent, botulinum toxin, botulism, Clostridium botulinum, detection, diagnosis, poisoning.

Graphical Abstract
[1]
Janik, E.; Ceremuga, M.; Saluk-Bijak, J.; Bijak, M. Biological toxins as the potential tools for bioterrorism. Int. J. Mol. Sci., 2019, 20(5), E1181
[http://dx.doi.org/10.3390/ijms20051181] [PMID: 30857127]
[2]
Kwon, E.H.; Reisler, R.B.; Cardile, A.P.; Cieslak, T.J.; D’Onofrio, M.J.; Hewlett, A.L.; Martins, K.A.; Ritchie, C.; Kortepeter, M.G. Distinguishing respiratory features of category a/b potential bioterrorism agents from community-acquired pneumonia. Health Secur., 2018, 16(4), 224-238.
[http://dx.doi.org/10.1089/hs.2018.0017] [PMID: 30096247]
[3]
Pohanka, M. Current trends in the biosensors for biological warfare agents assay. Materials (Basel), 2019, 12(14), E2303
[http://dx.doi.org/10.3390/ma12142303] [PMID: 31323857]
[4]
Oda, M.; Terao, Y.; Sakurai, J.; Nagahama, M. Membrane-binding mechanism of clostridium perfringens alpha-toxin. Toxins (Basel), 2015, 7(12), 5268-5275.
[http://dx.doi.org/10.3390/toxins7124880] [PMID: 26633512]
[5]
Nagahama, M.; Takehara, M.; Rood, J.I. Histotoxic clostridial infections. Microbiol. Spectr., 2018, 6(4), 0024-2018.
[6]
Hifumi, T.; Nakano, D.; Chiba, J.; Takahashi, M.; Yamamoto, A.; Fujisawa, Y.; Kawakita, K.; Kuroda, Y.; Nishiyama, A. Combined therapy with gas gangrene antitoxin and recombinant human soluble thrombomodulin for Clostridium perfringens sepsis in a rat model. Toxicon, 2018, 141, 112-117.
[http://dx.doi.org/10.1016/j.toxicon.2017.12.043] [PMID: 29246581]
[7]
Uzal, F.A.; Navarro, M.A.; Li, J.; Freedman, J.C.; Shrestha, A.; McClane, B.A. Comparative pathogenesis of enteric clostridial infections in humans and animals. Anaerobe, 2018, 53, 11-20.
[http://dx.doi.org/10.1016/j.anaerobe.2018.06.002] [PMID: 29883627]
[8]
Rossetto, O.; Scorzeto, M.; Megighian, A.; Montecucco, C. Tetanus neurotoxin. Toxicon, 2013, 66, 59-63.
[http://dx.doi.org/10.1016/j.toxicon.2012.12.027] [PMID: 23419592]
[9]
Bleck, T.P. Pharmacology of tetanus. Clin. Neuropharmacol., 1986, 9(2), 103-120.
[http://dx.doi.org/10.1097/00002826-198604000-00001] [PMID: 3518923]
[10]
Bhakdi, S.; Weller, U.; Walev, I.; Martin, E.; Jonas, D.; Palmer, M. A guide to the use of pore-forming toxins for controlled permeabilization of cell membranes. Med. Microbiol. Immunol. (Berl.), 1993, 182(4), 167-175.
[http://dx.doi.org/10.1007/BF00219946] [PMID: 8232069]
[11]
Chapeton-Montes, D.; Plourde, L.; Bouchier, C.; Ma, L.; Diancourt, L.; Criscuolo, A.; Popoff, M.R.; Bruggemann, H. The population structure of clostridium tetani deduced from its pan-genome. Sci. Rep., 2019, 9(1), 019-47551.
[http://dx.doi.org/10.1038/s41598-019-47551-4]
[12]
Dong, M.; Masuyer, G.; Stenmark, P. Botulinum and tetanus neurotoxins. Annu. Rev. Biochem., 2019, 88, 811-837.
[http://dx.doi.org/10.1146/annurev-biochem-013118-111654] [PMID: 30388027]
[13]
Matovic, K.; Misic, D.; Karabasil, N.; Nedic, N.; Dmitric, M.; Jevtic, G.; Ciric, J. Clostridium botulinum spores in european honey bees from serbia. J. Apic. Res., 2019, 58(3), 420-426.
[http://dx.doi.org/10.1080/00218839.2018.1560654]
[14]
Grenda, T.; Grabczak, M.; Sieradzki, Z.; Kwiatek, K.; Pohorecka, K.; Skubida, M.; Bober, A. Clostridium botulinum spores in Polish honey samples. J. Vet. Sci., 2018, 19(5), 635-642.
[http://dx.doi.org/10.4142/jvs.2018.19.5.635] [PMID: 29929360]
[15]
Wysok, B.; Wojtacka, J.; Karczmarczyk, R.; Wiszniewska-Laszczych, A.; Gomolka-Pawlicka, M.; Szteyn, J.; Liedtke, K. Honey sold directly by producers in the silesian region of poland as a source of clostridium botulinum types a, b, e, and f. Czech J. Food Sci., 2017, 35(3), 194-199.
[http://dx.doi.org/10.17221/376/2016-CJFS]
[16]
Muller, C.E. Silage and haylage for horses. Grass Forage Sci., 2018, 73(4), 815-827.
[http://dx.doi.org/10.1111/gfs.12387]
[17]
Guizelini, C.C.; Lemos, R.A.A.; de Paula, J.L.P.; Pupin, R.C.; Gomes, D.C.; Barros, C.S.L.; Neves, D.A.; Alcântara, L.O.B.; Silva, R.O.S.; Lobato, F.C.F.; Martins, T.B. Type C botulism outbreak in feedlot cattle fed contaminated corn silage. Anaerobe, 2019, 55, 103-106.
[http://dx.doi.org/10.1016/j.anaerobe.2018.11.003] [PMID: 30408576]
[18]
Austin, J.W.; Dodds, K.L.; Blanchfield, B.; Farber, J.M. Growth and toxin production by Clostridium botulinum on inoculated fresh-cut packaged vegetables. J. Food Prot., 1998, 61(3), 324-328.
[http://dx.doi.org/10.4315/0362-028X-61.3.324] [PMID: 9708304]
[19]
Lilly, T., Jr; Solomon, H.M.; Rhodehamel, E.J. Incidence of clostridium botulinum in vegetables packaged under vacuum or modified atmosphere. J. Food Prot., 1996, 59(1), 59-61.
[http://dx.doi.org/10.4315/0362-028X-59.1.59] [PMID: 31158955]
[20]
Keto-Timonen, R.; Lindström, M.; Puolanne, E.; Niemistö, M.; Korkeala, H. Inhibition of toxigenesis of group II (nonproteolytic) Clostridium botulinum type B in meat products by using a reduced level of nitrite. J. Food Prot., 2012, 75(7), 1346-1349.
[http://dx.doi.org/10.4315/0362-028X.JFP-12-056] [PMID: 22980023]
[21]
Hospital, X.F.; Hierro, E.; Stringer, S.; Fernández, M. A study on the toxigenesis by Clostridium botulinum in nitrate and nitrite-reduced dry fermented sausages. Int. J. Food Microbiol., 2016, 218, 66-70.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2015.11.009] [PMID: 26619314]
[22]
Martrenchar, A.; Djossou, F.; Stagnetto, C.; Dupuy, C.; Brulez, E.; Attica, C.; Egmann, G.; Gruenfeld, J.; Fontanella, J.M.; Popoff, M.R. Is botulism type C transmissible to human by consumption of contaminated poultry meat? Analysis of a suspect outbreak in French Guyana. Anaerobe, 2019, 56, 49-50.
[http://dx.doi.org/10.1016/j.anaerobe.2019.02.008] [PMID: 30763675]
[23]
Rosen, H.E.; Kimura, A.C.; Crandall, J.; Poe, A.; Nash, J.; Boetzer, J.; Tecle, S.; Mukhopadhyay, R.; McAuley, K.; Kasirye, O.; Garza, A.; Shahkarami, M.; Chaturvedi, V.; Kiang, D.; Vidanes, J.; McCoy, K.; Barcellos, M.; Derby, T.; Jain, S.; Vugia, D.J. Foodborne botulism outbreak associated with commercial nacho cheese sauce from a gas station market. Clin. Infect. Dis., 2019, 7(5524350), ciz479
[http://dx.doi.org/10.1093/cid/ciz479] [PMID: 31247064]
[24]
Glass, K.A.; Kaufman, K.M.; Smith, A.L.; Johnson, E.A.; Chen, J.H.; Hotchkiss, J. Toxin production by Clostridium botulinum in pasteurized milk treated with carbon dioxide. J. Food Prot., 1999, 62(8), 872-876.
[http://dx.doi.org/10.4315/0362-028X-62.8.872] [PMID: 10456739]
[25]
O’Mahony, M.; Mitchell, E.; Gilbert, R.J.; Hutchinson, D.N.; Begg, N.T.; Rodhouse, J.C.; Morris, J.E. An outbreak of foodborne botulism associated with contaminated hazelnut yoghurt. Epidemiol. Infect., 1990, 104(3), 389-395.
[http://dx.doi.org/10.1017/S0950268800047403] [PMID: 2347382]
[26]
Juliao, P.C.; Maslanka, S.; Dykes, J.; Gaul, L.; Bagdure, S.; Granzow-Kibiger, L.; Salehi, E.; Zink, D.; Neligan, R.P.; Barton-Behravesh, C.; Lúquez, C.; Biggerstaff, M.; Lynch, M.; Olson, C.; Williams, I.; Barzilay, E.J. National outbreak of type a foodborne botulism associated with a widely distributed commercially canned hot dog chili sauce. Clin. Infect. Dis., 2013, 56(3), 376-382.
[http://dx.doi.org/10.1093/cid/cis901] [PMID: 23097586]
[27]
Kim, M.; Zahn, M.; Reporter, R.; Askar, Z.; Green, N.; Needham, M.; Rosen, H.; Kimura, A.; Terashita, D. Outbreak of foodborne botulism associated with prepackaged pouches of liquid herbal tea. Open Forum Infect. Dis., 2019, 6(2), ofz014
[http://dx.doi.org/10.1093/ofid/ofz014] [PMID: 30793007]
[28]
Miyake, M.; Kohda, T.; Yasugi, M.; Sakanoue, H.; Hirata, S. Spores of of anaerobic bacteria: Characteristics and behaviors during restoration from damaged status. J. Jpn. Soc. Food Sci. Technol.-. Nippon Shokuhin Kagaku Kogaku Kaishi, 2018, 65(3), 142-147.
[http://dx.doi.org/10.3136/nskkk.65.142]
[29]
Camerini, S.; Marcocci, L.; Picarazzi, L.; Iorio, E.; Ruspantini, I.; Pietrangeli, P.; Crescenzi, M.; Franciosa, G. Type e botulinum neurotoxin-producing clostridium butyricum strains are aerotolerant during vegetative growth. Systems, 2019, 4(2), 00299-00218.
[http://dx.doi.org/10.1128/mSystems.00299-18] [PMID: 31058231]
[30]
Ma, L.; Zhang, G.; Sobel, J.; Doyle, M.P. Evaluation of the effect of acetylsalicylic acid on Clostridium botulinum growth and toxin production. J. Food Prot., 2007, 70(12), 2860-2863.
[http://dx.doi.org/10.4315/0362-028X-70.12.2860] [PMID: 18095444]
[31]
Daifas, D.P.; Smith, J.P.; Blanchfield, B.; Cadieux, B.; Sanders, G.; Austin, J.W. Effect of ethanol on the growth of Clostridium botulinum. J. Food Prot., 2003, 66(4), 610-617.
[http://dx.doi.org/10.4315/0362-028X-66.4.610] [PMID: 12696684]
[32]
Hustad, G.O.; Cerveny, J.G.; Trenk, H.; Deibel, R.H.; Kautter, D.A.; Fazio, T.; Johnston, R.W.; Kolari, O.E. Effect of sodium nitrite and sodium nitrate on botulinal toxin production and nitrosamine formation in wieners. Appl. Microbiol., 1973, 26(1), 22-26.
[http://dx.doi.org/10.1128/AEM.26.1.22-26.1973] [PMID: 4580194]
[33]
Tanaka, N.; Kovats, S.K.; Guggisberg, J.A.; Meske, L.M.; Doyle, M.P. Evaluation of the bacteriological safety of low-salt miso. J. Food Prot., 1985, 48(5), 435-437.
[http://dx.doi.org/10.4315/0362-028X-48.5.435] [PMID: 30943639]
[34]
Kovats, S.K.; Doyle, M.P.; Tanaka, N. Evaluation of the microbiological safety of tofu. J. Food Prot., 1984, 47(8), 618-622.
[http://dx.doi.org/10.4315/0362-028X-47.8.618] [PMID: 30934408]
[35]
Kimura, B.; Kimura, R.; Fukaya, T.; Sakuma, K.; Miya, S.; Fujii, T. Growth and toxin production of proteolytic Clostridium botulinum in aseptically steamed rice products at pH 4.6 to 6.8, packed under modified atmosphere, using a deoxidant pack. J. Food Prot., 2008, 71(3), 468-472.
[http://dx.doi.org/10.4315/0362-028X-71.3.468] [PMID: 18389687]
[36]
Konagaya, Y.; Urakami, H.; Hoshino, J.; Kobayashi, A.; Sasagawa, A.; Yamazaki, A.; Kozaki, S.; Tanaka, N. Change of thermal inactivation of Clostridium botulinum spores during rice cooking. J. Food Prot., 2009, 72(11), 2400-2406.
[http://dx.doi.org/10.4315/0362-028X-72.11.2400] [PMID: 19903408]
[37]
Notermans, S.; Dufrenne, J.; Keybets, M.J.H. Use of preservatives to delay toxin formation by clostridium botulinum (type b, strain okra) in vacuum-packed, cooked potatoes. J. Food Prot., 1985, 48(10), 851-855.
[http://dx.doi.org/10.4315/0362-028X-48.10.851] [PMID: 30939694]
[38]
Licciardello, J.J.; Nickerson, J.T.; Ribich, C.A.; Goldblith, S.A. Thermal inactivation of type E botulinum toxin. Appl. Microbiol., 1967, 15(2), 249-256.
[http://dx.doi.org/10.1128/AEM.15.2.249-256.1967] [PMID: 5339838]
[39]
Baldwin, M.R.; Barbieri, J.T. Association of botulinum neurotoxins with synaptic vesicle protein complexes. Toxicon, 2009, 54(5), 570-574.
[http://dx.doi.org/10.1016/j.toxicon.2009.01.040] [PMID: 19362106]
[40]
Horowitz, B.Z. Type E botulism. Clin. Toxicol. (Phila.), 2010, 48(9), 880-895.
[http://dx.doi.org/10.3109/15563650.2010.526943] [PMID: 21171846]
[41]
Atassi, M.Z.; Oshima, M. Structure, activity, and immune (T and B cell) recognition of botulinum neurotoxins. Crit. Rev. Immunol., 1999, 19(3), 219-260.
[PMID: 10422600]
[42]
Zhang, S.; Masuyer, G.; Zhang, J.; Shen, Y.; Lundin, D.; Henriksson, L.; Miyashita, S.I.; Martínez-Carranza, M.; Dong, M.; Stenmark, P. Identification and characterization of a novel botulinum neurotoxin. Nat. Commun., 2017, 8(14130), 14130.
[http://dx.doi.org/10.1038/ncomms14130] [PMID: 28770820]
[43]
Lam, K.H.; Sikorra, S.; Weisemann, J.; Maatsch, H.; Perry, K.; Rummel, A.; Binz, T.; Jin, R. Structural and biochemical characterization of the protease domain of the mosaic botulinum neurotoxin type HA. Pathog. Dis., 2018, 76(4)
[http://dx.doi.org/10.1093/femspd/fty044] [PMID: 29688327]
[44]
Hackett, G.; Moore, K.; Burgin, D.; Hornby, F.; Gray, B.; Elliott, M.; Mir, I.; Beard, M. Purification and characterization of recombinant botulinum neurotoxin serotype fa, also known as serotype h. Toxins (Basel), 2018, 10(5), E195
[http://dx.doi.org/10.3390/toxins10050195] [PMID: 29751611]
[45]
Fonfria, E.; Elliott, M.; Beard, M.; Chaddock, J.A.; Krupp, J. Engineering botulinum toxins to improve and expand targeting and snare cleavage activity. Toxins (Basel), 2018, 10(7), E278
[http://dx.doi.org/10.3390/toxins10070278] [PMID: 29973505]
[46]
Barash, J.R.; Castles, J.B., III; Arnon, S.S. Antimicrobial susceptibility of 260 Clostridium botulinum type a, b, ba, and bf strains and a neurotoxigenic clostridium baratii type f strain isolated from california infant botulism patients. Antimicrob. Agents Chemother., 2018, 62(12), e01594-01618.
[http://dx.doi.org/10.1128/AAC.01594-18] [PMID: 30275093]
[47]
Halpin, J.L.; Hill, K.; Johnson, S.L.; Bruce, D.C.; Shirey, T.B.; Dykes, J.K.; Lúquez, C. Finished whole-genome sequences of clostridium butyricum toxin subtype e4 and clostridium baratii toxin subtype f7 strains. Microbiol. Resour. Ann, 2017, 5(29)
[http://dx.doi.org/10.1128/genomeA.00375-17]
[48]
Hannett, G.E.; Schaffzin, J.K.; Davis, S.W.; Fage, M.P.; Schoonmaker-Bopp, D.; Dumas, N.B.; Musser, K.A.; Egan, C. Two cases of adult botulism caused by botulinum neurotoxin producing Clostridium baratii. Anaerobe, 2014, 30, 178-180.
[http://dx.doi.org/10.1016/j.anaerobe.2014.10.005] [PMID: 25463969]
[49]
Lee, J.C.; Hwang, H.J.; Sakaguchi, Y.; Yamamoto, Y.; Arimitsu, H.; Tsuji, T.; Watanabe, T.; Ohyama, T.; Tsuchiya, T.; Oguma, K. C terminal half fragment (50 kDa) of heavy chain components of Clostridium botulinum type C and D neurotoxins can be used as an effective vaccine. Microbiol. Immunol., 2007, 51(4), 445-455.
[http://dx.doi.org/10.1111/j.1348-0421.2007.tb03919.x] [PMID: 17446685]
[50]
Maksymowych, A.B.; Reinhard, M.; Malizio, C.J.; Goodnough, M.C.; Johnson, E.A.; Simpson, L.L. Pure botulinum neurotoxin is absorbed from the stomach and small intestine and produces peripheral neuromuscular blockade. Infect. Immun., 1999, 67(9), 4708-4712.
[http://dx.doi.org/10.1128/IAI.67.9.4708-4712.1999] [PMID: 10456920]
[51]
Kumaran, D.; Adler, M.; Levit, M.; Krebs, M.; Sweeney, R.; Swaminathan, S. Interactions of a potent cyclic peptide inhibitor with the light chain of botulinum neurotoxin A: Insights from X-ray crystallography. Bioorg. Med. Chem., 2015, 23(22), 7264-7273.
[http://dx.doi.org/10.1016/j.bmc.2015.10.024] [PMID: 26522088]
[52]
White, J.D.; Li, Y.; Kim, J.; Terinek, M. A novel synthesis of (-)-huperzine A via tandem intramolecular aza-Prins cyclization-cyclobutane fragmentation. Org. Lett., 2013, 15(4), 882-885.
[http://dx.doi.org/10.1021/ol400012s] [PMID: 23346936]
[53]
Gul, N.; Smith, L.A.; Ahmed, S.A. Light chain separated from the rest of the type a botulinum neurotoxin molecule is the most catalytically active form. PLoS One, 2010, 5(9), e12872
[http://dx.doi.org/10.1371/journal.pone.0012872] [PMID: 20877571]
[54]
Gardner, A.P.; Barbieri, J.T. Light chain diversity among the botulinum neurotoxins. Toxins (Basel), 2018, 10(7), E268
[http://dx.doi.org/10.3390/toxins10070268] [PMID: 30004421]
[55]
Lin, P.; Liu, D.; Wei, W.W.; Guo, J.B.; Ke, S.M.; Zeng, X.R.; Chen, S. A novel protein binding strategy for energy-transfer-based photoelectrochemical detection of enzymatic activity of botulinum neurotoxin a. Electrochem. Commun., 2018, 97, 114-118.
[http://dx.doi.org/10.1016/j.elecom.2018.11.004]
[56]
Luo, S.; Li, T.; Wang, Q.; Tian, R.; Liu, H.; Fang, H.; Chen, F.; Wang, H. Development of a fusion protein SNVP as substrate for assaying multi-serotype botulinum neurotoxins. Anal. Biochem., 2014, 463, 75-81.
[http://dx.doi.org/10.1016/j.ab.2013.06.019] [PMID: 23851341]
[57]
Dunant, Y.; Israël, M. Neurotransmitter release at rapid synapses. Biochimie, 2000, 82(4), 289-302.
[http://dx.doi.org/10.1016/S0300-9084(00)00194-2] [PMID: 10865118]
[58]
Seagar, M.; Takahashi, M. Interactions between presynaptic calcium channels and proteins implicated in synaptic vesicle trafficking and exocytosis. J. Bioenerg. Biomembr., 1998, 30(4), 347-356.
[http://dx.doi.org/10.1023/A:1021937605818] [PMID: 9758331]
[59]
Pohanka, M. Alpha7 nicotinic acetylcholine receptor is a target in pharmacology and toxicology. Int. J. Mol. Sci., 2012, 13(2), 2219-2238.
[http://dx.doi.org/10.3390/ijms13022219] [PMID: 22408449]
[60]
Liu, Y.; Sugiura, Y.; Südhof, T.C.; Lin, W. Ablation of all synaptobrevin vsnares blocks evoked but not spontaneous neurotransmitter release at neuromuscular synapses. J. Neurosci., 2019, 39(31), 6049-6066.
[http://dx.doi.org/10.1523/JNEUROSCI.0403-19.2019] [PMID: 31160536]
[61]
Sudhof, T.C. The synaptic vesicle cycle. Annu. Rev. Neurosci., 2004, 27, 509-547.
[http://dx.doi.org/10.1146/annurev.neuro.26.041002.131412] [PMID: 15217342]
[62]
Ambrožová, H. Botulism - a rare but still present, life-threatening disease. Epidemiol. Mikrobiol. Imunol., 2019, 68(1), 33-38.
[PMID: 31181950]
[63]
Sobel, J. Botulism. Clin. Infect. Dis., 2005, 41(8), 1167-1173.
[http://dx.doi.org/10.1086/444507] [PMID: 16163636]
[64]
Balali-Mood, M.; Moshiri, M.; Etemad, L. Medical aspects of bio-terrorism. Toxicon, 2013, 69, 131-142.
[http://dx.doi.org/10.1016/j.toxicon.2013.01.005] [PMID: 23339855]
[65]
Horowitz, B.Z. Botulinum toxin. Crit. Care Clin., 2005, 21(4), 825-839, viii..,
[http://dx.doi.org/10.1016/j.ccc.2005.06.008] [PMID: 16168317]
[66]
Kim, S.B.; Ban, B.; Jung, K.S.; Yang, G.H. A pharmacodynamic comparison study of different botulinum toxin type A preparations. Dermatol. Surg., 2013, 39(1 Pt 2), 150-154.
[http://dx.doi.org/10.1111/dsu.12070] [PMID: 23301818]
[67]
Pearce, L.B.; Borodic, G.E.; Johnson, E.A.; First, E.R.; MacCallum, R. The median paralysis unit: a more pharmacologically relevant unit of biologic activity for botulinum toxin. Toxicon, 1995, 33(2), 217-227.
[http://dx.doi.org/10.1016/0041-0101(94)00137-W] [PMID: 7597725]
[68]
Rummel, A. The long journey of botulinum neurotoxins into the synapse. Toxicon, 2015, 107(Pt A), 9-24.
[http://dx.doi.org/10.1016/j.toxicon.2015.09.009] [PMID: 26363288]
[69]
Ghosal, K.J.; Patel, K.; Singh, B.R.; Hale, M.L. Role of critical elements in botulinum neurotoxin complex in toxin routing across intestinal and bronchial barriers. PLoS One, 2018, 13(7), e0199524
[http://dx.doi.org/10.1371/journal.pone.0199524] [PMID: 29975725]
[70]
Huang, Z.; Lian, Y.; Chen, Y.; Li, S.; Zhang, H.; Xie, N.; Zheng, Y.; Wu, S.; Wang, Y.; Cheng, W.; Zhang, Q.; Wang, C.; Shi, Y.; Xie, N. Intranasal delivery of botulinum neurotoxin a protects against hippocampal neuron death in the lithium-pilocarpine rat model. Neurochem. Res., 2019, 44(5), 1262-1268.
[http://dx.doi.org/10.1007/s11064-019-02775-8] [PMID: 30877518]
[71]
Shuo, L.; Ting, Y.; KeLun, W.; Rui, Z.; Rui, Z.; Hang, W. Efficacy and possible mechanisms of botulinum toxin treatment of oily skin. J. Cosmet. Dermatol., 2019, 18(2), 451-457.
[http://dx.doi.org/10.1111/jocd.12866] [PMID: 30697928]
[72]
Cao, Y.; Yang, J.P.; Zhu, X.G.; Zhu, J.; Chang, H.Q.; Guo, S.H.; Luo, D.; Zhou, B.R. A comparative in vivo study on three treatment approaches to applying topical botulinum toxin a for crow’s feet. BioMed Res. Int., 2018, 2018, 6235742
[http://dx.doi.org/10.1155/2018/6235742] [PMID: 30057908]
[73]
Humphrey, S.; Jacky, B.; Gallagher, C.J. Preventive, cumulative effects of botulinum toxin type a in facial aesthetics. Dermatol. Surg., 2017, 43, S244-S251.
[http://dx.doi.org/10.1097/DSS.0000000000001404]
[74]
Ibatullin, R.A.; Magjanov, R.V. Case of iatrogenic botulism after botulinotherapy in clinical practice. Ter. Arkh., 2018, 90(11), 102-104.
[PMID: 30701823]
[75]
Cobb, D.B.; Watson, W.A.; Fernandez, M.C. Botulism-like syndrome after injections of botulinum toxin. Vet. Hum. Toxicol., 2000, 42(3), 163.
[PMID: 10839321]
[76]
Leonardi, L.; Haggiag, S.; Petrucci, A.; Lispi, L. Electrophysiological abnormalities in iatrogenic botulism: Two case reports and review of the literature. J. Clin. Neurosci., 2019, 60, 138-141.
[http://dx.doi.org/10.1016/j.jocn.2018.10.059] [PMID: 30348587]
[77]
Fortunato, F.; Martinelli, D.; Cappelli, M.G.; Taurisano, P.; Barbuti, G.; Quarto, M.; Prato, R. Food-borne botulism in Apulia region, Italy: an expert witness testimony. Ann. Ig., 2019, 31(2), 181-185.
[PMID: 30714615]
[78]
Le Marechal, C.; Fourour, S.; Ballan, V.; Rouxel, S.; Souillard, R.; Chemaly, M. Detection of clostridium botulinum group iii in environmental samples from farms by real-time pcr using four commercial DNA extraction kits. BMC Res. Notes, 2018, 11(1), 018-3549.
[http://dx.doi.org/10.1186/s13104-018-3549-5]
[79]
Mariano, V.; Nardi, A.; Gradassi, S.; De Santis, P.; Anniballi, F.; Bilei, S.; Scholl, F.; Auricchio, B.; Bielli, C.; Culicchi, M.; Casali De Rosa, G.L. A severe outbreak of botulism in cattle in Central Italy. Vet. Ital., 2019, 55(1), 57-62.
[PMID: 30951182]
[80]
Maikanov, B.; Mustafina, R.; Auteleyeva, L.; Wiśniewski, J.; Anusz, K.; Grenda, T.; Kwiatek, K.; Goldsztejn, M.; Grabczak, M. Clostridium botulinum and clostridium perfringens occurrence in kazakh honey samples. Toxins (Basel), 2019, 11(8), E472
[http://dx.doi.org/10.3390/toxins11080472] [PMID: 31412583]
[81]
Kasap, S.; Batmaz, H.; Kocaturk, M.; Gessler, F.; Catik, S.; Topal, O. Botulism (type a) in a horse - case report. Acta Vet. Brno, 2016, 85(1), 69.
[http://dx.doi.org/10.2754/avb201685010071]
[82]
Bano, L.; Drigo, I.; Tonon, E.; Berto, G.; Tavella, A.; Woudstra, C.; Capello, K.; Agnoletti, F. Evidence for a natural humoral response in dairy cattle affected by persistent botulism sustained by non-chimeric type C strains. Anaerobe, 2015, 36, 25-29.
[http://dx.doi.org/10.1016/j.anaerobe.2015.09.007] [PMID: 26432776]
[83]
Pohanka, M. Evaluation of immunoglobulin production during tularaemia infection in balb/c mouse model. Acta Vet. Brno, 2007, 76, 579-584.
[http://dx.doi.org/10.2754/avb200776040579]
[84]
Jenko, K.L.; Zhang, Y.; Kostenko, Y.; Fan, Y.; Garcia-Rodriguez, C.; Lou, J.; Marks, J.D.; Varnum, S.M. Development of an ELISA microarray assay for the sensitive and simultaneous detection of ten biodefense toxins. Analyst (Lond.), 2014, 139(20), 5093-5102.
[http://dx.doi.org/10.1039/C4AN01270D] [PMID: 25112421]
[85]
Sarita, R.; Ponmariappan, S.; Sharma, A.; Kamboj, D.V.; Jain, A.K. Development of immunodetection system for botulinum neurotoxin serotype E. Indian J. Med. Res., 2018, 147(6), 603-610.
[http://dx.doi.org/10.4103/ijmr.IJMR_1375_16] [PMID: 30168493]
[86]
Wang, D.; Baudys, J.; Hoyt, K.; Barr, J.R.; Kalb, S.R. Sensitive detection of type G botulinum neurotoxin through Endopep-MS peptide substrate optimization. Anal. Bioanal. Chem., 2019, 411(21), 5489-5497.
[http://dx.doi.org/10.1007/s00216-019-01926-8] [PMID: 31172236]
[87]
Kalb, S.R.; Baudys, J.; Barr, J.R. Detection of the ha-33 protein in botulinum neurotoxin type g complex by mass spectrometry. BMC Microbiol., 2015, 15(227), 015-0567.
[http://dx.doi.org/10.1186/s12866-015-0567-5]
[88]
Ching, K.H.; Lin, A.; McGarvey, J.A.; Stanker, L.H.; Hnasko, R. Rapid and selective detection of botulinum neurotoxin serotype-A and -B with a single immunochromatographic test strip. J. Immunol. Methods, 2012, 380(1-2), 23-29.
[http://dx.doi.org/10.1016/j.jim.2012.03.008] [PMID: 22504369]
[89]
Bano, L.; Tonon, E.; Drigo, I.; Pirazzini, M.; Guolo, A.; Farina, G.; Agnoletti, F.; Montecucco, C. Detection of clostridium tetani neurotoxins inhibited in vivo by botulinum antitoxin b: Potential for misleading mouse test results in food controls. Toxins (Basel), 2018, 10(6), E248
[http://dx.doi.org/10.3390/toxins10060248] [PMID: 29921757]
[90]
Taylor, K.; Gericke, C.; Alvarez, L.R. Botulinum toxin testing on animals is still a Europe-wide issue. ALTEX, 2019, 36(1), 81-90.
[http://dx.doi.org/10.14573/altex.1807101] [PMID: 30303513]
[91]
Ohyama, N.; Torio, M.; Nakashima, K.; Koga, Y.; Kanno, S.; Nishio, H.; Nishiyama, K.; Sasazuki, M.; Kato, H.; Asakura, H.; Akamine, S.; Sanefuji, M.; Ishizaki, Y.; Sakai, Y.; Ohga, S. A childhood-onset intestinal toxemia botulism during chemotherapy for relapsed acute leukemia. Ann. Clin. Microbiol. Antimicrob., 2017, 16(1), 017-0240.
[http://dx.doi.org/10.1186/s12941-017-0240-y]
[92]
Mazuet, C.; Yoon, E.J.; Boyer, S.; Pignier, S.; Blanc, T.; Doehring, I.; Meziane-Cherif, D.; Dumant-Forest, C.; Sautereau, J.; Legeay, C.; Bouvet, P.; Bouchier, C.; Quijano-Roy, S.; Pestel-Caron, M.; Courvalin, P.; Popoff, M.R. A penicillin- and metronidazole-resistant Clostridium botulinum strain responsible for an infant botulism case. Clin. Microbiol. Infect., 2016, 22(7), 644.e7-644.e12.
[http://dx.doi.org/10.1016/j.cmi.2016.04.011] [PMID: 27108966]
[93]
Richardson, J.S.; Parrera, G.S.; Astacio, H.; Sahota, H.; Anderson, D.M.; Hall, C.; Babinchak, T. Safety and clinical outcomes of an equine-derived heptavalent botulinum antitoxin treatment for confirmed or suspected botulism in the united states. Clin. Infect. Dis., 2019, 15(5519775), ciz515
[http://dx.doi.org/10.1093/cid/ciz515] [PMID: 31209461]
[94]
Yu, P.A.; Lin, N.H.; Mahon, B.E.; Sobel, J.; Yu, Y.; Mody, R.K.; Gu, W.; Clements, J.; Kim, H.J.; Rao, A.K. Safety and improved clinical outcomes in patients treated with new equine-derived heptavalent botulinum antitoxin. Clin. Infect. Dis., 2017, 66(suppl_1), S57-S64.
[95]
Emanuel, A.; Qiu, H.; Barker, D.; Takla, T.; Gillum, K.; Neimuth, N.; Kodihalli, S. Efficacy of equine botulism antitoxin in botulism poisoning in a guinea pig model. PLoS One, 2019, 14(1), e0209019
[http://dx.doi.org/10.1371/journal.pone.0209019] [PMID: 30633746]
[96]
Kodihalli, S.; Emanuel, A.; Takla, T.; Hua, Y.; Hobbs, C.; LeClaire, R.; O’Donnell, D.C. Therapeutic efficacy of equine botulism antitoxin in Rhesus macaques. PLoS One, 2017, 12(11), e0186892
[http://dx.doi.org/10.1371/journal.pone.0186892] [PMID: 29166654]
[97]
Yasmin, S.; Adams, L.; Briggs, G.; Weiss, J.; Bisgard, K.; Anderson, S.; Tsang, C.; Henke, E.; Vasiq, M.; Komatsu, K. Outbreak of botulism after consumption of illicit prison-brewed alcohol in a maximum security prison--arizona, 2012. J. Correct. Health Care, 2015, 21(4), 327-334.
[http://dx.doi.org/10.1177/1078345815604752] [PMID: 26377381]
[98]
Khouri, J.M.; Motter, R.N.; Arnon, S.S. Safety and immunogenicity of investigational recombinant botulinum vaccine, rBV A/B, in volunteers with pre-existing botulinum toxoid immunity. Vaccine, 2018, 36(15), 2041-2048.
[http://dx.doi.org/10.1016/j.vaccine.2018.02.042] [PMID: 29475762]
[99]
Moreira, C., Jr; Ferreira, M.R.A.; da Cunha, C.E.P.; Donassolo, R.A.; Finger, P.F.; Moreira, G.M.S.G.; Otaka, D.Y.; de Sousa, L.A.; Barbosa, J.D.; Moreira, A.N.; Salvarani, F.M.; Conceição, F.R. Immunogenicity of a bivalent non-purified recombinant vaccine against botulism in cattle. Toxins (Basel), 2018, 10(10), E381
[http://dx.doi.org/10.3390/toxins10100381] [PMID: 30241350]
[100]
Krüger, M.; Skau, M.; Shehata, A.A.; Schrödl, W. Efficacy of Clostridium botulinum types C and D toxoid vaccination in Danish cows. Anaerobe, 2013, 23, 97-101.
[http://dx.doi.org/10.1016/j.anaerobe.2013.06.011] [PMID: 23831724]
[101]
Karalewitz, A.P.; Barbieri, J.T. Vaccines against botulism. Curr. Opin. Microbiol., 2012, 15(3), 317-324.
[http://dx.doi.org/10.1016/j.mib.2012.05.009] [PMID: 22694934]
[102]
Smith, L.A. Botulism and vaccines for its prevention. Vaccine, 2009, 5(27), 059.
[http://dx.doi.org/10.1016/j.vaccine.2009.08.059]
[103]
Brent, R.L. Risks and benefits of immunizing pregnant women: the risk of doing nothing. Reprod. Toxicol., 2006, 21(4), 383-389.
[http://dx.doi.org/10.1016/j.reprotox.2005.09.009] [PMID: 16290279]
[104]
Losikoff, M.E. Establishment of a heat inactivation curve for Clostridium botulinum 62A toxin in beef broth. Appl. Environ. Microbiol., 1978, 36(2), 386-388.
[http://dx.doi.org/10.1128/AEM.36.2.386-388.1978] [PMID: 29566]
[105]
Rasooly, R.; Do, P.M. Clostridium botulinum neurotoxin type B is heat-stable in milk and not inactivated by pasteurization. J. Agric. Food Chem., 2010, 58(23), 12557-12561.
[http://dx.doi.org/10.1021/jf1028398] [PMID: 21053906]
[106]
Atlas, R.M. The medical threat of biological weapons. Crit. Rev. Microbiol., 1998, 24(3), 157-168.
[http://dx.doi.org/10.1080/10408419891294280] [PMID: 9800098]
[107]
Cenciarelli, O.; Riley, P.W.; Baka, A. Biosecurity threat posed by botulinum toxin. Toxins (Basel), 2019, 11(12), E681
[http://dx.doi.org/10.3390/toxins11120681] [PMID: 31757074]
[108]
Dhaked, R.K.; Singh, M.K.; Singh, P.; Gupta, P. Botulinum toxin: bioweapon & magic drug. Indian J. Med. Res., 2010, 132(5), 489-503.
[PMID: 21149997]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy