Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Mini-Review Article

Monoclonal Antibodies: A Prospective and Retrospective View

Author(s): Jwala Sivaccumar*, Annamaria Sandomenico*, Luigi Vitagliano and Menotti Ruvo*

Volume 28, Issue 3, 2021

Published on: 19 February, 2020

Page: [435 - 471] Pages: 37

DOI: 10.2174/0929867327666200219142231

Price: $65

Abstract

Background: Monoclonal Antibodies (mAbs) represent one of the most important classes of biotherapeutic agents. They are used to cure many diseases, including cancer, autoimmune diseases, cardiovascular diseases, angiogenesis-related diseases and, more recently also haemophilia. They can be highly varied in terms of format, source, and specificity to improve efficacy and to obtain more targeted applications. This can be achieved by leaving substantially unchanged the basic structural components for paratope clustering.

Objectives: The objective was to trace the most relevant findings that have deserved prestigious awards over the years, to report the most important clinical applications and to emphasize their latest emerging therapeutic trends.

Results: We report the most relevant milestones and new technologies adopted for antibody development. Recent efforts in generating new engineered antibody-based formats are briefly reviewed. The most important antibody-based molecules that are (or are going to be) used for pharmacological practice have been collected in useful tables.

Conclusion: The topics here discussed prove the undisputed role of mAbs as innovative biopharmaceuticals molecules and as vital components of targeted pharmacological therapies.

Keywords: Therapeutic monoclonal antibodies, antibody engineering, antibody developmental technologies, antibodymodeling softwares, diseases, pharmacological therapies.

[1]
Gross, C.P.; Sepkowitz, K.A. The myth of the medical breakthrough: smallpox, vaccination, and Jenner reconsidered. Int. J. Infect. Dis., 1998, 3(1), 54-60.
[http://dx.doi.org/10.1016/S1201-9712(98)90096-0] [PMID: 9831677]
[2]
Riedel, S. Baylor University Medical Center Proceedings, 2005, 18, 21-25.
[3]
Pasteur, L. Méthode pour prévenir la rage après morsure, 1885.
[4]
Behring, E.V. Über das zustandekommen der diphtherie-immunität und der tetanus-immunität bei thieren, 1890.
[5]
The Nobel Prize in Physiology or Medicine. 1901. Available at: https://www.nobelprize.org/prizes/medicine-/1901/summary/(Accessed: 23 November, 2018)
[6]
Kaufmann, S.H. Remembering Emil von Behring: from tetanus treatment to antibody cooperation with phagocytes. MBio, 2017, 8(1), e00117-e17.
[http://dx.doi.org/10.1128/mBio.00117-17] [PMID: 28246359]
[7]
Valent, P.; Groner, B.; Schumacher, U.; Superti-Furga, G.; Busslinger, M.; Kralovics, R.; Zielinski, C.; Penninger, J.M.; Kerjaschki, D.; Stingl, G.; Smolen, J.S.; Valenta, R.; Lassmann, H.; Kovar, H.; Jäger, U.; Kornek, G.; Müller, M.; Sörgel, F. Paul Ehrlich (1854-1915) and his contributions to the foundation and birth of translational medicine. J. Innate Immun., 2016, 8(2), 111-120.
[http://dx.doi.org/10.1159/000443526] [PMID: 26845587]
[8]
The Nobel Prize in Chemistry. 2018. Available at: https://www.nobelprize.org/prizes/chemistry/2018/press-release/(Accessed: 23 November, 2018)
[9]
The Nobel Prize in Physiology or Medicine. 2018. Available at: https://www.nobelprize.org/prizes/medicine/2018-/press-release/(Accessed: 23 November, 2018)
[10]
Behring, E.V. Untersuchungen über das Zustandekommen der Diphtherie-Immunität bei Thieren, 1890.
[11]
Lokaj, J.; John, C. Ilya Ilich Metchnikov and Paul Ehrlich: 1908 nobel prize winners for their research on immunity. Epidemiol. Mikrobiol. Imunol., 2008, 57(4), 119-124.
[PMID: 19069024]
[12]
Metchnikoff, E. Uber den Kampf der Zellen gegen Erysipelkokken; Ein Beitrag zur Phagocytenlehre, 1887.
[13]
Ehrlich, P. Experimentelle Untersuchungen über Immunität. I. Uber ricin. Dtsch. Med. Wochenschr., 1891, 17(976), 979.
[http://dx.doi.org/10.1055/s-0029-1206682]
[14]
Ehrlich, P. Die seitenkettentheorie und ihre gegner. Munch. Med. Wochenschr., 1901, 18, 2123-2124.
[15]
Ehrlich, P. Die schutzstoffe des blutes. DMW-Deutsche Medizinische Wochenschrift, 1901, 27(52), 913-916.
[http://dx.doi.org/10.1055/s-0029-1187253]
[16]
Landsteiner, K.; Levine, P. A new agglutinable factor differentiating individual human bloods. Proc. Soc. Exp. Biol. Med., 1927, 24(6), 600-602.
[http://dx.doi.org/10.3181/00379727-24-3483]
[17]
Schmalstieg, F.C. Jr.; Goldman, A.S. Jules Bordet (1870-1961): a bridge between early and modern immunology. J. Med. Biogr., 2009, 17(4), 217-224.
[http://dx.doi.org/10.1258/jmb.2009.009061] [PMID: 20029083]
[18]
Edelman, G.M.; Poulik, M.D. Studies on structural units of the gamma-globulins. J. Exp. Med., 1961, 113, 861-884.
[http://dx.doi.org/10.1084/jem.113.5.861] [PMID: 13725659]
[19]
Edelman, G.M.; Cunningham, B.A.; Gall, W.E.; Gottlieb, P.D.; Rutishauser, U.; Waxdal, M.J. The covalent structure of an entire gamma G immunoglobulin molecule. 1969. J. Immunol., 2004, 173(9), 5335-5342.
[PMID: 15494478]
[20]
Porter, R.R. The hydrolysis of rabbit γ-globulin and antibodies with crystalline papain. Biochem. J., 1959, 73, 119-126.
[http://dx.doi.org/10.1042/bj0730119] [PMID: 14434282]
[21]
Yalow, R.S.; Berson, S.A. Immunoassay of endogenous plasma insulin in man. J. Clin. Invest., 1960, 39(7), 1157-1175.
[http://dx.doi.org/10.1172/JCI104130] [PMID: 13846364]
[22]
Burnet, F.M. Immunological aspects of malignant disease. Lancet, 1967, 1(7501), 1171-1174.
[http://dx.doi.org/10.1016/S0140-6736(67)92837-1] [PMID: 4165129]
[23]
Burnet, F.M. A modification of Jerne’s theory of antibody production using the concept of clonal selection. CA Cancer J. Clin., 1976, 26(2), 119-121.
[http://dx.doi.org/10.3322/canjclin.26.2.119] [PMID: 816431]
[24]
Medawar, P.B. The behaviour and fate of skin autografts and skin homografts in rabbits: a report to the war wounds committee of the medical research council. J. Anat., 1944, 78(Pt 5), 176-199.
[PMID: 17104960]
[25]
Billingham, R.; Brent, L.; Medawar, P.B. Activity acquired tolerance of foreign cells. 1953. J. Immunol., 2010, 184(1), 5-8.
[http://dx.doi.org/10.4049/jimmunol.0990109] [PMID: 20028658]
[26]
Tonegawa, S. Somatic generation of antibody diversity. Nature, 1983, 302(5909), 575-581.
[http://dx.doi.org/10.1038/302575a0] [PMID: 6300689]
[27]
Hozumi, N.; Tonegawa, S. Evidence for somatic rearrangement of immunoglobulin genes coding for variable and constant regions. J. Immunol., 2004, 173(7), 4260-4264.
[28]
Alkan, S.S. Monoclonal antibodies: the story of a discovery that revolutionized science and medicine. Nat. Rev. Immunol., 2004, 4(2), 153-156.
[http://dx.doi.org/10.1038/nri1265] [PMID: 15040588]
[29]
Köhler, G.; Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature, 1975, 256(5517), 495-497.
[http://dx.doi.org/10.1038/256495a0] [PMID: 1172191]
[30]
Zinkernagel, R.M.; Doherty, P.C. Immunological surveillance against altered self components by sensitised T lymphocytes in lymphocytic choriomeningitis. Nature, 1974, 251(5475), 547-548.
[http://dx.doi.org/10.1038/251547a0] [PMID: 4547543]
[31]
Poltorak, A.; Smirnova, I.; He, X.; Liu, M.Y.; Van Huffel, C.; McNally, O.; Birdwell, D.; Alejos, E.; Silva, M.; Du, X.; Thompson, P.; Chan, E.K.; Ledesma, J.; Roe, B.; Clifton, S.; Vogel, S.N.; Beutler, B. Genetic and physical mapping of the Lps locus: identification of the toll-4 receptor as a candidate gene in the critical region. Blood Cells Mol. Dis., 1998, 24(3), 340-355.
[http://dx.doi.org/10.1006/bcmd.1998.0201] [PMID: 10087992]
[32]
Lemaitre, B.; Nicolas, E.; Michaut, L.; Reichhart, J.M.; Hoffmann, J.A. The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell, 1996, 86(6), 973-983.
[http://dx.doi.org/10.1016/S0092-8674(00)80172-5] [PMID: 8808632]
[33]
Steinman, R.M.; Witmer, M.D. Lymphoid dendritic cells are potent stimulators of the primary mixed leukocyte reaction in mice. Proc. Natl. Acad. Sci. USA, 1978, 75(10), 5132-5136.
[http://dx.doi.org/10.1073/pnas.75.10.5132] [PMID: 154105]
[34]
Steinman, R.M.; Cohn, Z.A. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J. Exp. Med., 1973, 137(5), 1142-1162.
[http://dx.doi.org/10.1084/jem.137.5.1142] [PMID: 4573839]
[35]
Schuler, G.; Steinman, R.M. Murine epidermal Langerhans cells mature into potent immunostimulatory dendritic cells in vitro. J. Exp. Med., 1985, 161(3), 526-546.
[http://dx.doi.org/10.1084/jem.161.3.526] [PMID: 3871837]
[36]
Leach, D.R.; Krummel, M.F.; Allison, J.P. Enhancement of antitumor immunity by CTLA-4 blockade. Science, 1996, 271(5256), 1734-1736.
[http://dx.doi.org/10.1126/science.271.5256.1734] [PMID: 8596936]
[37]
Ishida, Y.; Agata, Y.; Shibahara, K.; Honjo, T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J., 1992, 11(11), 3887-3895.
[http://dx.doi.org/10.1002/j.1460-2075.1992.tb05481.x] [PMID: 1396582]
[38]
Nishimura, H.; Nose, M.; Hiai, H.; Minato, N.; Honjo, T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity, 1999, 11(2), 141-151.
[http://dx.doi.org/10.1016/S1074-7613(00)80089-8] [PMID: 10485649]
[39]
McCafferty, J.; Griffiths, A.D.; Winter, G.; Chiswell, D.J. Phage antibodies: filamentous phage displaying antibody variable domains. Nature, 1990, 348(6301), 552-554.
[http://dx.doi.org/10.1038/348552a0] [PMID: 2247164]
[40]
All Nobel Prizes in Physiology or Medicine. Available at: https://www.nobelprize.org/prizes/lists/all-nobel-laureates-in-physiology-or-medicine(Accessed: 15 January, 2019)
[41]
All Nobel Prizes in Chemistry. Available at: https://www.nobelprize.org/prizes/lists/all-nobel-prizes-in-chemistry-2(Accessed: 15 January, 2019)
[42]
Kunkel, H.G.; Slater, R.J.; Good, R.A. Relation between certain myeloma proteins and normal gamma globulin. Proc. Soc. Exp. Biol. Med., 1951, 76(1), 190-193.
[http://dx.doi.org/10.3181/00379727-76-18432] [PMID: 14816435]
[43]
Cotton, R.G.; Milstein, C. Letter: Fusion of two immunoglobulin-producing myeloma cells. Nature, 1973, 244(5410), 42-43.
[http://dx.doi.org/10.1038/244042a0] [PMID: 4582485]
[44]
Klinman, N.R. Antibody with homogeneous antigen binding produced by splenic foci in organ culture. Immunochemistry, 1969, 6(5), 757-759.
[http://dx.doi.org/10.1016/0019-2791(67)90140-1] [PMID: 5344479]
[45]
Ben-Kasus, T.; Schechter, B.; Sela, M.; Yarden, Y. Cancer therapeutic antibodies come of age: targeting minimal residual disease. Mol. Oncol., 2007, 1(1), 42-54.
[http://dx.doi.org/10.1016/j.molonc.2007.01.003] [PMID: 19383286]
[46]
Liu, J.K. The history of monoclonal antibody development - progress, remaining challenges and future innovations. Ann. Med. Surg. (Lond.), 2014, 3(4), 113-116.
[http://dx.doi.org/10.1016/j.amsu.2014.09.001] [PMID: 25568796]
[47]
An, Z. “Magic Bullets” at the center stage of immune therapy: a special issue on therapeutic antibodies. Protein Cell, 2018, 9(1), 1-2.
[http://dx.doi.org/10.1007/s13238-017-0488-1] [PMID: 29139027]
[48]
Martin, W.L.; West, A.P. Jr.; Gan, L.; Bjorkman, P.J. Crystal structure at 2.8 Å of an FcRn/heterodimeric Fc complex: mechanism of pH-dependent binding. Mol. Cell, 2001, 7(4), 867-877.
[http://dx.doi.org/10.1016/S1097-2765(01)00230-1] [PMID: 11336709]
[49]
Suzuki, M.; Kato, C.; Kato, A. Therapeutic antibodies: their mechanisms of action and the pathological findings they induce in toxicity studies. J. Toxicol. Pathol., 2015, 28(3), 133-139.
[http://dx.doi.org/10.1293/tox.2015-0031] [PMID: 26441475]
[50]
Leipold, D.; Prabhu, S. Pharmacokinetic and pharmacodynamic considerations in the design of therapeutic antibodies. Clin. Transl. Sci., 2019, 12(2), 130-139.
[http://dx.doi.org/10.1111/cts.12597] [PMID: 30414357]
[51]
Singh, S.; Kumar, N.K.; Dwiwedi, P.; Charan, J.; Kaur, R.; Sidhu, P.; Chugh, V.K. Monoclonal antibodies: a review. Curr. Clin. Pharmacol., 2018, 13(2), 85-99.
[http://dx.doi.org/10.2174/1574884712666170809124728] [PMID: 28799485]
[52]
Bokemeyer, C.; Van Cutsem, E.; Rougier, P.; Ciardiello, F.; Heeger, S.; Schlichting, M.; Celik, I.; Köhne, C.H. Addition of cetuximab to chemotherapy as first-line treatment for KRAS wild-type metastatic colorectal cancer: pooled analysis of the CRYSTAL and OPUS randomised clinical trials. Eur. J. Cancer, 2012, 48(10), 1466-1475.
[http://dx.doi.org/10.1016/j.ejca.2012.02.057] [PMID: 22446022]
[53]
Saltz, L.B.; Clarke, S.; Díaz-Rubio, E.; Scheithauer, W.; Figer, A.; Wong, R.; Koski, S.; Lichinitser, M.; Yang, T.S.; Rivera, F.; Couture, F.; Sirzén, F.; Cassidy, J. Bevacizumab in combination with oxaliplatin-based chemotherapy as first-line therapy in metastatic colorectal cancer: a randomized phase III study. J. Clin. Oncol., 2008, 26(12), 2013-2019.
[http://dx.doi.org/10.1200/JCO.2007.14.9930] [PMID: 18421054]
[54]
Douillard, J.Y.; Siena, S.; Cassidy, J.; Tabernero, J.; Burkes, R.; Barugel, M.; Humblet, Y.; Bodoky, G.; Cunningham, D.; Jassem, J.; Rivera, F.; Kocákova, I.; Ruff, P.; Błasińska-Morawiec, M.; Šmakal, M.; Canon, J.L.; Rother, M.; Oliner, K.S.; Wolf, M.; Gansert, J. Randomized, phase III trial of panitumumab with infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX4) versus FOLFOX4 alone as first-line treatment in patients with previously untreated metastatic colorectal cancer: the PRIME study. J. Clin. Oncol., 2010, 28(31), 4697-4705.
[http://dx.doi.org/10.1200/JCO.2009.27.4860] [PMID: 20921465]
[55]
Gerber, D.E.; Choy, H. Cetuximab in combination therapy: from bench to clinic. Cancer Metastasis Rev., 2010, 29(1), 171-180.
[http://dx.doi.org/10.1007/s10555-010-9215-6] [PMID: 20140759]
[56]
Roviello, G.N.; Roviello, V.; Autiero, I.; Saviano, M. Solid phase synthesis of TyrT, a thymine-tyrosine conjugate with poly(A) RNA-binding ability. RSC Advances, 2016, 6(33), 27607-27613.
[http://dx.doi.org/10.1039/C6RA00294C] [PMID: 29057072]
[57]
Reck, M.; von Pawel, J.; Zatloukal, P.; Ramlau, R.; Gorbounova, V.; Hirsh, V.; Leighl, N.; Mezger, J.; Archer, V.; Moore, N.; Manegold, C. Phase III trial of cisplatin plus gemcitabine with either placebo or bevacizumab as first-line therapy for nonsquamous non-small-cell lung cancer: AVAil. J. Clin. Oncol., 2009, 27(8), 1227-1234.
[http://dx.doi.org/10.1200/JCO.2007.14.5466] [PMID: 19188680]
[58]
Romond, E.H.; Perez, E.A.; Bryant, J.; Suman, V.J.; Geyer, C.E. Jr.; Davidson, N.E.; Tan-Chiu, E.; Martino, S.; Paik, S.; Kaufman, P.A.; Swain, S.M.; Pisansky, T.M.; Fehrenbacher, L.; Kutteh, L.A.; Vogel, V.G.; Visscher, D.W.; Yothers, G.; Jenkins, R.B.; Brown, A.M.; Dakhil, S.R.; Mamounas, E.P.; Lingle, W.L.; Klein, P.M.; Ingle, J.N.; Wolmark, N. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N. Engl. J. Med., 2005, 353(16), 1673-1684.
[http://dx.doi.org/10.1056/NEJMoa052122] [PMID: 16236738]
[59]
Coiffier, B.; Haioun, C.; Ketterer, N.; Engert, A.; Tilly, H.; Ma, D.; Johnson, P.; Lister, A.; Feuring-Buske, M.; Radford, J.A.; Capdeville, R.; Diehl, V.; Reyes, F. Rituximab (anti-CD20 monoclonal antibody) for the treatment of patients with relapsing or refractory aggressive lymphoma: a multicenter phase II study. Blood, 1998, 92(6), 1927-1932.
[PMID: 9731049]
[60]
Yelvington, B.J. Subcutaneous rituximab in follicular lymphoma, chronic lymphocytic leukemia, and diffuse large B-cell lymphoma. J. Adv. Pract. Oncol., 2018, 9(5), 530-534.
[PMID: 31086689]
[61]
Müller, V.; Clemens, M.; Jassem, J.; Al-Sakaff, N.; Auclair, P.; Nüesch, E.; Holloway, D.; Shing, M.; Bang, Y-J. Long-term trastuzumab (Herceptin®) treatment in a continuation study of patients with HER2-positive breast cancer or HER2-positive gastric cancer. BMC Cancer, 2018, 18(1), 295.
[http://dx.doi.org/10.1186/s12885-018-4183-2] [PMID: 29544445]
[62]
Gunturu, K.S.; Woo, Y.; Beaubier, N.; Remotti, H.E.; Saif, M.W. Gastric cancer and trastuzumab: first biologic therapy in gastric cancer. Ther. Adv. Med. Oncol., 2013, 5(2), 143-151.
[http://dx.doi.org/10.1177/1758834012469429] [PMID: 23450234]
[63]
Lozanski, G.; Heerema, N.A.; Flinn, I.W.; Smith, L.; Harbison, J.; Webb, J.; Moran, M.; Lucas, M.; Lin, T.; Hackbarth, M.L.; Proffitt, J.H.; Lucas, D.; Grever, M.R.; Byrd, J.C. Alemtuzumab is an effective therapy for chronic lymphocytic leukemia with p53 mutations and deletions. Blood, 2004, 103(9), 3278-3281.
[http://dx.doi.org/10.1182/blood-2003-10-3729] [PMID: 14726385]
[64]
Gordon, L.I.; Molina, A.; Witzig, T.; Emmanouilides, C.; Raubtischek, A.; Darif, M.; Schilder, R.J.; Wiseman, G.; White, C.A. Durable responses after ibritumomab tiuxetan radioimmunotherapy for CD20+ B-cell lymphoma: long-term follow-up of a phase 1/2 study. Blood, 2004, 103(12), 4429-4431.
[http://dx.doi.org/10.1182/blood-2003-11-3883] [PMID: 15016644]
[65]
Hagenbeek, A.; Lewington, V. Report of a European consensus workshop to develop recommendations for the optimal use of (90)Y-ibritumomab tiuxetan (Zevalin) in lymphoma. Ann. Oncol., 2005, 16(5), 786-792.
[http://dx.doi.org/10.1093/annonc/mdi148] [PMID: 15802280]
[66]
Srinivasan, A.; Mukherji, S.K. Tositumomab and iodine I 131 tositumomab (Bexaar). AJNR Am. J. Neuroradiol., 2011, 32(4), 637-638.
[http://dx.doi.org/10.3174/ajnr.A2593] [PMID: 21436340]
[67]
Cunningham, D.; Humblet, Y.; Siena, S.; Khayat, D.; Bleiberg, H.; Santoro, A.; Bets, D.; Mueser, M.; Harstrick, A.; Verslype, C.; Chau, I.; Van Cutsem, E. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N. Engl. J. Med., 2004, 351(4), 337-345.
[http://dx.doi.org/10.1056/NEJMoa033025] [PMID: 15269313]
[68]
Vermorken, J.B.; Mesia, R.; Rivera, F.; Remenar, E.; Kawecki, A.; Rottey, S.; Erfan, J.; Zabolotnyy, D.; Kienzer, H.R.; Cupissol, D.; Peyrade, F.; Benasso, M.; Vynnychenko, I.; De Raucourt, D.; Bokemeyer, C.; Schueler, A.; Amellal, N.; Hitt, R. Platinum-based chemotherapy plus cetuximab in head and neck cancer. N. Engl. J. Med., 2008, 359(11), 1116-1127.
[http://dx.doi.org/10.1056/NEJMoa0802656] [PMID: 18784101]
[69]
Cohen, M.H.; Gootenberg, J.; Keegan, P.; Pazdur, R. FDA drug approval summary: bevacizumab (Avastin) plus carboplatin and paclitaxel as first-line treatment of advanced/metastatic recurrent nonsquamous non-small cell lung cancer. Oncologist, 2007, 12(6), 713-718.
[http://dx.doi.org/10.1634/theoncologist.12-6-713] [PMID: 17602060]
[70]
Marchetti, C.; Muzii, L.; Romito, A.; Benedetti Panici, P. First-line treatment of women with advanced ovarian cancer: focus on bevacizumab. OncoTargets Ther., 2019, 12, 1095-1103.
[http://dx.doi.org/10.2147/OTT.S155425] [PMID: 30799939]
[71]
Escudier, B.; Pluzanska, A.; Koralewski, P.; Ravaud, A.; Bracarda, S.; Szczylik, C.; Chevreau, C.; Filipek, M.; Melichar, B.; Bajetta, E.; Gorbunova, V.; Bay, J.O.; Bodrogi, I.; Jagiello-Gruszfeld, A.; Moore, N. Bevacizumab plus interferon alfa-2a for treatment of metastatic renal cell carcinoma: a randomised, double-blind phase III trial. Lancet, 2007, 370(9605), 2103-2111.
[http://dx.doi.org/10.1016/S0140-6736(07)61904-7] [PMID: 18156031]
[72]
Gilbert, M.R.; Dignam, J.J.; Armstrong, T.S.; Wefel, J.S.; Blumenthal, D.T.; Vogelbaum, M.A.; Colman, H.; Chakravarti, A.; Pugh, S.; Won, M.; Jeraj, R.; Brown, P.D.; Jaeckle, K.A.; Schiff, D.; Stieber, V.W.; Brachman, D.G.; Werner-Wasik, M.; Tremont-Lukats, I.W.; Sulman, E.P.; Aldape, K.D.; Curran, W.J. Jr.; Mehta, M.P. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N. Engl. J. Med., 2014, 370(8), 699-708.
[http://dx.doi.org/10.1056/NEJMoa1308573] [PMID: 24552317]
[73]
Tewari, K.S.; Sill, M.W.; Long, H.J., III; Penson, R.T.; Huang, H.; Ramondetta, L.M.; Landrum, L.M.; Oaknin, A.; Reid, T.J.; Leitao, M.M.; Michael, H.E.; Monk, B.J. Improved survival with bevacizumab in advanced cervical cancer. N. Engl. J. Med., 2014, 370(8), 734-743.
[http://dx.doi.org/10.1056/NEJMoa1309748] [PMID: 24552320]
[74]
Di Nicolantonio, F.; Martini, M.; Molinari, F.; Sartore Bianchi, A.; Arena, S.; Saletti, P.; De Dosso, S.; Mazzucchelli, L.; Frattini, M.; Siena, S. Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. J. Clin. Oncol., 2008, 26(35), 5705-5712.
[http://dx.doi.org/10.1200/JCO.2008.18.0786] [PMID: 19001320]
[75]
Wierda, W.G.; Kipps, T.J.; Mayer, J.; Stilgenbauer, S.; Williams, C.D.; Hellmann, A.; Robak, T.; Furman, R.R.; Hillmen, P.; Trneny, M.; Dyer, M.J.; Padmanabhan, S.; Piotrowska, M.; Kozak, T.; Chan, G.; Davis, R.; Losic, N.; Wilms, J.; Russell, C.A.; Osterborg, A. Ofatumumab as single-agent CD20 immunotherapy in fludarabine-refractory chronic lymphocytic leukemia. J. Clin. Oncol., 2010, 28(10), 1749-1755.
[http://dx.doi.org/10.1200/JCO.2009.25.3187] [PMID: 20194866]
[76]
Dimai, H.; Pietschmann, P.; Resch, H.; Preisinger, E.; Fahrleitner-Pammer, A.; Dobnig, H.; Klaushofer, K. Austrian guidance for the pharmacologic treatment of osteoporosis in postmenopausal women: addendum 2010 Wien. Med. Wochenschr., 2010, 160(21-22), 586-589.
[http://dx.doi.org/10.1007/s10354-010-0840-z] [PMID: 21170699]
[77]
Steger, G.G.; Bartsch, R. Denosumab for the treatment of bone metastases in breast cancer: evidence and opinion. Ther. Adv. Med. Oncol., 2011, 3(5), 233-243.
[http://dx.doi.org/10.1177/1758834011412656] [PMID: 21957430]
[78]
Kverneland, A.H.; Enevold, C.; Donia, M.; Bastholt, L.; Svane, I.M.; Nielsen, C.H. Development of anti-drug antibodies is associated with shortened survival in patients with metastatic melanoma treated with ipilimumab. OncoImmunology, 2018, 7(5)e1424674
[http://dx.doi.org/10.1080/2162402X.2018.1424674] [PMID: 29721387]
[79]
Motzer, R.J.; Tannir, N.M.; McDermott, D.F.; Arén Frontera, O.; Melichar, B.; Choueiri, T.K.; Plimack, E.R.; Barthélémy, P.; Porta, C.; George, S.; Powles, T.; Donskov, F.; Neiman, V.; Kollmannsberger, C.K.; Salman, P.; Gurney, H.; Hawkins, R.; Ravaud, A.; Grimm, M.O.; Bracarda, S.; Barrios, C.H.; Tomita, Y.; Castellano, D.; Rini, B.I.; Chen, A.C.; Mekan, S.; McHenry, M.B.; Wind-Rotolo, M.; Doan, J.; Sharma, P.; Hammers, H.J.; Escudier, B. Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N. Engl. J. Med., 2018, 378(14), 1277-1290.
[http://dx.doi.org/10.1056/NEJMoa1712126] [PMID: 29562145]
[80]
Younes, A.; Gopal, A.K.; Smith, S.E.; Ansell, S.M.; Rosenblatt, J.D.; Savage, K.J.; Ramchandren, R.; Bartlett, N.L.; Cheson, B.D.; de Vos, S.; Forero-Torres, A.; Moskowitz, C.H.; Connors, J.M.; Engert, A.; Larsen, E.K.; Kennedy, D.A.; Sievers, E.L.; Chen, R. Results of a pivotal phase II study of brentuximab vedotin for patients with relapsed or refractory Hodgkin’s lymphoma. J. Clin. Oncol., 2012, 30(18), 2183-2189.
[http://dx.doi.org/10.1200/JCO.2011.38.0410] [PMID: 22454421]
[81]
Shustov, A.R.; Advani, R.; Brice, P.; Bartlett, N.L.; Rosenblatt, J.D.; Illidge, T.; Matous, J.; Ramchandren, R.; Fanale, M.A.; Connors, J.M. Complete remissions with brentuximab vedotin (SGN-35) in patients with relapsed or refractory systemic anaplastic large cell lymphoma. Blood, 2010, 116(21), 961.
[http://dx.doi.org/10.1182/blood.V116.21.961.961]
[82]
Duvic, M.; Tetzlaff, M.T.; Gangar, P.; Clos, A.L.; Sui, D.; Talpur, R. Results of a phase II trial of brentuximab vedotin for CD30+ cutaneous T-cell lymphoma and lymphomatoid papulosis. J. Clin. Oncol., 2015, 33(32), 3759-3765.
[http://dx.doi.org/10.1200/JCO.2014.60.3787] [PMID: 26261247]
[83]
von Minckwitz, G.; Procter, M.; de Azambuja, E.; Zardavas, D.; Benyunes, M.; Viale, G.; Suter, T.; Arahmani, A.; Rouchet, N.; Clark, E.; Knott, A.; Lang, I.; Levy, C.; Yardley, D.A.; Bines, J.; Gelber, R.D.; Piccart, M.; Baselga, J. Adjuvant pertuzumab and trastuzumab in early HER2-positive breast cancer. N. Engl. J. Med., 2017, 377(2), 122-131.
[http://dx.doi.org/10.1056/NEJMoa1703643] [PMID: 28581356]
[84]
Fischer, K.; Al-Sawaf, O.; Bahlo, J.; Fink, A.M.; Tandon, M.; Dixon, M.; Robrecht, S.; Warburton, S.; Humphrey, K.; Samoylova, O.; Liberati, A.M.; Pinilla-Ibarz, J.; Opat, S.; Sivcheva, L.; Le Dû, K.; Fogliatto, L.M.; Niemann, C.U.; Weinkove, R.; Robinson, S.; Kipps, T.J.; Boettcher, S.; Tausch, E.; Humerickhouse, R.; Eichhorst, B.; Wendtner, C.M.; Langerak, A.W.; Kreuzer, K.A.; Ritgen, M.; Goede, V.; Stilgenbauer, S.; Mobasher, M.; Hallek, M. Venetoclax and obinutuzumab in patients with CLL and coexisting conditions. N. Engl. J. Med., 2019, 380(23), 2225-2236.
[http://dx.doi.org/10.1056/NEJMoa1815281] [PMID: 31166681]
[85]
Marcus, R.; Davies, A.; Ando, K.; Klapper, W.; Opat, S.; Owen, C.; Phillips, E.; Sangha, R.; Schlag, R.; Seymour, J.F.; Townsend, W.; Trněný, M.; Wenger, M.; Fingerle-Rowson, G.; Rufibach, K.; Moore, T.; Herold, M.; Hiddemann, W. Obinutuzumab for the first-line treatment of follicular lymphoma. N. Engl. J. Med., 2017, 377(14), 1331-1344.
[http://dx.doi.org/10.1056/NEJMoa1614598] [PMID: 28976863]
[86]
Singh, A.D.; Parmar, S. Ramucirumab (Cyramza): a breakthrough treatment for gastric cancer. P&T, 2015, 40(7), 430-468.
[PMID: 26185403]
[87]
Garon, E.B.; Ciuleanu, T.E.; Arrieta, O.; Prabhash, K.; Syrigos, K.N.; Goksel, T.; Park, K.; Gorbunova, V.; Kowalyszyn, R.D.; Pikiel, J.; Czyzewicz, G.; Orlov, S.V.; Lewanski, C.R.; Thomas, M.; Bidoli, P.; Dakhil, S.; Gans, S.; Kim, J.H.; Grigorescu, A.; Karaseva, N.; Reck, M.; Cappuzzo, F.; Alexandris, E.; Sashegyi, A.; Yurasov, S.; Pérol, M. Ramucirumab plus docetaxel versus placebo plus docetaxel for second-line treatment of stage IV non-small-cell lung cancer after disease progression on platinum-based therapy (REVEL): a multicentre, double-blind, randomised phase 3 trial. Lancet, 2014, 384(9944), 665-673.
[http://dx.doi.org/10.1016/S0140-6736(14)60845-X] [PMID: 24933332]
[88]
Garcia-Carbonero, R.; Rivera, F.; Maurel, J.; Ayoub, J.P.M.; Moore, M.J.; Cervantes, A.; Asmis, T.R.; Schwartz, J.D.; Nasroulah, F.; Ballal, S.; Tabernero, J. An open-label phase II study evaluating the safety and efficacy of ramucirumab combined with mFOLFOX-6 as first-line therapy for metastatic colorectal cancer. Oncologist, 2014, 19(4), 350-351.
[http://dx.doi.org/10.1634/theoncologist.2014-0028] [PMID: 24674871]
[89]
Zhu, A.X.; Baron, A.D.; Malfertheiner, P.; Kudo, M.; Kawazoe, S.; Pezet, D.; Weissinger, F.; Brandi, G.; Barone, C.A.; Okusaka, T.; Wada, Y.; Park, J.O.; Ryoo, B.Y.; Cho, J.Y.; Chung, H.C.; Li, C.P.; Yen, C.J.; Lee, K.D.; Chang, S.C.; Yang, L.; Abada, P.B.; Chau, I. Ramucirumab as second-line treatment in patients with advanced hepatocellular carcinoma: analysis of REACH trial results by child-pugh score. JAMA Oncol., 2017, 3(2), 235-243.
[http://dx.doi.org/10.1001/jamaoncol.2016.4115] [PMID: 27657674]
[90]
Chanal, J.; Kramkimel, N.; Ratour, C.; Aractingi, S.; Guégan, S.; Avril, M.F. Pembrolizumab for unresectable or metastatic melanoma in patients older than 85 years of age. Dermatology, 2019, 235(3), 219-224.
[http://dx.doi.org/10.1159/000492467] [PMID: 30721908]
[91]
Paz-Ares, L.; Luft, A.; Vicente, D.; Tafreshi, A.; Gümüş, M.; Mazières, J.; Hermes, B.; Çay Şenler, F.; Csőszi, T.; Fülöp, A.; Rodríguez-Cid, J.; Wilson, J.; Sugawara, S.; Kato, T.; Lee, K.H.; Cheng, Y.; Novello, S.; Halmos, B.; Li, X.; Lubiniecki, G.M.; Piperdi, B.; Kowalski, D.M. Pembrolizumab plus chemotherapy for squamous non-small-cell lung cancer. N. Engl. J. Med., 2018, 379(21), 2040-2051.
[http://dx.doi.org/10.1056/NEJMoa1810865] [PMID: 30280635]
[92]
Ott, P.A.; Elez, E.; Hiret, S.; Kim, D.W.; Morosky, A.; Saraf, S.; Piperdi, B.; Mehnert, J.M. Pembrolizumab in patients with extensive-stage small-cell lung cancer: results from the phase Ib KEYNOTE-028 study. J. Clin. Oncol., 2017, 35(34), 3823-3829.
[http://dx.doi.org/10.1200/JCO.2017.72.5069] [PMID: 28813164]
[93]
Seiwert, T.Y.; Burtness, B.; Mehra, R.; Weiss, J.; Berger, R.; Eder, J.P.; Heath, K.; McClanahan, T.; Lunceford, J.; Gause, C.; Cheng, J.D.; Chow, L.Q. Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): an open-label, multicentre, phase 1b trial. Lancet Oncol., 2016, 17(7), 956-965.
[http://dx.doi.org/10.1016/S1470-2045(16)30066-3] [PMID: 27247226]
[94]
Frenel, J-S.; Le Tourneau, C.; O’Neil, B.; Ott, P.A.; Piha-Paul, S.A.; Gomez-Roca, C.; van Brummelen, E.M.J.; Rugo, H.S.; Thomas, S.; Saraf, S.; Rangwala, R.; Varga, A. Safety and efficacy of pembrolizumab in advanced, programmed death ligand 1-positive cervical cancer: results from the phase Ib KEYNOTE-028 trial. J. Clin. Oncol., 2017, 35(36), 4035-4041.
[http://dx.doi.org/10.1200/JCO.2017.74.5471] [PMID: 29095678]
[95]
Diaz, L.; Marabelle, A.; Kim, T.; Geva, R.; Van Cutsem, E.; André, T.; Ascierto, P.; Maio, M.; Delord, J.; Gottfried, M. 386PEfficacy of pembrolizumab in phase 2 KEYNOTE164 and KEYNOTE-158 studies of microsatellite instability high cancers. Ann. Oncol., 2017, 28(5), V128-V129.
[http://dx.doi.org/10.1093/annonc/mdx367.020]
[96]
Zinzani, P.L.; Ribrag, V.; Moskowitz, C.H.; Michot, J.M.; Kuruvilla, J.; Balakumaran, A.; Snyder, E.; Marinello, P.; Shipp, M.A.; Armand, P. Phase 1b study of PD-1 blockade with pembrolizumab in patients with relapsed/refractory primary mediastinal large B-cell lymphoma (PMBCL). Blood, 2015, 126(23), 3986.
[http://dx.doi.org/10.1182/blood.V126.23.3986.3986]
[97]
Piha-Paul, S.A.; Jalal, S.I.; Saraf, S.; Lunceford, J.; Lunceford, M.; Bennouna, J. Safety and antitumor activity of the anti-programmed death-1 antibody pembrolizumab in patients with advanced esophageal carcinoma. J. Clin. Oncol., 2018, 36(1), 61-67.
[http://dx.doi.org/10.1200/JCO.2017.74.9846] [PMID: 29116900]
[98]
Larkin, J.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.J.; Cowey, C.L.; Lao, C.D.; Schadendorf, D.; Dummer, R.; Smylie, M.; Rutkowski, P.; Ferrucci, P.F.; Hill, A.; Wagstaff, J.; Carlino, M.S.; Haanen, J.B.; Maio, M.; Marquez-Rodas, I.; McArthur, G.A.; Ascierto, P.A.; Long, G.V.; Callahan, M.K.; Postow, M.A.; Grossmann, K.; Sznol, M.; Dreno, B.; Bastholt, L.; Yang, A.; Rollin, L.M.; Horak, C.; Hodi, F.S.; Wolchok, J.D. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N. Engl. J. Med., 2015, 373(1), 23-34.
[http://dx.doi.org/10.1056/NEJMoa1504030] [PMID: 26027431]
[99]
Motzer, R.J.; Rini, B.I.; McDermott, D.F.; Redman, B.G.; Kuzel, T.M.; Harrison, M.R.; Vaishampayan, U.N.; Drabkin, H.A.; George, S.; Logan, T.F.; Margolin, K.A.; Plimack, E.R.; Lambert, A.M.; Waxman, I.M.; Hammers, H.J. Nivolumab for metastatic renal cell carcinoma: results of a randomized phase II trial. J. Clin. Oncol., 2015, 33(13), 1430-1437.
[http://dx.doi.org/10.1200/JCO.2014.59.0703] [PMID: 25452452]
[100]
Borghaei, H.; Paz-Ares, L.; Horn, L.; Spigel, D.R.; Steins, M.; Ready, N.E.; Chow, L.Q.; Vokes, E.E.; Felip, E.; Holgado, E.; Barlesi, F.; Kohlhäufl, M.; Arrieta, O.; Burgio, M.A.; Fayette, J.; Lena, H.; Poddubskaya, E.; Gerber, D.E.; Gettinger, S.N.; Rudin, C.M.; Rizvi, N.; Crinò, L.; Blumenschein, G.R. Jr.; Antonia, S.J.; Dorange, C.; Harbison, C.T.; Graf Finckenstein, F.; Brahmer, J.R. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N. Engl. J. Med., 2015, 373(17), 1627-1639.
[http://dx.doi.org/10.1056/NEJMoa1507643] [PMID: 26412456]
[101]
Antonia, S.J.; López-Martin, J.A.; Bendell, J.; Ott, P.A.; Taylor, M.; Eder, J.P.; Jäger, D.; Pietanza, M.C.; Le, D.T.; de Braud, F.; Morse, M.A.; Ascierto, P.A.; Horn, L.; Amin, A.; Pillai, R.N.; Evans, J.; Chau, I.; Bono, P.; Atmaca, A.; Sharma, P.; Harbison, C.T.; Lin, C.S.; Christensen, O.; Calvo, E. Nivolumab alone and nivolumab plus ipilimumab in recurrent small-cell lung cancer (CheckMate 032): a multicentre, open-label, phase 1/2 trial. Lancet Oncol., 2016, 17(7), 883-895.
[http://dx.doi.org/10.1016/S1470-2045(16)30098-5] [PMID: 27269741]
[102]
Ferris, R.L.; Blumenschein, G., Jr; Fayette, J.; Guigay, J.; Colevas, A.D.; Licitra, L.; Harrington, K.; Kasper, S.; Vokes, E.E.; Even, C.; Worden, F.; Saba, N.F.; Iglesias Docampo, L.C.; Haddad, R.; Rordorf, T.; Kiyota, N.; Tahara, M.; Monga, M.; Lynch, M.; Geese, W.J.; Kopit, J.; Shaw, J.W.; Gillison, M.L. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N. Engl. J. Med., 2016, 375(19), 1856-1867.
[http://dx.doi.org/10.1056/NEJMoa1602252] [PMID: 27718784]
[103]
Beaver, J.A.; Theoret, M.R.; Mushti, S.; He, K.; Libeg, M.; Goldberg, K.; Sridhara, R.; McKee, A.E.; Keegan, P.; Pazdur, R. FDA approval of nivolumab for the first-line treatment of patients with BRAFV600 wild-type unresectable or metastatic melanoma. Clin. Cancer Res., 2017, 23(14), 3479-3483.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-0714] [PMID: 28073844]
[104]
Mody, R.; Naranjo, A.; Van Ryn, C.; Yu, A.L.; London, W.B.; Shulkin, B.L.; Parisi, M.T.; Servaes, S.E.; Diccianni, M.B.; Sondel, P.M.; Bender, J.G.; Maris, J.M.; Park, J.R.; Bagatell, R. Irinotecan-temozolomide with temsirolimus or dinutuximab in children with refractory or relapsed neuroblastoma (COG ANBL1221): an open-label, randomised, phase 2 trial. Lancet Oncol., 2017, 18(7), 946-957.
[http://dx.doi.org/10.1016/S1470-2045(17)30355-8] [PMID: 28549783]
[105]
Ladenstein, R.; Pötschger, U.; Valteau-Couanet, D.; Luksch, R.; Castel, V.; Yaniv, I.; Laureys, G.; Brock, P.; Michon, J.M.; Owens, C.; Trahair, T.; Chan, G.C.F.; Ruud, E.; Schroeder, H.; Beck Popovic, M.; Schreier, G.; Loibner, H.; Ambros, P.; Holmes, K.; Castellani, M.R.; Gaze, M.N.; Garaventa, A.; Pearson, A.D.J.; Lode, H.N. Interleukin 2 with anti-GD2 antibody ch14.18/CHO (dinutuximab beta) in patients with high-risk neuroblastoma (HR-NBL1/SIOPEN): a multicentre, randomised, phase 3 trial. Lancet Oncol., 2018, 19(12), 1617-1629.
[http://dx.doi.org/10.1016/S1470-2045(18)30578-3] [PMID: 30442501]
[106]
Lokhorst, H.M.; Plesner, T.; Laubach, J.P.; Nahi, H.; Gimsing, P.; Hansson, M.; Minnema, M.C.; Lassen, U.; Krejcik, J.; Palumbo, A.; van de Donk, N.W.; Ahmadi, T.; Khan, I.; Uhlar, C.M.; Wang, J.; Sasser, A.K.; Losic, N.; Lisby, S.; Basse, L.; Brun, N.; Richardson, P.G. Targeting CD38 with daratumumab monotherapy in multiple myeloma. N. Engl. J. Med., 2015, 373(13), 1207-1219.
[http://dx.doi.org/10.1056/NEJMoa1506348] [PMID: 26308596]
[107]
Socinski, M.; Gil, M.; Shahidi, J.; Chao, G.Y.; Villaruz, L. Single-arm, open-label, phase 2 study of nab-paclitaxel and carboplatin chemotherapy plus necitumumab in the firstline treatment of patients with stage IV squamous non-small cell lung cancer (NSCLC). Ann Oncol., 2016, 27(Suppl. 6), V1454.
[http://dx.doi.org/10.1093/annonc/mdw383.98]
[108]
Lonial, S.; Vij, R.; Harousseau, J.L.; Facon, T.; Moreau, P.; Mazumder, A.; Kaufman, J.L.; Leleu, X.; Tsao, L.C.; Westland, C.; Singhal, A.K.; Jagannath, S. Elotuzumab in combination with lenalidomide and low-dose dexamethasone in relapsed or refractory multiple myeloma. J. Clin. Oncol., 2012, 30(16), 1953-1959.
[http://dx.doi.org/10.1200/JCO.2011.37.2649] [PMID: 22547589]
[109]
Rosenberg, J.E.; Hoffman-Censits, J.; Powles, T.; van der Heijden, M.S.; Balar, A.V.; Necchi, A.; Dawson, N.; O’Donnell, P.H.; Balmanoukian, A.; Loriot, Y.; Srinivas, S.; Retz, M.M.; Grivas, P.; Joseph, R.W.; Galsky, M.D.; Fleming, M.T.; Petrylak, D.P.; Perez-Gracia, J.L.; Burris, H.A.; Castellano, D.; Canil, C.; Bellmunt, J.; Bajorin, D.; Nickles, D.; Bourgon, R.; Frampton, G.M.; Cui, N.; Mariathasan, S.; Abidoye, O.; Fine, G.D.; Dreicer, R. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet, 2016, 387(10031), 1909-1920.
[http://dx.doi.org/10.1016/S0140-6736(16)00561-4] [PMID: 26952546]
[110]
Rittmeyer, A.; Barlesi, F.; Waterkamp, D.; Park, K.; Ciardiello, F.; von Pawel, J.; Gadgeel, S.M.; Hida, T.; Kowalski, D.M.; Dols, M.C.; Cortinovis, D.L.; Leach, J.; Polikoff, J.; Barrios, C.; Kabbinavar, F.; Frontera, O.A.; De Marinis, F.; Turna, H.; Lee, J.S.; Ballinger, M.; Kowanetz, M.; He, P.; Chen, D.S.; Sandler, A.; Gandara, D.R. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet, 2017, 389(10066), 255-265.
[http://dx.doi.org/10.1016/S0140-6736(16)32517-X] [PMID: 27979383]
[111]
Sonpavde, G.; Sternberg, C.N.; Rosenberg, J.E.; Hahn, N.M.; Galsky, M.D.; Vogelzang, N.J. Second-line systemic therapy and emerging drugs for metastatic transitional-cell carcinoma of the urothelium. Lancet Oncol., 2010, 11(9), 861-870.
[http://dx.doi.org/10.1016/S1470-2045(10)70086-3] [PMID: 20537950]
[112]
Tap, W.D.; Jones, R.L.; Van Tine, B.A.; Chmielowski, B.; Elias, A.D.; Adkins, D.; Agulnik, M.; Cooney, M.M.; Livingston, M.B.; Pennock, G.; Hameed, M.R.; Shah, G.D.; Qin, A.; Shahir, A.; Cronier, D.M.; Ilaria, R., Jr; Conti, I.; Cosaert, J.; Schwartz, G.K. Olaratumab and doxorubicin versus doxorubicin alone for treatment of soft-tissue sarcoma: an open-label phase 1b and randomised phase 2 trial. Lancet, 2016, 388(10043), 488-497.
[http://dx.doi.org/10.1016/S0140-6736(16)30587-6] [PMID: 27291997]
[113]
DeAngelo, D.J.; Stock, W.; Stein, A.S.; Shustov, A.; Liedtke, M.; Schiffer, C.A.; Vandendries, E.; Liau, K.; Ananthakrishnan, R.; Boni, J.; Laird, A.D.; Fostvedt, L.; Kantarjian, H.M.; Advani, A.S. Inotuzumab ozogamicin in adults with relapsed or refractory CD22-positive acute lymphoblastic leukemia: a phase 1/2 study. Blood Adv., 2017, 1(15), 1167-1180.
[http://dx.doi.org/10.1182/bloodadvances.2016001925] [PMID: 29296758]
[114]
Kaufman, H.L.; Russell, J.; Hamid, O.; Bhatia, S.; Terheyden, P.; D’Angelo, S.P.; Shih, K.C.; Lebbé, C.; Linette, G.P.; Milella, M.; Brownell, I.; Lewis, K.D.; Lorch, J.H.; Chin, K.; Mahnke, L.; von Heydebreck, A.; Cuillerot, J.M.; Nghiem, P. Avelumab in patients with chemotherapy-refractory metastatic Merkel cell carcinoma: a multicentre, single-group, open-label, phase 2 trial. Lancet Oncol., 2016, 17(10), 1374-1385.
[http://dx.doi.org/10.1016/S1470-2045(16)30364-3] [PMID: 27592805]
[115]
Choueiri, T.K.; Larkin, J.; Oya, M.; Thistlethwaite, F.; Martignoni, M.; Nathan, P.; Powles, T.; McDermott, D.; Robbins, P.B.; Chism, D.D.; Cho, D.; Atkins, M.B.; Gordon, M.S.; Gupta, S.; Uemura, H.; Tomita, Y.; Compagnoni, A.; Fowst, C.; di Pietro, A.; Rini, B.I. Preliminary results for avelumab plus axitinib as first-line therapy in patients with advanced clear-cell renal-cell carcinoma (JAVELIN Renal 100): an open-label, dose-finding and dose-expansion, phase 1b trial. Lancet Oncol., 2018, 19(4), 451-460.
[http://dx.doi.org/10.1016/S1470-2045(18)30107-4] [PMID: 29530667]
[116]
Powles, T.; O’Donnell, P.H.; Massard, C.; Arkenau, H.T.; Friedlander, T.W.; Hoimes, C.J.; Lee, J.L.; Ong, M.; Sridhar, S.S.; Vogelzang, N.J.; Fishman, M.N.; Zhang, J.; Srinivas, S.; Parikh, J.; Antal, J.; Jin, X.; Gupta, A.K.; Ben, Y.; Hahn, N.M. Efficacy and safety of durvalumab in locally advanced or metastatic urothelial carcinoma: updated results from a phase 1/2 open-label study. JAMA Oncol., 2017, 3(9), e172411-e172411.
[http://dx.doi.org/10.1001/jamaoncol.2017.2411] [PMID: 28817753]
[117]
Chiramel, J.; Tay, R.; Califano, R. Durvalumab after chemo-radiotherapy in stage III non-small cell lung cancer. J. Thorac. Dis., 2018, 10(Suppl. 9), S991-S994.
[http://dx.doi.org/10.21037/jtd.2018.04.29] [PMID: 29850180]
[118]
Castaigne, S.; Pautas, C.; Terré, C.; Raffoux, E.; Bordessoule, D.; Bastie, J.N.; Legrand, O.; Thomas, X.; Turlure, P.; Reman, O.; de Revel, T.; Gastaud, L.; de Gunzburg, N.; Contentin, N.; Henry, E.; Marolleau, J.P.; Aljijakli, A.; Rousselot, P.; Fenaux, P.; Preudhomme, C.; Chevret, S.; Dombret, H. Effect of gemtuzumab ozogamicin on survival of adult patients with de novo acute myeloid leukaemia (ALFA-0701): a randomised, open-label, phase 3 study. Lancet, 2012, 379(9825), 1508-1516.
[http://dx.doi.org/10.1016/S0140-6736(12)60485-1] [PMID: 22482940]
[119]
Migden, M.R.; Rischin, D.; Schmults, C.D.; Guminski, A.; Hauschild, A.; Lewis, K.D.; Chung, C.H.; Hernandez-Aya, L.; Lim, A.M.; Chang, A.L.S.; Rabinowits, G.; Thai, A.A.; Dunn, L.A.; Hughes, B.G.M.; Khushalani, N.I.; Modi, B.; Schadendorf, D.; Gao, B.; Seebach, F.; Li, S.; Li, J.; Mathias, M.; Booth, J.; Mohan, K.; Stankevich, E.; Babiker, H.M.; Brana, I.; Gil-Martin, M.; Homsi, J.; Johnson, M.L.; Moreno, V.; Niu, J.; Owonikoko, T.K.; Papadopoulos, K.P.; Yancopoulos, G.D.; Lowy, I.; Fury, M.G. PD-1 blockade with cemiplimab in advanced cutaneous squamous-cell carcinoma. N. Engl. J. Med., 2018, 379(4), 341-351.
[http://dx.doi.org/10.1056/NEJMoa1805131] [PMID: 29863979]
[120]
Phillips, A.A.; Fields, P.A.; Hermine, O.; Ramos, J.C.; Beltran, B.E.; Pereira, J.; Wandroo, F.; Feldman, T.; Taylor, G.P.; Sawas, A.; Humphrey, J.; Kurman, M.; Moriya, J.; Dwyer, K.; Leoni, M.; Conlon, K.; Cook, L.; Gonsky, J.; Horwitz, S.M. Mogamulizumab versus investigator’s choice of chemotherapy regimen in relapsed/refractory adult T-cell leukemia/lymphoma. Haematologica, 2019, 104(5), 993-1003.
[http://dx.doi.org/10.3324/haematol.2018.205096] [PMID: 30573506]
[121]
Halaby, D.M.; Mornon, J.P. The immunoglobulin superfamily: an insight on its tissular, species and functional diversity. J. Mol. Evol., 1998, 46(4), 389-400.
[http://dx.doi.org/10.1007/PL00006318] [PMID: 9541533]
[122]
Harpaz, Y.; Chothia, C. Many of the immunoglobulin superfamily domains in cell adhesion molecules and surface receptors belong to a new structural set which is close to that containing variable domains. J. Mol. Biol., 1994, 238(4), 528-539.
[http://dx.doi.org/10.1006/jmbi.1994.1312] [PMID: 8176743]
[123]
Schroeder, H.W. Jr.; Cavacini, L. Structure and function of immunoglobulins. J. Allergy Clin. Immunol., 2010, 125(2)(Suppl. 2), S41-S52.
[http://dx.doi.org/10.1016/j.jaci.2009.09.046] [PMID: 20176268]
[124]
Janeway, C.A.J.; Travers, P.; Walport, M.; Shlomchik, M.J. Immunobiology: The Immune System in Health and Disease, 5th ed; , 2001.
[125]
Raghunathan, G.; Smart, J.; Williams, J.; Almagro, J.C. Antigen-binding site anatomy and somatic mutations in antibodies that recognize different types of antigens. J. Mol. Recognit., 2012, 25(3), 103-113.
[http://dx.doi.org/10.1002/jmr.2158] [PMID: 22407974]
[126]
Ribatti, D. Edelman’s view on the discovery of antibodies. Immunol. Lett., 2015, 164(2), 72-75.
[http://dx.doi.org/10.1016/j.imlet.2015.02.005] [PMID: 25712466]
[127]
Sandomenico, A.; Leonardi, A.; Berisio, R.; Sanguigno, L.; Focà, G.; Focà, A.; Ruggiero, A.; Doti, N.; Muscariello, L.; Barone, D.; Farina, C.; Owsianka, A.; Vitagliano, L.; Patel, A.H.; Ruvo, M. Generation and characterization of monoclonal antibodies against a cyclic variant of hepatitis C virus E2 epitope 412-422. J. Virol., 2016, 90(7), 3745-3759.
[http://dx.doi.org/10.1128/JVI.02397-15] [PMID: 26819303]
[128]
Viparelli, F.; Cassese, A.; Doti, N.; Paturzo, F.; Marasco, D.; Dathan, N.A.; Monti, S.M.; Basile, G.; Ungaro, P.; Sabatella, M.; Miele, C.; Teperino, R.; Consiglio, E.; Pedone, C.; Beguinot, F.; Formisano, P.; Ruvo, M. Targeting of PED/PEA-15 molecular interaction with phospholipase D1 enhances insulin sensitivity in skeletal muscle cells. J. Biol. Chem., 2008, 283(31), 21769-21778.
[http://dx.doi.org/10.1074/jbc.M803771200] [PMID: 18541525]
[129]
Chambery, A.; Pisante, M.; Di Maro, A.; Di Zazzo, E.; Ruvo, M.; Costantini, S.; Colonna, G.; Parente, A. Invariant Ser211 is involved in the catalysis of PD-L4, type I RIP from Phytolacca dioica leaves. Proteins, 2007, 67(1), 209-218.
[http://dx.doi.org/10.1002/prot.21271] [PMID: 17243169]
[130]
Stura, E.A.; Fieser, G.G.; Wilson, I.A. Crystallization of antibodies and antibody-antigen complexes. ImmunoMethod, 1993, 3(3), 164-179.
[http://dx.doi.org/10.1006/immu.1993.1051]
[131]
Zhao, Z.; Worthylake, D.; LeCour, L., Jr; Maresh, G.A.; Pincus, S.H. Crystal structure and computational modeling of the fab fragment from a protective anti-ricin monoclonal antibody. PLoS One, 2012, 7(12)e52613
[http://dx.doi.org/10.1371/journal.pone.0052613] [PMID: 23285112]
[132]
Griffin, L.; Lawson, A. Antibody fragments as tools in crystallography. Clin. Exp. Immunol., 2011, 165(3), 285-291.
[http://dx.doi.org/10.1111/j.1365-2249.2011.04427.x] [PMID: 21649648]
[133]
Barone, D.; Balasco, N.; Autiero, I.; Vitagliano, L. The dynamic properties of the Hepatitis C virus E2 envelope protein unraveled by molecular dynamics. J. Biomol. Struct. Dyn., 2017, 35(4), 805-816.
[http://dx.doi.org/10.1080/07391102.2016.1162198] [PMID: 26973093]
[134]
Ereño-Orbea, J.; Sicard, T.; Cui, H.; Carson, J.; Hermans, P.; Julien, J.P. Structural basis of enhanced crystallizability induced by a molecular chaperone for antibody antigen-binding fragments. J. Mol. Biol., 2018, 430(3), 322-336.
[http://dx.doi.org/10.1016/j.jmb.2017.12.010] [PMID: 29277294]
[135]
Holliger, P.; Hudson, P.J. Engineered antibody fragments and the rise of single domains. Nat. Biotechnol., 2005, 23(9), 1126-1136.
[http://dx.doi.org/10.1038/nbt1142] [PMID: 16151406]
[136]
Richards, D.A.; Maruani, A.; Chudasama, V. Antibody fragments as nanoparticle targeting ligands: a step in the right direction. Chem. Sci. (Camb.), 2017, 8(1), 63-77.
[http://dx.doi.org/10.1039/C6SC02403C] [PMID: 28451149]
[137]
Friese, O.V.; Smith, J.N.; Brown, P.W.; Rouse, J.C. Practical approaches for overcoming challenges in heightened characterization of antibody-drug conjugates with new methodologies and ultrahigh-resolution mass spectrometry. MAbs, 2018, 10(3), 335-345.
[http://dx.doi.org/10.1080/19420862.2018.1433973] [PMID: 29393747]
[138]
Frigerio, M.; Kyle, A.F. The chemical design and synthesis of linkers used in antibody drug conjugates. Curr. Top. Med. Chem., 2017, 17(32), 3393-3424.
[http://dx.doi.org/10.2174/1568026618666180118155847] [PMID: 29357801]
[139]
Tsuchikama, K.; An, Z. Antibody-drug conjugates: recent advances in conjugation and linker chemistries. Protein Cell, 2018, 9(1), 33-46.
[http://dx.doi.org/10.1007/s13238-016-0323-0] [PMID: 27743348]
[140]
Chen, F.; Ma, K.; Madajewski, B.; Zhuang, L.; Zhang, L.; Rickert, K.; Marelli, M.; Yoo, B.; Turker, M.Z.; Overholtzer, M.; Quinn, T.P.; Gonen, M.; Zanzonico, P.; Tuesca, A.; Bowen, M.A.; Norton, L.; Subramony, J.A.; Wiesner, U.; Bradbury, M.S. Ultrasmall targeted nanoparticles with engineered antibody fragments for imaging detection of HER2-overexpressing breast cancer. Nat. Commun., 2018, 9(1), 4141.
[http://dx.doi.org/10.1038/s41467-018-06271-5] [PMID: 30297810]
[141]
Mishra, A.P.; Chandra, S.; Tiwari, R.; Srivastava, A.; Tiwari, G. Therapeutic potential of prodrugs towards targeted drug delivery. Open Med. Chem. J., 2018, 12, 111-123.
[http://dx.doi.org/10.2174/1874104501812010111] [PMID: 30505359]
[142]
Brinkmann, U.; Kontermann, R.E. The making of bispecific antibodies. MAbs, 2017, 9(2), 182-212.
[http://dx.doi.org/10.1080/19420862.2016.1268307] [PMID: 28071970]
[143]
Sanford, M. Blinatumomab: first global approval. Drugs, 2015, 75(3), 321-327.
[http://dx.doi.org/10.1007/s40265-015-0356-3] [PMID: 25637301]
[144]
Heiss, M.M.; Murawa, P.; Koralewski, P.; Kutarska, E.; Kolesnik, O.O.; Ivanchenko, V.V.; Dudnichenko, A.S.; Aleknaviciene, B.; Razbadauskas, A.; Gore, M.; Ganea-Motan, E.; Ciuleanu, T.; Wimberger, P.; Schmittel, A.; Schmalfeldt, B.; Burges, A.; Bokemeyer, C.; Lindhofer, H.; Lahr, A.; Parsons, S.L. The trifunctional antibody catumaxomab for the treatment of malignant ascites due to epithelial cancer: results of a prospective randomized phase II/III trial. Int. J. Cancer, 2010, 127(9), 2209-2221.
[http://dx.doi.org/10.1002/ijc.25423] [PMID: 20473913]
[145]
Lopez-Albaitero, A.; Xu, H.; Guo, H.; Wang, L.; Wu, Z.; Tran, H.; Chandarlapaty, S.; Scaltriti, M.; Janjigian, Y.; de Stanchina, E.; Cheung, N.K. Overcoming resistance to HER2-targeted therapy with a novel HER2/CD3 bispecific antibody. OncoImmunology, 2017, 6(3)e1267891
[http://dx.doi.org/10.1080/2162402X.2016.1267891] [PMID: 28405494]
[146]
Li, B.; Meng, Y.; Zheng, L.; Zhang, X.; Tong, Q.; Tan, W.; Hu, S.; Li, H.; Chen, Y.; Song, J.; Zhang, G.; Zhao, L.; Zhang, D.; Hou, S.; Qian, W.; Guo, Y. Bispecific antibody to ErbB2 overcomes trastuzumab resistance through comprehensive blockade of ErbB2 heterodimerization. Cancer Res., 2013, 73(21), 6471-6483.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-0657] [PMID: 24046294]
[147]
Genovese, M.C.; Becker, J-C.; Schiff, M.; Luggen, M.; Sherrer, Y.; Kremer, J.; Birbara, C.; Box, J.; Natarajan, K.; Nuamah, I.; Li, T.; Aranda, R.; Hagerty, D.T.; Dougados, M. Abatacept for rheumatoid arthritis refractory to tumor necrosis factor α inhibition. N. Engl. J. Med., 2005, 353(11), 1114-1123.
[http://dx.doi.org/10.1056/NEJMoa050524] [PMID: 16162882]
[148]
Zulian, F.; Balzarin, M.; Falcini, F.; Martini, G.; Alessio, M.; Cimaz, R.; Cimino, L.; Zannin, M.E. Abatacept for severe anti-tumor necrosis factor α refractory juvenile idiopathic arthritis-related uveitis. Arthritis Care Res. (Hoboken), 2010, 62(6), 821-825.
[http://dx.doi.org/10.1002/acr.20115] [PMID: 20191477]
[149]
Azar, R.R.; McKay, R.G.; Thompson, P.D.; Hirst, J.A.; Mitchell, J.F.; Fram, D.B.; Waters, D.D.; Kiernan, F.J. Abciximab in primary coronary angioplasty for acute myocardial infarction improves short- and medium-term outcomes. J. Am. Coll. Cardiol., 1998, 32(7), 1996-2002.
[http://dx.doi.org/10.1016/S0735-1097(98)00463-X] [PMID: 9857884]
[150]
Guo, M.Y.; Cheng, J.; Etminan, M.; Zafari, Z.; Maberley, D. One year effectiveness study of intravitreal aflibercept in neovascular age-related macular degeneration: a meta-analysis. Acta Ophthalmol., 2019, 97(1), e1-e7.
[http://dx.doi.org/10.1111/aos.13825] [PMID: 30030923]
[151]
Ozkaya, A.; Tulu, B.; Garip, R. Aflibercept in macular edema secondary to retinal vein occlusion: a real life study. Saudi J. Ophthalmol., 2017, 31(4), 211-215.
[http://dx.doi.org/10.1016/j.sjopt.2017.09.009] [PMID: 29234221]
[152]
Carola, C.; Ghiringhelli, F.; Kim, S.; André, T.; Barlet, J.; Bengrine-Lefevre, L.; Marijon, H.; Garcia-Larnicol, M.L.; Borg, C.; Dainese, L.; Steuer, N.; Richa, H.; Benetkiewicz, M.; Larsen, A.K.; de Gramont, A.; Chibaudel, B. FOLFIRI3-aflibercept in previously treated patients with metastatic colorectal cancer. World J. Clin. Oncol., 2018, 9(5), 110-118.
[http://dx.doi.org/10.5306/wjco.v9.i5.110] [PMID: 30254966]
[153]
Busch, C.; Wakabayashi, T.; Sato, T.; Fukushima, Y.; Hara, C.; Shiraki, N.; Winegarner, A.; Nishida, K.; Sakaguchi, H.; Nishida, K. Retinal microvasculature and visual acuity after intravitreal aflibercept in diabetic macular edema: an optical coherence tomography angiography study. Sci. Rep., 2019, 9(1), 1561.
[http://dx.doi.org/10.1038/s41598-018-38248-1] [PMID: 30733512]
[154]
Ikuno, Y.; Ohno-Matsui, K.; Wong, T.Y.; Korobelnik, J.F.; Vitti, R.; Li, T.; Stemper, B.; Asmus, F.; Zeitz, O.; Ishibashi, T. Intravitreal aflibercept injection in patients with myopic choroidal neovascularization: the MYRROR study. Ophthalmology, 2015, 122(6), 1220-1227.
[http://dx.doi.org/10.1016/j.ophtha.2015.01.025] [PMID: 25745875]
[155]
Whyte, M.P.; Rockman-Greenberg, C.; Ozono, K.; Riese, R.; Moseley, S.; Melian, A.; Thompson, D.D.; Bishop, N.; Hofmann, C. Asfotase alfa treatment improves survival for perinatal and infantile hypophosphatasia. J. Clin. Endocrinol. Metab., 2016, 101(1), 334-342.
[http://dx.doi.org/10.1210/jc.2015-3462] [PMID: 26529632]
[156]
Locke, F.L.; Ghobadi, A.; Jacobson, C.A.; Miklos, D.B.; Lekakis, L.J.; Oluwole, O.O.; Lin, Y.; Braunschweig, I.; Hill, B.T.; Timmerman, J.M.; Deol, A.; Reagan, P.M.; Stiff, P.; Flinn, I.W.; Farooq, U.; Goy, A.; McSweeney, P.A.; Munoz, J.; Siddiqi, T.; Chavez, J.C.; Herrera, A.F.; Bartlett, N.L.; Wiezorek, J.S.; Navale, L.; Xue, A.; Jiang, Y.; Bot, A.; Rossi, J.M.; Kim, J.J.; Go, W.Y.; Neelapu, S.S. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1-2 trial. Lancet Oncol., 2019, 20(1), 31-42.
[http://dx.doi.org/10.1016/S1470-2045(18)30864-7] [PMID: 30518502]
[157]
Bouchkouj, N.; Kasamon, Y.L.; de Claro, R.A.; George, B.; Lin, X.; Lee, S.; Blumenthal, G.M.; Bryan, W.; McKee, A.E.; Pazdur, R. FDA approval summary: axicabtagene ciloleucel for relapsed or refractory large B-cell lymphoma. Clin. Cancer Res., 2019, 25(6), 1702-1708.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-2743] [PMID: 30413526]
[158]
Vincenti, F.; Rostaing, L.; Grinyo, J.; Rice, K.; Steinberg, S.; Gaite, L.; Moal, M-C.; Mondragon-Ramirez, G.A.; Kothari, J.; Polinsky, M.S.; Meier-Kriesche, H.U.; Munier, S.; Larsen, C.P. Belatacept and long-term outcomes in kidney transplantation. N. Engl. J. Med., 2016, 374(4), 333-343.
[http://dx.doi.org/10.1056/NEJMoa1506027] [PMID: 26816011]
[159]
Richter, W.S.; Ivancevic, V.; Meller, J.; Lang, O.; Le Guludec, D.; Szilvazi, I.; Amthauer, H.; Chossat, F.; Dahmane, A.; Schwenke, C.; Signore, A. 99mTc-besilesomab (Scintimun) in peripheral osteomyelitis: comparison with 99mTc-labelled white blood cells. Eur. J. Nucl. Med. Mol. Imaging, 2011, 38(5), 899-910.
[http://dx.doi.org/10.1007/s00259-011-1731-2] [PMID: 21321791]
[160]
Dombret, H.; Topp, M.S.; Schuh, A.C.; Wei, A.H.; Durrant, S.; Bacon, C.L.; Tran, Q.; Zimmerman, Z.; Kantarjian, H. Blinatumomab versus chemotherapy in first salvage or in later salvage for B-cell precursor acute lymphoblastic leukemia. Leuk. Lymphoma, 2019, 60(9), 2214-2222.
[http://dx.doi.org/10.1080/10428194.2019.1576872] [PMID: 30947585]
[161]
de Claro, R.A.; McGinn, K.; Kwitkowski, V.; Bullock, J.; Khandelwal, A.; Habtemariam, B.; Ouyang, Y.; Saber, H.; Lee, K.; Koti, K.; Rothmann, M.; Shapiro, M.; Borrego, F.; Clouse, K.; Chen, X.H.; Brown, J.; Akinsanya, L.; Kane, R.; Kaminskas, E.; Farrell, A.; Pazdur, R.U.S. food and drug administration approval summary: brentuximab vedotin for the treatment of relapsed Hodgkin lymphoma or relapsed systemic anaplastic large-cell lymphoma. Clin. Cancer Res., 2012, 18(21), 5845-5849.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-1803] [PMID: 22962441]
[162]
Scully, M.; Cataland, S.R.; Peyvandi, F.; Coppo, P.; Knöbl, P.; Kremer Hovinga, J.A.; Metjian, A.; de la Rubia, J.; Pavenski, K.; Callewaert, F.; Biswas, D.; De Winter, H.; Zeldin, R.K. Caplacizumab treatment for acquired thrombotic thrombocytopenic purpura. N. Engl. J. Med., 2019, 380(4), 335-346.
[http://dx.doi.org/10.1056/NEJMoa1806311] [PMID: 30625070]
[163]
Peyvandi, F.; Scully, M.; Kremer Hovinga, J.A.; Knöbl, P.; Cataland, S.; De Beuf, K.; Callewaert, F.; De Winter, H.; Zeldin, R.K. Caplacizumab reduces the frequency of major thromboembolic events, exacerbations and death in patients with acquired thrombotic thrombocytopenic purpura. J. Thromb. Haemost., 2017, 15(7), 1448-1452.
[http://dx.doi.org/10.1111/jth.13716] [PMID: 28445600]
[164]
Kahn, D.; Williams, R.D.; Haseman, M.K.; Reed, N.L.; Miller, S.J.; Gerstbrein, J. Radioimmunoscintigraphy with In-111-labeled capromab pendetide predicts prostate cancer response to salvage radiotherapy after failed radical prostatectomy. J. Clin. Oncol., 1998, 16(1), 284-289.
[http://dx.doi.org/10.1200/JCO.1998.16.1.284] [PMID: 9440754]
[165]
Schreiber, S.; Rutgeerts, P.; Fedorak, R.N.; Khaliq-Kareemi, M.; Kamm, M.A.; Boivin, M.; Bernstein, C.N.; Staun, M.; Thomsen, O.Ø.; Innes, A. A randomized, placebo-controlled trial of certolizumab pegol (CDP870) for treatment of Crohn’s disease. Gastroenterology, 2005, 129(3), 807-818.
[http://dx.doi.org/10.1053/j.gastro.2005.06.064] [PMID: 16143120]
[166]
Bush, S.P.; Green, S.M.; Moynihan, J.A.; Hayes, W.K.; Cardwell, M.D. Crotalidae polyvalent immune Fab (ovine) antivenom is efficacious for envenomations by Southern Pacific rattlesnakes (Crotalus helleri). Ann. Emerg. Med., 2002, 40(6), 619-624.
[http://dx.doi.org/10.1067/mem.2002.129939] [PMID: 12447339]
[167]
Smith, T.W.; Butler, V.P. Jr.; Haber, E.; Fozzard, H.; Marcus, F.I.; Bremner, W.F.; Schulman, I.C.; Phillips, A. Treatment of life-threatening digitalis intoxication with digoxin-specific Fab antibody fragments: experience in 26 cases. N. Engl. J. Med., 1982, 307(22), 1357-1362.
[http://dx.doi.org/10.1056/NEJM198211253072201] [PMID: 6752715]
[168]
Chan, B.S.; Buckley, N.A. Digoxin-specific antibody fragments in the treatment of digoxin toxicity. Clin. Toxicol. (Phila.), 2014, 52(8), 824-836.
[http://dx.doi.org/10.3109/15563650.2014.943907] [PMID: 25089630]
[169]
Umpierrez, G.; Tofé Povedano, S.; Pérez Manghi, F.; Shurzinske, L.; Pechtner, V. Efficacy and safety of dulaglutide monotherapy versus metformin in type 2 diabetes in a randomized controlled trial (AWARD-3). Diabetes Care, 2014, 37(8), 2168-2176.
[http://dx.doi.org/10.2337/dc13-2759] [PMID: 24842985]
[170]
Tiede, A. Half-life extended factor VIII for the treatment of hemophilia A. J. Thromb. Haemost., 2015, 13(Suppl. 1), S176-S179.
[http://dx.doi.org/10.1111/jth.12929] [PMID: 26149020]
[171]
Cooley, B.; Funkhouser, W.; Monroe, D.; Ezzell, A.; Mann, D.M.; Lin, F.C.; Monahan, P.E.; Stafford, D.W. Prophylactic efficacy of BeneFIX vs. Alprolix in hemophilia B mice. Blood, 2016, 128(2), 286-292.
[http://dx.doi.org/10.1182/blood-2016-01-696104] [PMID: 27106122]
[172]
Levy, G.G.; Asikanius, E.; Kuebler, P.; Benchikh El Fegoun, S.; Esbjerg, S.; Seremetis, S. Safety analysis of rFVIIa with emicizumab dosing in congenital hemophilia A with inhibitors: experience from the HAVEN clinical program. J. Thromb. Haemost., 2019, 17(9), 1470-1477.
[http://dx.doi.org/10.1111/jth.14491] [PMID: 31124272]
[173]
Lan, J.L.; Chou, S.J.; Chen, D.Y.; Chen, Y.H.; Hsieh, T.Y.; Young, J.M. Jr. A comparative study of etanercept plus methotrexate and methotrexate alone in Taiwanese patients with active rheumatoid arthritis: a 12-week, double-blind, randomized, placebo-controlled study. J. Formos. Med. Assoc., 2004, 103(8), 618-623.
[PMID: 15340661]
[174]
Mease, P.J.; Goffe, B.S.; Metz, J.; VanderStoep, A.; Finck, B.; Burge, D.J. Etanercept in the treatment of psoriatic arthritis and psoriasis: a randomised trial. Lancet, 2000, 356(9227), 385-390.
[http://dx.doi.org/10.1016/S0140-6736(00)02530-7] [PMID: 10972371]
[175]
Larson, R.A.; Sievers, E.L.; Stadtmauer, E.A.; Löwenberg, B.; Estey, E.H.; Dombret, H.; Theobald, M.; Voliotis, D.; Bennett, J.M.; Richie, M.; Leopold, L.H.; Berger, M.S.; Sherman, M.L.; Loken, M.R.; van Dongen, J.J.; Bernstein, I.D.; Appelbaum, F.R. Final report of the efficacy and safety of gemtuzumab ozogamicin (Mylotarg) in patients with CD33-positive acute myeloid leukemia in first recurrence. Cancer, 2005, 104(7), 1442-1452.
[http://dx.doi.org/10.1002/cncr.21326] [PMID: 16116598]
[176]
Witzig, T.E.; Gordon, L.I.; Cabanillas, F.; Czuczman, M.S.; Emmanouilides, C.; Joyce, R.; Pohlman, B.L.; Bartlett, N.L.; Wiseman, G.A.; Padre, N.; Grillo-López, A.J.; Multani, P.; White, C.A. Randomized controlled trial of yttrium-90-labeled ibritumomab tiuxetan radioimmunotherapy versus rituximab immunotherapy for patients with relapsed or refractory low-grade, follicular, or transformed B-cell non-Hodgkin’s lymphoma. J. Clin. Oncol., 2002, 20(10), 2453-2463.
[http://dx.doi.org/10.1200/JCO.2002.11.076] [PMID: 12011122]
[177]
Balakumar, J.; Santiago, R.; Supino, M. Reversal of dabigatran with idarucizumab in acute subarachnoid hemorrhage. Clinical Pract. Cases Emerg. Med., 2017, 1(4), 349-353.
[http://dx.doi.org/10.5811/cpcem.2017.6.34356] [PMID: 29849330]
[178]
Bhattacharya, S.; Lahiri, A. Clinical Use of Antibodies, 1991, 69-83.
[http://dx.doi.org/10.1007/978-94-011-3516-0_7]
[179]
Kreitman, R.J.; Tallman, M.S.; Robak, T.; Coutre, S.; Wilson, W.H.; Stetler-Stevenson, M.; FitzGerald, D.J.; Santiago, L.; Gao, G.; Lanasa, M.C.; Pastan, I. Minimal residual hairy cell leukemia eradication with moxetumomab pasudotox: phase 1 results and long-term follow-up. Blood, 2018, 131(21), 2331-2334.
[http://dx.doi.org/10.1182/blood-2017-09-803072] [PMID: 29487070]
[180]
Breitz, H.B.; Tyler, A.; Bjorn, M.J.; Lesley, T.; Weiden, P.L. Clinical experience with Tc-99m nofetumomab merpentan (Verluma) radioimmunoscintigraphy. Clin. Nucl. Med., 1997, 22(9), 615-620.
[http://dx.doi.org/10.1097/00003072-199709000-00007] [PMID: 9298295]
[181]
Holz, F.G.; Amoaku, W.; Donate, J.; Guymer, R.H.; Kellner, U.; Schlingemann, R.O.; Weichselberger, A.; Staurenghi, G.; Group, S.S. Safety and efficacy of a flexible dosing regimen of ranibizumab in neovascular age-related macular degeneration: the SUSTAIN study. Ophthalmology, 2011, 118(4), 663-671.
[http://dx.doi.org/10.1016/j.ophtha.2010.12.019] [PMID: 21459217]
[182]
Heier, J.S.; Campochiaro, P.A.; Yau, L.; Li, Z.; Saroj, N.; Rubio, R.G.; Lai, P. Ranibizumab for macular edema due to retinal vein occlusions: long-term follow-up in the HORIZON trial. Ophthalmology, 2012, 119(4), 802-809.
[http://dx.doi.org/10.1016/j.ophtha.2011.12.005] [PMID: 22301066]
[183]
Nguyen, Q.D.; Brown, D.M.; Marcus, D.M.; Boyer, D.S.; Patel, S.; Feiner, L.; Gibson, A.; Sy, J.; Rundle, A.C.; Hopkins, J.J.; Rubio, R.G.; Ehrlich, J.S. Ranibizumab for diabetic macular edema: results from 2 phase III randomized trials: RISE and RIDE. Ophthalmology, 2012, 119(4), 789-801.
[http://dx.doi.org/10.1016/j.ophtha.2011.12.039] [PMID: 22330964]
[184]
Bressler, N.M.; Doan, Q.V.; Varma, R.; Lee, P.P.; Suñer, I.J.; Dolan, C.; Danese, M.D.; Yu, E.; Tran, I.; Colman, S. Estimated cases of legal blindness and visual impairment avoided using ranibizumab for choroidal neovascularization: non-Hispanic white population in the United States with age-related macular degeneration. Arch. Ophthalmol., 2011, 129(6), 709-717.
[http://dx.doi.org/10.1001/archophthalmol.2011.140] [PMID: 21670337]
[185]
Hoffman, H.M.; Throne, M.L.; Amar, N.J.; Sebai, M.; Kivitz, A.J.; Kavanaugh, A.; Weinstein, S.P.; Belomestnov, P.; Yancopoulos, G.D.; Stahl, N.; Mellis, S.J. Efficacy and safety of rilonacept (interleukin-1 trap) in patients with cryopyrin-associated periodic syndromes: results from two sequential placebo-controlled studies. Arthritis Rheum., 2008, 58(8), 2443-2452.
[http://dx.doi.org/10.1002/art.23687] [PMID: 18668535]
[186]
Garg, M.; de Jesus, A.A.; Chapelle, D.; Dancey, P.; Herzog, R.; Rivas-Chacon, R.; Muskardin, T.L.W.; Reed, A.; Reynolds, J.C.; Goldbach-Mansky, R.; Sanchez, G.A.M. Rilonacept maintains long-term inflammatory remission in patients with deficiency of the IL-1 receptor antagonist. JCI Insight, 2017, 2(16), 94838.
[http://dx.doi.org/10.1172/jci.insight.94838] [PMID: 28814674]
[187]
Kuter, D.J.; Bussel, J.B.; Lyons, R.M.; Pullarkat, V.; Gernsheimer, T.B.; Senecal, F.M.; Aledort, L.M.; George, J.N.; Kessler, C.M.; Sanz, M.A.; Liebman, H.A.; Slovick, F.T.; de Wolf, J.T.; Bourgeois, E.; Guthrie, T.H. Jr.; Newland, A.; Wasser, J.S.; Hamburg, S.I.; Grande, C.; Lefrère, F.; Lichtin, A.E.; Tarantino, M.D.; Terebelo, H.R.; Viallard, J.F.; Cuevas, F.J.; Go, R.S.; Henry, D.H.; Redner, R.L.; Rice, L.; Schipperus, M.R.; Guo, D.M.; Nichol, J.L. Efficacy of romiplostim in patients with chronic immune thrombocytopenic purpura: a double-blind randomised controlled trial. Lancet, 2008, 371(9610), 395-403.
[http://dx.doi.org/10.1016/S0140-6736(08)60203-2] [PMID: 18242413]
[188]
Mueller, K.T.; Waldron, E.; Grupp, S.A.; Levine, J.E.; Laetsch, T.W.; Pulsipher, M.A.; Boyer, M.W.; August, K.J.; Hamilton, J.; Awasthi, R.; Stein, A.M.; Sickert, D.; Chakraborty, A.; Levine, B.L.; June, C.H.; Tomassian, L.; Shah, S.S.; Leung, M.; Taran, T.; Wood, P.A.; Maude, S.L. Clinical pharmacology of tisagenlecleucel in B-cell acute lymphoblastic leukemia. Clin. Cancer Res., 2018, 24(24), 6175-6184.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-0758] [PMID: 30190371]
[189]
Girish, S.; Gupta, M.; Wang, B.; Lu, D.; Krop, I.; Vogel, C. Clinical pharmacology of trastuzumab emtansine (T-DM1): a unique antibody-drug conjugate in development for the treatment of HER2-positive cancer. [abstract PI-11] Clin. Pharmacol. Ther., 2011, 89(Suppl. 1), S12.
[190]
Qiu, T.; Xiao, H.; Zhang, Q.; Qiu, J.; Yang, Y.; Wu, D.; Cao, Z.; Zhu, R. Proteochemometric modeling of the antigen-antibody interaction: new fingerprints for antigen, antibody and epitope-paratope interaction. PLoS One, 2015, 10(4)e0122416
[http://dx.doi.org/10.1371/journal.pone.0122416] [PMID: 25901362]
[191]
Brüggemann, M.; Winter, G.; Waldmann, H.; Neuberger, M.S. The immunogenicity of chimeric antibodies. J. Exp. Med., 1989, 170(6), 2153-2157.
[http://dx.doi.org/10.1084/jem.170.6.2153] [PMID: 2584938]
[192]
Verhoeyen, M.; Milstein, C.; Winter, G. Reshaping human antibodies: grafting an antilysozyme activity. Science, 1988, 239(4847), 1534-1536.
[http://dx.doi.org/10.1126/science.2451287] [PMID: 2451287]
[193]
Hu, W.G.; Yin, J.; Chau, D.; Negrych, L.M.; Cherwonogrodzky, J.W. Humanization and characterization of an anti-ricin neutralization monoclonal antibody. PLoS One, 2012, 7(9)e45595
[http://dx.doi.org/10.1371/journal.pone.0045595] [PMID: 23049820]
[194]
Afif, W.; Loftus, E.V. Jr.; Faubion, W.A.; Kane, S.V.; Bruining, D.H.; Hanson, K.A.; Sandborn, W.J. Clinical utility of measuring infliximab and human anti-chimeric antibody concentrations in patients with inflammatory bowel disease. Am. J. Gastroenterol., 2010, 105(5), 1133-1139.
[http://dx.doi.org/10.1038/ajg.2010.9] [PMID: 20145610]
[195]
Chiu, M.L.; Gilliland, G.L. Engineering antibody therapeutics. Curr. Opin. Struct. Biol., 2016, 38, 163-173.
[http://dx.doi.org/10.1016/j.sbi.2016.07.012] [PMID: 27525816]
[196]
Kurella, V.B.; Gali, R. Antibody design and humanization via in silico modeling. Methods Mol. Biol., 2018, 1827, 3-14.
[http://dx.doi.org/10.1007/978-1-4939-8648-4_1] [PMID: 30196489]
[197]
Dondelinger, M.; Filée, P.; Sauvage, E.; Quinting, B.; Muyldermans, S.; Galleni, M.; Vandevenne, M.S. Understanding the significance and implications of antibody numbering and antigen-binding surface/residue definition. Front. Immunol., 2018, 9, 2278.
[http://dx.doi.org/10.3389/fimmu.2018.02278] [PMID: 30386328]
[198]
Dunbar, J.; Deane, C.M. ANARCI: antigen receptor numbering and receptor classification. Bioinformatics, 2016, 32(2), 298-300.
[http://dx.doi.org/10.1093/bioinformatics/btv552] [PMID: 26424857]
[199]
Abhinandan, K.R.; Martin, A.C. Analysis and improvements to Kabat and structurally correct numbering of antibody variable domains. Mol. Immunol., 2008, 45(14), 3832-3839.
[http://dx.doi.org/10.1016/j.molimm.2008.05.022] [PMID: 18614234]
[200]
Lepore, R.; Olimpieri, P.P.; Messih, M.A.; Tramontano, A. PIGSPro: prediction of immunoGlobulin structures v2. Nucleic Acids Res., 2017, 45(W1), W17-W23.
[http://dx.doi.org/10.1093/nar/gkx334] [PMID: 28472367]
[201]
Weitzner, B.D.; Jeliazkov, J.R.; Lyskov, S.; Marze, N.; Kuroda, D.; Frick, R.; Adolf-Bryfogle, J.; Biswas, N.; Dunbrack, R.L. Jr.; Gray, J.J. Modeling and docking of antibody structures with Rosetta. Nat. Protoc., 2017, 12(2), 401-416.
[http://dx.doi.org/10.1038/nprot.2016.180] [PMID: 28125104]
[202]
Yamashita, K.; Ikeda, K.; Amada, K.; Liang, S.; Tsuchiya, Y.; Nakamura, H.; Shirai, H.; Standley, D.M. Kotai Antibody builder: automated high-resolution structural modeling of antibodies. Bioinformatics, 2014, 30(22), 3279-3280.
[http://dx.doi.org/10.1093/bioinformatics/btu510] [PMID: 25064566]
[203]
Fasnacht, M.; Butenhof, K.; Goupil-Lamy, A.; Hernandez-Guzman, F.; Huang, H.; Yan, L. Automated antibody structure prediction using Accelrys tools: results and best practices. Proteins, 2014, 82(8), 1583-1598.
[http://dx.doi.org/10.1002/prot.24604] [PMID: 24833271]
[204]
Leem, J.; Dunbar, J.; Georges, G.; Shi, J.; Deane, C.M. ABodyBuilder: automated antibody structure prediction with data-driven accuracy estimation. MAbs, 2016, 8(7), 1259-1268.
[http://dx.doi.org/10.1080/19420862.2016.1205773] [PMID: 27392298]
[205]
Webb, B.; Sali, A. Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinformatics, 2014, 47(5), 1-32.
[http://dx.doi.org/10.1002/0471250953.bi0506s47] [PMID: 25199792]
[206]
Marks, C.; Nowak, J.; Klostermann, S.; Georges, G.; Dunbar, J.; Shi, J.; Kelm, S.; Deane, C.M. Sphinx: merging knowledge-based and ab initio approaches to improve protein loop prediction. Bioinformatics, 2017, 33(9), 1346-1353.
[http://dx.doi.org/10.1093/bioinformatics/btw823] [PMID: 28453681]
[207]
Choi, Y.; Deane, C.M. FREAD revisited: Accurate loop structure prediction using a database search algorithm. Proteins, 2010, 78(6), 1431-1440.
[http://dx.doi.org/10.1002/prot.22658] [PMID: 20034110]
[208]
Andrec, M.; Harano, Y.; Jacobson, M.P.; Friesner, R.A.; Levy, R.M. Complete protein structure determination using backbone residual dipolar couplings and sidechain rotamer prediction. J. Struct. Funct. Genomics, 2002, 2(2), 103-111.
[http://dx.doi.org/10.1023/A:1020435630054] [PMID: 12836667]
[209]
Kunik, V.; Ashkenazi, S.; Ofran, Y. Paratome: an online tool for systematic identification of antigen-binding regions in antibodies based on sequence or structure. Nucleic Acids Res, 2012, 40(Web Server issue), W521-W524.
[http://dx.doi.org/10.1093/nar/gks480] [PMID: 22675071]
[210]
Krawczyk, K.; Baker, T.; Shi, J.; Deane, C.M. Antibody i-patch prediction of the antibody binding site improves rigid local antibody-antigen docking. Protein Eng. Des. Sel., 2013, 26(10), 621-629.
[http://dx.doi.org/10.1093/protein/gzt043] [PMID: 24006373]
[211]
Olimpieri, P.P.; Chailyan, A.; Tramontano, A.; Marcatili, P. Prediction of site-specific interactions in antibody-antigen complexes: the proABC method and server. Bioinformatics, 2013, 29(18), 2285-2291.
[http://dx.doi.org/10.1093/bioinformatics/btt369] [PMID: 23803466]
[212]
Dunbar, J.; Krawczyk, K.; Leem, J.; Baker, T.; Fuchs, A.; Georges, G.; Shi, J.; Deane, C.M. SAbDab: the structural antibody database. Nucleic Acids Res., 2014, 42(Database issue), D1140-D1146.
[http://dx.doi.org/10.1093/nar/gkt1043] [PMID: 24214988]
[213]
Ye, J.; Ma, N.; Madden, T.L.; Ostell, J.M. IgBLAST: an immunoglobulin variable domain sequence analysis tool. Nucleic Acids Res., 2013, 41(Web Server issue), W34-40.
[http://dx.doi.org/10.1093/nar/gkt382] [PMID: 23671333]
[214]
Swindells, M.B.; Porter, C.T.; Couch, M.; Hurst, J.; Abhinandan, K.R.; Nielsen, J.H.; Macindoe, G.; Hetherington, J.; Martin, A.C. abYsis: integrated antibody sequence and structure-management, analysis, and prediction. J. Mol. Biol., 2017, 429(3), 356-364.
[http://dx.doi.org/10.1016/j.jmb.2016.08.019] [PMID: 27561707]
[215]
Chailyan, A.; Tramontano, A.; Marcatili, P. A database of immunoglobulins with integrated tools: DIGIT. Nucleic Acids Res., 2012, 40(Database issue), D1230-D1234.
[http://dx.doi.org/10.1093/nar/gkr806] [PMID: 22080506]
[216]
Giudicelli, V. Duroux, P.; Kossida, S.; Lefranc, M.P. IG and TR single chain fragment variable (scFv) sequence analysis: a new advanced functionality of IMGT/V-QUEST and IMGT/HighV-QUEST. BMC Immunol., 2017, 18(1), 35.
[http://dx.doi.org/10.1186/s12865-017-0218-8] [PMID: 28651553]
[217]
Adolf-Bryfogle, J.; Xu, Q.; North, B.; Lehmann, A.; Dunbrack, R.L. Jr. PyIgClassify: a database of antibody CDR structural classifications. Nucleic Acids Res., 2015, 43(Database issue), D432-D438.
[http://dx.doi.org/10.1093/nar/gku1106] [PMID: 25392411]
[218]
Johnson, G.; Wu, T.T. The Kabat database and a bio-informatics example. Methods Mol Biol. , 2004, 248, 11-25.
[http://dx.doi.org/10.1385/1-59259-666-5:11] [PMID: 14970489]
[219]
Retter, I.; Althaus, H.H.; Münch, R.; Müller, W. VBASE2, an integrative V gene database. Nucleic Acids Res., 2005, 33(Database issue), D671-D674.
[http://dx.doi.org/10.1093/nar/gki088] [PMID: 15608286]
[220]
Olimpieri, P.P.; Marcatili, P.; Tramontano, A. Tabhu: tools for antibody humanization. Bioinformatics, 2015, 31(3), 434-435.
[http://dx.doi.org/10.1093/bioinformatics/btu667] [PMID: 25304777]
[221]
Abhinandan, K.R.; Martin, A.C. Analysis and prediction of VH/VL packing in antibodies. Protein Eng. Des. Sel., 2010, 23(9), 689-697.
[http://dx.doi.org/10.1093/protein/gzq043] [PMID: 20591902]
[222]
Yang, C.; Gao, X.; Gong, R. Engineering of fc fragments with optimized physicochemical properties implying improvement of clinical potentials for Fc-based therapeutics. Front. Immunol., 2018, 8, 1860.
[http://dx.doi.org/10.3389/fimmu.2017.01860] [PMID: 29375551]
[223]
Conchillo-Solé, O.; de Groot, N.S.; Avilés, F.X.; Vendrell, J.; Daura, X.; Ventura, S. AGGRESCAN: a server for the prediction and evaluation of “hot spots” of aggregation in polypeptides. BMC Bioinformatics, 2007, 8(1), 65.
[http://dx.doi.org/10.1186/1471-2105-8-65] [PMID: 17324296]
[224]
Fernandez-Escamilla, A.M.; Rousseau, F.; Schymkowitz, J.; Serrano, L. Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nat. Biotechnol., 2004, 22(10), 1302-1306.
[http://dx.doi.org/10.1038/nbt1012] [PMID: 15361882]
[225]
Tartaglia, G.G.; Cavalli, A.; Pellarin, R.; Caflisch, A. Prediction of aggregation rate and aggregation-prone segments in polypeptide sequences. Protein Sci., 2005, 14(10), 2723-2734.
[http://dx.doi.org/10.1110/ps.051471205] [PMID: 16195556]
[226]
Wang, X.; Das, T.K.; Singh, S.K.; Kumar, S. Potential aggregation prone regions in biotherapeutics: a survey of commercial monoclonal antibodies. MAbs, 2009, 1(3), 254-267.
[http://dx.doi.org/10.4161/mabs.1.3.8035] [PMID: 20065649]
[227]
Vázquez-Rey, M.; Lang, D.A. Aggregates in monoclonal antibody manufacturing processes. Biotechnol. Bioeng., 2011, 108(7), 1494-1508.
[http://dx.doi.org/10.1002/bit.23155] [PMID: 21480193]
[228]
Chennamsetty, N.; Voynov, V.; Kayser, V.; Helk, B.; Trout, B.L. Design of therapeutic proteins with enhanced stability. Proc. Natl. Acad. Sci. USA, 2009, 106(29), 11937-11942.
[http://dx.doi.org/10.1073/pnas.0904191106] [PMID: 19571001]
[229]
Kizhedath, A.; Wilkinson, S.; Glassey, J. Applicability of predictive toxicology methods for monoclonal antibody therapeutics: status Quo and scope. Arch. Toxicol., 2017, 91(4), 1595-1612.
[http://dx.doi.org/10.1007/s00204-016-1876-7] [PMID: 27766364]
[230]
Beatty, G.L.; Gladney, W.L. Immune escape mechanisms as a guide for cancer immunotherapy. Clin. Cancer Res., 2015, 21(4), 687-692.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-1860] [PMID: 25501578]
[231]
Iwai, Y.; Terawaki, S.; Honjo, T. PD-1 blockade inhibits hematogenous spread of poorly immunogenic tumor cells by enhanced recruitment of effector T cells. Int. Immunol., 2005, 17(2), 133-144.
[http://dx.doi.org/10.1093/intimm/dxh194] [PMID: 15611321]
[232]
Freeman, G.J.; Long, A.J.; Iwai, Y.; Bourque, K.; Chernova, T.; Nishimura, H.; Fitz, L.J.; Malenkovich, N.; Okazaki, T.; Byrne, M.C.; Horton, H.F.; Fouser, L.; Carter, L.; Ling, V.; Bowman, M.R.; Carreno, B.M.; Collins, M.; Wood, C.R.; Honjo, T. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med., 2000, 192(7), 1027-1034.
[http://dx.doi.org/10.1084/jem.192.7.1027] [PMID: 11015443]
[233]
Kwon, E.D.; Hurwitz, A.A.; Foster, B.A.; Madias, C.; Feldhaus, A.L.; Greenberg, N.M.; Burg, M.B.; Allison, J.P. Manipulation of T cell costimulatory and inhibitory signals for immunotherapy of prostate cancer. Proc. Natl. Acad. Sci. USA, 1997, 94(15), 8099-8103.
[http://dx.doi.org/10.1073/pnas.94.15.8099] [PMID: 9223321]
[234]
Hodi, F.S.; O’Day, S.J.; McDermott, D.F.; Weber, R.W.; Sosman, J.A.; Haanen, J.B.; Gonzalez, R.; Robert, C.; Schadendorf, D.; Hassel, J.C.; Akerley, W.; van den Eertwegh, A.J.; Lutzky, J.; Lorigan, P.; Vaubel, J.M.; Linette, G.P.; Hogg, D.; Ottensmeier, C.H.; Lebbé, C.; Peschel, C.; Quirt, I.; Clark, J.I.; Wolchok, J.D.; Weber, J.S.; Tian, J.; Yellin, M.J.; Nichol, G.M.; Hoos, A.; Urba, W.J. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med., 2010, 363(8), 711-723.
[http://dx.doi.org/10.1056/NEJMoa1003466] [PMID: 20525992]
[235]
Sundar, R.; Cho, B.C.; Brahmer, J.R.; Soo, R.A. Nivolumab in NSCLC: latest evidence and clinical potential. Ther. Adv. Med. Oncol., 2015, 7(2), 85-96.
[http://dx.doi.org/10.1177/1758834014567470] [PMID: 25755681]
[236]
Seidel, J.A.; Otsuka, A.; Kabashima, K. Anti-PD-1 and anti-CTLA-4 therapies in cancer: mechanisms of action, efficacy, and limitations. Front. Oncol., 2018, 8, 86.
[http://dx.doi.org/10.3389/fonc.2018.00086] [PMID: 29644214]
[237]
Callahan, M.K.; Postow, M.A.; Wolchok, J.D. CTLA-4 and PD-1 pathway blockade: combinations in the clinic. Front. Oncol., 2015, 4, 385.
[http://dx.doi.org/10.3389/fonc.2014.00385] [PMID: 25642417]
[238]
Barroso-Sousa, R.; Ott, P.A. Transformation of old concepts for a new era of cancer immunotherapy: cytokine therapy and cancer vaccines as combination partners of PD1/PD-L1 inhibitors. Curr. Oncol. Rep., 2018, 21(1), 1.
[http://dx.doi.org/10.1007/s11912-018-0738-2] [PMID: 30498900]
[239]
Wolchok, J.D.; Chiarion-Sileni, V.; Gonzalez, R.; Rutkowski, P.; Grob, J.J.; Cowey, C.L.; Lao, C.D.; Wagstaff, J.; Schadendorf, D.; Ferrucci, P.F.; Smylie, M.; Dummer, R.; Hill, A.; Hogg, D.; Haanen, J.; Carlino, M.S.; Bechter, O.; Maio, M.; Marquez-Rodas, I.; Guidoboni, M.; McArthur, G.; Lebbé, C.; Ascierto, P.A.; Long, G.V.; Cebon, J.; Sosman, J.; Postow, M.A.; Callahan, M.K.; Walker, D.; Rollin, L.; Bhore, R.; Hodi, F.S.; Larkin, J. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl. J. Med., 2017, 377(14), 1345-1356.
[http://dx.doi.org/10.1056/NEJMoa1709684] [PMID: 28889792]
[240]
The Nobel Prize in Physiology or Medicine. 2019. Available at: https://www.nobelprize.org/prizes/medicine/1987/press-release/(Accessed: 15 January, 2018)
[241]
Kabat, E.A.; Wu, T.T.; Bilofsky, H. Variable region genes for the immunoglobulin framework are assembled from small segments of DNA-a hypothesis. Proc. Natl. Acad. Sci. USA, 1978, 75(5), 2429-2433.
[http://dx.doi.org/10.1073/pnas.75.5.2429] [PMID: 97670]
[242]
Wu, T.T.; Kabat, E.A.; Bilofsky, H. Some sequence similarities among cloned mouse DNA segments that code for λ and κ light chains of immunoglobulins. Proc. Natl. Acad. USA, 1979, 76(9), 4617-4621.
[http://dx.doi.org/10.1073/pnas.76.9.4617] [PMID: 116235]
[243]
Hammers, C.M.; Stanley, J.R. Antibody phage display: technique and applications. J. Invest. Dermatol., 2014, 134(2), 1-5.
[http://dx.doi.org/10.1038/jid.2013.521] [PMID: 24424458]
[244]
Tjandra, J.J.; Ramadi, L.; McKenzie, I.F. Development of human anti-murine antibody (HAMA) response in patients. Immunol. Cell Biol., 1990, 68(Pt 6), 367-376.
[http://dx.doi.org/10.1038/icb.1990.50] [PMID: 1711007]
[245]
Kimball, J.A.; Norman, D.J.; Shield, C.F.; Schroeder, T.J.; Lisi, P.; Garovoy, M.; O’Connell, J.B.; Stuart, F.; McDiarmid, S.V.; Wall, W. The OKT3 antibody response study: a multicentre study of human anti-mouse antibody (HAMA) production following OKT3 use in solid organ transplantation. Transpl. Immunol., 1995, 3(3), 212-221.
[http://dx.doi.org/10.1016/0966-3274(95)80027-1] [PMID: 8581409]
[246]
Briney, B.; Inderbitzin, A.; Joyce, C.; Burton, D.R. Commonality despite exceptional diversity in the baseline human antibody repertoire. Nature, 2019, 566(7744), 393-397.
[http://dx.doi.org/10.1038/s41586-019-0879-y] [PMID: 30664748]
[247]
Frenzel, A.; Schirrmann, T.; Hust, M. Phage display-derived human antibodies in clinical development and therapy. MAbs, 2016, 8(7), 1177-1194.
[http://dx.doi.org/10.1080/19420862.2016.1212149] [PMID: 27416017]
[248]
Mompó, S.M.; González-Fernández, Á. Antigen-specific human monoclonal antibodies from transgenic mice. Methods Mol. Biol., 2019, 1904, 253-291.
[http://dx.doi.org/10.1007/978-1-4939-8958-4_11] [PMID: 30539474]
[249]
Pande, J.; Szewczyk, M.M.; Grover, A.K. Phage display: concept, innovations, applications and future. Biotechnol. Adv., 2010, 28(6), 849-858.
[http://dx.doi.org/10.1016/j.biotechadv.2010.07.004] [PMID: 20659548]
[250]
Sandborn, W.J.; Rutgeerts, P.; Enns, R.; Hanauer, S.B.; Colombel, J.F.; Panaccione, R.; D’Haens, G.; Li, J.; Rosenfeld, M.R.; Kent, J.D.; Pollack, P.F. Adalimumab induction therapy for Crohn disease previously treated with infliximab: a randomized trial. Ann. Intern. Med., 2007, 146(12), 829-838.
[http://dx.doi.org/10.7326/0003-4819-146-12-200706190-00159] [PMID: 17470824]
[251]
Weinblatt, M.E.; Keystone, E.C.; Furst, D.E.; Moreland, L.W.; Weisman, M.H.; Birbara, C.A.; Teoh, L.A.; Fischkoff, S.A.; Chartash, E.K. Adalimumab, a fully human anti-tumor necrosis factor α monoclonal antibody, for the treatment of rheumatoid arthritis in patients taking concomitant methotrexate: the ARMADA trial. Arthritis Rheum., 2003, 48(1), 35-45.
[http://dx.doi.org/10.1002/art.10697] [PMID: 12528101]
[252]
Reinisch, W.; Sandborn, W.J.; Hommes, D.W.; D’Haens, G.; Hanauer, S.; Schreiber, S.; Panaccione, R.; Fedorak, R.N.; Tighe, M.B.; Huang, B.; Kampman, W.; Lazar, A.; Thakkar, R. Adalimumab for induction of clinical remission in moderately to severely active ulcerative colitis: results of a randomised controlled trial. Gut, 2011, 60(6), 780-787.
[http://dx.doi.org/10.1136/gut.2010.221127] [PMID: 21209123]
[253]
Ramanan, A.V.; Dick, A.D.; Jones, A.P.; McKay, A.; Williamson, P.R.; Compeyrot-Lacassagne, S.; Hardwick, B.; Hickey, H.; Hughes, D.; Woo, P.; Benton, D.; Edelsten, C.; Beresford, M.W. Adalimumab plus methotrexate for uveitis in juvenile idiopathic arthritis. N. Engl. J. Med., 2017, 376(17), 1637-1646.
[http://dx.doi.org/10.1056/NEJMoa1614160] [PMID: 28445659]
[254]
van der Heijde, D.; Kivitz, A.; Schiff, M.H.; Sieper, J.; Dijkmans, B.A.; Braun, J.; Dougados, M.; Reveille, J.D.; Wong, R.L.; Kupper, H.; Davis, J.C. Jr. Efficacy and safety of adalimumab in patients with ankylosing spondylitis: results of a multicenter, randomized, double-blind, placebo-controlled trial. Arthritis Rheum., 2006, 54(7), 2136-2146.
[http://dx.doi.org/10.1002/art.21913] [PMID: 16802350]
[255]
Mease, P.J.; Gladman, D.D.; Ritchlin, C.T.; Ruderman, E.M.; Steinfeld, S.D.; Choy, E.H.; Sharp, J.T.; Ory, P.A.; Perdok, R.J.; Weinberg, M.A. Adalimumab Effectiveness in Psoriatic Arthritis Trial Study Group. Adalimumab for the treatment of patients with moderately to severely active psoriatic arthritis: results of a double-blind, randomized, placebo-controlled trial. Arthritis Rheum., 2005, 52(10), 3279-3289.
[http://dx.doi.org/10.1002/art.21306] [PMID: 16200601]
[256]
Asahina, A.; Nakagawa, H.; Etoh, T.; Ohtsuki, M.; Group, A.M.S. Adalimumab in Japanese patients with moderate to severe chronic plaque psoriasis: efficacy and safety results from a Phase II/III randomized controlled study. J. Dermatol., 2010, 37(4), 299-310.
[http://dx.doi.org/10.1111/j.1346-8138.2009.00748.x] [PMID: 20507398]
[257]
Tynjälä, P.; Kotaniemi, K.; Lindahl, P.; Latva, K.; Aalto, K.; Honkanen, V.; Lahdenne, P. Adalimumab in juvenile idiopathic arthritis-associated chronic anterior uveitis. Rheumatology (Oxford), 2008, 47(3), 339-344.
[http://dx.doi.org/10.1093/rheumatology/kem356] [PMID: 18238789]
[258]
Kimball, A.B.; Kerdel, F.; Adams, D.; Mrowietz, U.; Gelfand, J.M.; Gniadecki, R.; Prens, E.P.; Schlessinger, J.; Zouboulis, C.C.; van der Zee, H.H.; Rosenfeld, M.; Mulani, P.; Gu, Y.; Paulson, S.; Okun, M.; Jemec, G.B. Adalimumab for the treatment of moderate to severe Hidradenitis suppurativa: a parallel randomized trial. Ann. Intern. Med., 2012, 157(12), 846-855.
[http://dx.doi.org/10.7326/0003-4819-157-12-201212180-00004] [PMID: 23247938]
[259]
Ma, B.; Rudin, C.; Cervantes, A.; Dowlati, A.; Costa, D.; Schmid, P.; Heist, R.; Villaflor, V.; Sarkar, I.; Huseni, M. 441O Preliminary safety and clinical activity of erlotinib plus atezolizumab from a Phase Ib study in advanced NSCLC. Annals of Oncology, 2016, 27
[http://dx.doi.org/10.1093/ANNONC%2FMDW594.005]
[260]
Hoffman-Censits, J.H.; Grivas, P.; Van Der Heijden, M.S.; Dreicer, R.; Loriot, Y.; Retz, M.; Vogelzang, N.J.; Perez-Gracia, J.L.; Rezazadeh, A.; Bracarda, S. IMvigor 210, a phase II trial of atezolizumab (MPDL3280A) in platinum-treated locally advanced or metastatic urothelial carcinoma (mUC). J. Clin. Oncol., 2016, 34(2), 355.
[http://dx.doi.org/10.1200/jco.2016.34.2_suppl.355]
[261]
Navarra, S.V.; Guzmán, R.M.; Gallacher, A.E.; Hall, S.; Levy, R.A.; Jimenez, R.E.; Li, E.K.; Thomas, M.; Kim, H-Y.; León, M.G.; Tanasescu, C.; Nasonov, E.; Lan, J.L.; Pineda, L.; Zhong, Z.J.; Freimuth, W.; Petri, M.A. Efficacy and safety of belimumab in patients with active systemic lupus erythematosus: a randomised, placebo-controlled, phase 3 trial. Lancet, 2011, 377(9767), 721-731.
[http://dx.doi.org/10.1016/S0140-6736(10)61354-2] [PMID: 21296403]
[262]
Sofen, H.; Smith, S.; Matheson, R.T.; Leonardi, C.L.; Calderon, C.; Brodmerkel, C.; Li, K.; Campbell, K.; Marciniak, S.J. Jr.; Wasfi, Y.; Wang, Y.; Szapary, P.; Krueger, J.G. Guselkumab (an IL-23-specific mAb) demonstrates clinical and molecular response in patients with moderate-to-severe psoriasis. J. Allergy Clin. Immunol., 2014, 133(4), 1032-1040.
[http://dx.doi.org/10.1016/j.jaci.2014.01.025] [PMID: 24679469]
[263]
Watanabe, S.; Yoshioka, H.; Sakai, H.; Hotta, K.; Takenoyama, M.; Yamada, K.; Sugawara, S.; Takiguchi, Y.; Hosomi, Y.; Tomii, K.; Niho, S.; Yamamoto, N.; Nishio, M.; Ohe, Y.; Kato, T.; Takahashi, T.; Kamada, A.; Suzukawa, K.; Omori, Y.; Enatsu, S.; Nakagawa, K.; Tamura, T. Necitumumab plus gemcitabine and cisplatin versus gemcitabine and cisplatin alone as first-line treatment for stage IV squamous non-small cell lung cancer: a phase 1b and randomized, open-label, multicenter, phase 2 trial in Japan. Lung Cancer, 2019, 129, 55-62.
[http://dx.doi.org/10.1016/j.lungcan.2019.01.005] [PMID: 30797492]
[264]
Fuchs, C.S.; Tomasek, J.; Yong, C.J.; Dumitru, F.; Passalacqua, R.; Goswami, C.; Safran, H.; Dos Santos, L.V.; Aprile, G.; Ferry, D.R.; Melichar, B.; Tehfe, M.; Topuzov, E.; Zalcberg, J.R.; Chau, I.; Campbell, W.; Sivanandan, C.; Pikiel, J.; Koshiji, M.; Hsu, Y.; Liepa, A.M.; Gao, L.; Schwartz, J.D.; Tabernero, J. Ramucirumab monotherapy for previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (REGARD): an international, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet, 2014, 383(9911), 31-39.
[http://dx.doi.org/10.1016/S0140-6736(13)61719-5] [PMID: 24094768]
[265]
Zhu, A.X.; Kang, Y-K.; Yen, C-J.; Finn, R.S.; Galle, P.R.; Llovet, J.M.; Assenat, E.; Brandi, G.; Pracht, M.; Lim, H.Y.; Rau, K-M.; Motomura, K.; Ohno, I.; Merle, P.; Daniele, B.; Shin, D.B.; Gerken, G.; Borg, C.; Hiriart, J-B.; Okusaka, T.; Morimoto, M.; Hsu, Y.; Abada, P.B.; Kudo, M. REACH-2 study investigators. Ramucirumab after sorafenib in patients with advanced hepatocellular carcinoma and increased α-fetoprotein concentrations (REACH-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol., 2019, 20(2), 282-296.
[http://dx.doi.org/10.1016/S1470-2045(18)30937-9] [PMID: 30665869]
[266]
Migone, T.S.; Subramanian, G.M.; Zhong, J.; Healey, L.M.; Corey, A.; Devalaraja, M.; Lo, L.; Ullrich, S.; Zimmerman, J.; Chen, A.; Lewis, M.; Meister, G.; Gillum, K.; Sanford, D.; Mott, J.; Bolmer, S.D. Raxibacumab for the treatment of inhalational anthrax. N. Engl. J. Med., 2009, 361(2), 135-144.
[http://dx.doi.org/10.1056/NEJMoa0810603] [PMID: 19587338]
[267]
Tinafar, A.; Jaenes, K.; Pardee, K. Synthetic biology goes cell-free. BMC Biol., 2019, 17(1), 64.
[http://dx.doi.org/10.1186/s12915-019-0685-x] [PMID: 31395057]
[268]
Lipovsek, D.; Plückthun, A. In vitro protein evolution by ribosome display and mRNA display. J. Immunol. Methods, 2004, 290(1-2), 51-67.
[http://dx.doi.org/10.1016/j.jim.2004.04.008] [PMID: 15261571]
[269]
Huang, S.; Feng, L.; An, G.; Zhang, X.; Zhao, Z.; Han, R.; Lei, F.; Zhang, Y.; Luo, A.; Jing, X.; Zhao, L.; Gu, S.; Zhao, X.; Zhang, L. Ribosome display and selection of single-chain variable fragments effectively inhibit growth and progression of microspheres in vitro and in vivo. Cancer Sci., 2018, 109(5), 1503-1512.
[http://dx.doi.org/10.1111/cas.13574] [PMID: 29575477]
[270]
Dreier, B.; Plückthun, A. Rapid selection of high-affinity antibody scFv fragments using ribosome display. InAntibody Engineering. Methods in Molecular Biology; Nevoltris, D.; Chames, P., Eds.; Humana Press: New York, NY, 2018, Vol. 1827, .
[http://dx.doi.org/10.1007/978-1-4939-8648-4_13]
[271]
Ahangarzadeh, S.; Bandehpour, M.; Kazemi, B. Selection of single-chain variable fragments specific for Mycobacterium tuberculosis ESAT-6 antigen using ribosome display. Iran. J. Basic Med. Sci., 2017, 20(3), 327-333.
[http://dx.doi.org/10.22038/ijbms.2017.8363] [PMID: 28392906]
[272]
Kunamneni, A.; Ye, C.; Bradfute, S.B.; Durvasula, R. Ribosome display for the rapid generation of high-affinity Zika-neutralizing single-chain antibodies. PLoS One, 2018, 13(11)e0205743
[http://dx.doi.org/10.1371/journal.pone.0205743] [PMID: 30444865]
[273]
Francisco, J.A.; Campbell, R.; Iverson, B.L.; Georgiou, G. Production and fluorescence-activated cell sorting of Escherichia coli expressing a functional antibody fragment on the external surface. Proc. Natl. Acad. Sci. USA, 1993, 90(22), 10444-10448.
[http://dx.doi.org/10.1073/pnas.90.22.10444] [PMID: 8248129]
[274]
Beerli, R.R.; Bauer, M.; Buser, R.B.; Gwerder, M.; Muntwiler, S.; Maurer, P.; Saudan, P.; Bachmann, M.F. Isolation of human monoclonal antibodies by mammalian cell display. Proc. Natl. Acad. Sci. USA, 2008, 105(38), 14336-14341.
[http://dx.doi.org/10.1073/pnas.0805942105] [PMID: 18812621]
[275]
Zhou, C.; Jacobsen, F.W.; Cai, L.; Chen, Q.; Shen, D. Development of a novel mammalian cell surface antibody display platform. MAbs, 2010, 2(5), 508-518.
[http://dx.doi.org/10.4161/mabs.2.5.12970] [PMID: 20716968]
[276]
Tsuruta, L.R. Moro, A.A.M. Antibody Engineering. Thomas Böldicke Ed.; Intech-Open, 2017.
[http://dx.doi.org/10.5772/65238]
[277]
Ponsel, D.; Neugebauer, J.; Ladetzki-Baehs, K.; Tissot, K. High affinity, developability and functional size: the holy grail of combinatorial antibody library generation. Molecules, 2011, 16(5), 3675-3700.
[http://dx.doi.org/10.3390/molecules16053675] [PMID: 21540796]
[278]
Schwimmer, L.J.; Huang, B.; Giang, H.; Cotter, R.L.; Chemla-Vogel, D.S.; Dy, F.V.; Tam, E.M.; Zhang, F.; Toy, P.; Bohmann, D.J.; Watson, S.R.; Beaber, J.W.; Reddy, N.; Kuan, H-F.; Bedinger, D.H.; Rondon, I.J. Discovery of diverse and functional antibodies from large human repertoire antibody libraries. J. Immunol. Methods, 2013, 391(1-2), 60-71.
[http://dx.doi.org/10.1016/j.jim.2013.02.010] [PMID: 23454004]
[279]
Kim, S.; Park, I.; Park, S.G.; Cho, S.; Kim, J.H.; Ipper, N.S.; Choi, S.S.; Lee, E.S.; Hong, H.J. Generation, diversity determination, and application to antibody selection of a human naïve fab library. Mol. Cells , 2017, 40(9), 655-666.
[http://dx.doi.org/10.14348/molcells.2017.0106] [PMID: 28927259]
[280]
Kügler, J.; Wilke, S.; Meier, D.; Tomszak, F.; Frenzel, A.; Schirrmann, T.; Dübel, S.; Garritsen, H.; Hock, B.; Toleikis, L.; Schütte, M.; Hust, M. Generation and analysis of the improved human HAL9/10 antibody phage display libraries. BMC Biotechnol., 2015, 15(1), 10.
[http://dx.doi.org/10.1186/s12896-015-0125-0] [PMID: 25888378]
[281]
Knappik, A.; Ge, L.; Honegger, A.; Pack, P.; Fischer, M.; Wellnhofer, G.; Hoess, A.; Wölle, J.; Plückthun, A.; Virnekäs, B. Fully synthetic human combinatorial antibody libraries (HuCAL) based on modular consensus frameworks and CDRs randomized with trinucleotides. J. Mol. Biol., 2000, 296(1), 57-86.
[http://dx.doi.org/10.1006/jmbi.1999.3444] [PMID: 10656818]
[282]
Rothe, C.; Urlinger, S.; Löhning, C.; Prassler, J.; Stark, Y.; Jäger, U.; Hubner, B.; Bardroff, M.; Pradel, I.; Boss, M.; Bittlingmaier, R.; Bataa, T.; Frisch, C.; Brocks, B.; Honegger, A.; Urban, M. The human combinatorial antibody library HuCAL GOLD combines diversification of all six CDRs according to the natural immune system with a novel display method for efficient selection of high-affinity antibodies. J. Mol. Biol., 2008, 376(4), 1182-1200.
[http://dx.doi.org/10.1016/j.jmb.2007.12.018] [PMID: 18191144]
[283]
Prassler, J.; Thiel, S.; Pracht, C.; Polzer, A.; Peters, S.; Bauer, M.; Nörenberg, S.; Stark, Y.; Kölln, J.; Popp, A.; Urlinger, S.; Enzelberger, M. HuCAL PLATINUM, a synthetic Fab library optimized for sequence diversity and superior performance in mammalian expression systems. J. Mol. Biol., 2011, 413(1), 261-278.
[http://dx.doi.org/10.1016/j.jmb.2011.08.012] [PMID: 21856311]
[284]
Tiller, T.; Schuster, I.; Deppe, D.; Siegers, K.; Strohner, R.; Herrmann, T.; Berenguer, M.; Poujol, D.; Stehle, J.; Stark, Y.; Heßling, M.; Daubert, D.; Felderer, K.; Kaden, S.; Kölln, J.; Enzelberger, M.; Urlinger, S. A fully synthetic human Fab antibody library based on fixed VH/VL framework pairings with favorable biophysical properties. MAbs, 2013, 5(3), 445-470.
[http://dx.doi.org/10.4161/mabs.24218] [PMID: 23571156]
[285]
Valadon, P.; Pérez-Tapia, S.M.; Nelson, R.S.; Guzmán-Bringas, O.U.; Arrieta-Oliva, H.I.; Gómez-Castellano, K.M.; Pohl, M.A.; Almagro, J.C. ALTHEA Gold Libraries™: antibody libraries for therapeutic antibody discovery. MAbs, 2019, 11(3), 516-531.
[http://dx.doi.org/10.1080/19420862.2019.1571879] [PMID: 30663541]
[286]
Chakraborty, A.; Tannenbaum, S.; Rordorf, C.; Lowe, P.J.; Floch, D.; Gram, H.; Roy, S. Pharmacokinetic and pharmacodynamic properties of canakinumab, a human anti-interleukin-1β monoclonal antibody. Clin. Pharmacokinet., 2012, 51(6), e1-e18.
[http://dx.doi.org/10.2165/11599820-000000000-00000] [PMID: 22550964]
[287]
O’Brien, K.L.; Chandran, A.; Weatherholtz, R.; Jafri, H.S.; Griffin, M.P.; Bellamy, T.; Millar, E.V.; Jensen, K.M.; Harris, B.S.; Reid, R.; Moulton, L.H.; Losonsky, G.A.; Karron, R.A.; Santosham, M. Efficacy of motavizumab for the prevention of respiratory syncytial virus disease in healthy native American infants: a phase 3 randomised double-blind placebo-controlled trial. Lancet Infect. Dis., 2015, 15(12), 1398-1408.
[http://dx.doi.org/10.1016/S1473-3099(15)00247-9] [PMID: 26511956]
[288]
Dinnis, D.M.; James, D.C. Engineering mammalian cell factories for improved recombinant monoclonal antibody production: lessons from nature? Biotechnol. Bioeng., 2005, 91(2), 180-189.
[http://dx.doi.org/10.1002/bit.20499] [PMID: 15880827]
[289]
Robert, M-A.; Nassoury, N.; Chahal, P.S.; Venne, M-H.; Racine, T.; Qiu, X.; Kobinger, G.; Kamen, A.; Gilbert, R.; Gaillet, B. Gene transfer of ZMapp antibodies mediated by recombinant adeno-associated virus protects against Ebola infections. Hum. Gene Ther., 2018, 29(4), 452-466.
[http://dx.doi.org/10.1089/hum.2017.101] [PMID: 29179602]
[290]
Qiu, X.; Audet, J.; Wong, G.; Pillet, S.; Bello, A.; Cabral, T.; Strong, J.E.; Plummer, F.; Corbett, C.R.; Alimonti, J.B. Successful treatment of Ebola virus-infected cynomolgus macaques with monoclonal antibodies. Science Transl. Med. , (. ) 2012, 4(138), 138ra181-138ra181.
[http://dx.doi.org/10.1126/scitranslmed.3003876] [PMID: 22700957]
[291]
Moussavou, G.; Ko, K.; Lee, J.H.; Choo, Y.K. Production of monoclonal antibodies in plants for cancer immunotherapy. BioMed Res. Int., 2015, 2015306164
[http://dx.doi.org/10.1155/2015/306164] [PMID: 26550566]
[292]
Buyel, J.F.; Twyman, R.M.; Fischer, R. Very-large-scale production of antibodies in plants: the biologization of manufacturing. Biotechnol. Adv., 2017, 35(4), 458-465.
[http://dx.doi.org/10.1016/j.biotechadv.2017.03.011] [PMID: 28347720]
[293]
Hakim, R.; Benhar, I. “Inclonals”: IgGs and IgG-enzyme fusion proteins produced in an E. coli expression-refolding system. MAbs, 2009, 1(3), 281-287.
[http://dx.doi.org/10.4161/mabs.1.3.8492] [PMID: 20065645]
[294]
Robinson, M-P.; Ke, N.; Lobstein, J.; Peterson, C.; Szkodny, A.; Mansell, T.J.; Tuckey, C.; Riggs, P.D.; Colussi, P.A.; Noren, C.J.; Taron, C.H.; DeLisa, M.P.; Berkmen, M. Efficient expression of full-length antibodies in the cytoplasm of engineered bacteria. Nat. Commun., 2015, 6, 8072.
[http://dx.doi.org/10.1038/ncomms9072] [PMID: 26311203]
[295]
Iezzi, M.E.; Policastro, L.; Werbajh, S.; Podhajcer, O.; Canziani, G.A. Single-domain antibodies and the promise of modular targeting in cancer imaging and treatment. Front. Immunol., 2018, 9, 273.
[http://dx.doi.org/10.3389/fimmu.2018.00273] [PMID: 29520274]
[296]
Arbabi-Ghahroudi, M. Camelid single-domain antibodies: historical perspective and future outlook. Front. Immunol., 2017, 8, 1589.
[http://dx.doi.org/10.3389/fimmu.2017.01589] [PMID: 29209322]
[297]
Ellis, M.; Patel, P.; Edon, M.; Ramage, W.; Dickinson, R.; Humphreys, D.P. Development of a high yielding E. coli periplasmic expression system for the production of humanized Fab’ fragments. Biotechnol. Prog., 2017, 33(1), 212-220.
[http://dx.doi.org/10.1002/btpr.2393] [PMID: 27790865]
[298]
Gupta, S.K.; Shukla, P. Microbial platform technology for recombinant antibody fragment production: a review. Crit. Rev. Microbiol., 2017, 43(1), 31-42.
[http://dx.doi.org/10.3109/1040841X.2016.1150959] [PMID: 27387055]
[299]
Rezaie, F.; Davami, F.; Mansouri, K.; Agha Amiri, S.; Fazel, R.; Mahdian, R.; Davoudi, N.; Enayati, S.; Azizi, M.; Khalaj, V. Cytosolic expression of functional Fab fragments in Escherichia coli using a novel combination of dual SUMO expression cassette and EnBase® cultivation mode. J. Appl. Microbiol., 2017, 123(1), 134-144.
[http://dx.doi.org/10.1111/jam.13483] [PMID: 28482126]
[300]
Gaciarz, A.; Veijola, J.; Uchida, Y.; Saaranen, M.J.; Wang, C.; Hörkkö, S.; Ruddock, L.W. Systematic screening of soluble expression of antibody fragments in the cytoplasm of E. coli. Microb. Cell Fact., 2016, 15(1), 22.
[http://dx.doi.org/10.1186/s12934-016-0419-5] [PMID: 26809624]
[301]
Luo, M.; Zhao, M.; Cagliero, C.; Jiang, H.; Xie, Y.; Zhu, J.; Yang, H.; Zhang, M.; Zheng, Y.; Yuan, Y.; Du, Z.; Lu, H. A general platform for efficient extracellular expression and purification of Fab from Escherichia coli. Appl. Microbiol. Biotechnol., 2019, 103(8), 3341-3353.
[http://dx.doi.org/10.1007/s00253-019-09745-8] [PMID: 30887174]
[302]
Ojima-Kato, T.; Morishita, S.; Uchida, Y.; Nagai, S.; Kojima, T.; Nakano, H. Rapid generation of monoclonal antibodies from single B cells by ecobody technology. Antibodies (Basel), 2018, 7(4), 38.
[http://dx.doi.org/10.3390/antib7040038] [PMID: 31544888]
[303]
Scott, C.T. Mice with a human touch. Nat. Biotechnol., 2007, 25(10), 1075-1077.
[http://dx.doi.org/10.1038/nbt1007-1075] [PMID: 17921981]
[304]
Lonberg, N. Human antibodies from transgenic animals. Nat. Biotechnol., 2005, 23(9), 1117-1125.
[http://dx.doi.org/10.1038/nbt1135] [PMID: 16151405]
[305]
Hollevoet, K.; Declerck, P.J. State of play and clinical prospects of antibody gene transfer. J. Transl. Med., 2017, 15(1), 131.
[http://dx.doi.org/10.1186/s12967-017-1234-4] [PMID: 28592330]
[306]
Zafir-Lavie, I.; Miari, R.; Sherbo, S.; Krispel, S.; Tal, O.; Liran, A.; Shatil, T.; Badinter, F.; Goltsman, H.; Shapir, N.; Benhar, I.; Neil, G.A.; Panet, A. Sustained secretion of anti-tumor necrosis factor α monoclonal antibody from ex vivo genetically engineered dermal tissue demonstrates therapeutic activity in mouse model of rheumatoid arthritis. J. Gene Med., 2017, 19(8)e2965
[http://dx.doi.org/10.1002/jgm.2965] [PMID: 28658716]
[307]
Dapurkar, D.; Telang, M. A patent perspective on chikungunya. Acta Trop., 2019, 199105131
[http://dx.doi.org/10.1016/j.actatropica.2019.105131] [PMID: 31401192]
[308]
Thran, M.; Mukherjee, J.; Pönisch, M.; Fiedler, K.; Thess, A.; Mui, B.L.; Hope, M.J.; Tam, Y.K.; Horscroft, N.; Heidenreich, R.; Fotin-Mleczek, M.; Shoemaker, C.B.; Schlake, T. mRNA mediates passive vaccination against infectious agents, toxins, and tumors. EMBO Mol. Med., 2017, 9(10), 1434-1447.
[http://dx.doi.org/10.15252/emmm.201707678] [PMID: 28794134]
[309]
Stadler, C.R.; Bähr-Mahmud, H.; Celik, L.; Hebich, B.; Roth, A.S.; Roth, R.P.; Karikó, K.; Türeci, Ö.; Sahin, U. Elimination of large tumors in mice by mRNA-encoded bispecific antibodies. Nat. Med., 2017, 23(7), 815-817.
[http://dx.doi.org/10.1038/nm.4356] [PMID: 28604701]
[310]
Pardi, N.; Secreto, A.J.; Shan, X.; Debonera, F.; Glover, J.; Yi, Y.; Muramatsu, H.; Ni, H.; Mui, B.L.; Tam, Y.K.; Shaheen, F.; Collman, R.G.; Karikó, K.; Danet-Desnoyers, G.A.; Madden, T.D.; Hope, M.J.; Weissman, D. Administration of nucleoside-modified mRNA encoding broadly neutralizing antibody protects humanized mice from HIV-1 challenge. Nat. Commun., 2017, 8, 14630.
[http://dx.doi.org/10.1038/ncomms14630] [PMID: 28251988]
[311]
Howard, J.F. Jr.; Bril, V.; Burns, T.M.; Mantegazza, R.; Bilinska, M.; Szczudlik, A.; Beydoun, S.; Garrido, F.J.R.R.; Piehl, F.; Rottoli, M.; Van Damme, P.; Vu, T.; Evoli, A.; Freimer, M.; Mozaffar, T.; Ward, E.S.; Dreier, T.; Ulrichts, P.; Verschueren, K.; Guglietta, A.; de Haard, H.; Leupin, N.; Verschuuren, J.J.G.M. Randomized phase 2 study of FcRn antagonist efgartigimod in generalized myasthenia gravis. Neurology, 2019, 92(23), e2661-e2673.
[http://dx.doi.org/10.1212/WNL.0000000000007600] [PMID: 31118245]
[312]
Vaccaro, C.; Zhou, J.; Ober, R.J.; Ward, E.S. Engineering the Fc region of immunoglobulin G to modulate in vivo antibody levels. Nat. Biotechnol., 2005, 23(10), 1283-1288.
[http://dx.doi.org/10.1038/nbt1143] [PMID: 16186811]
[313]
Hernandez-Hoyos, G.; Sewell, T.; Bader, R.; Bannink, J.; Chenault, R.A.; Daugherty, M.; Dasovich, M.; Fang, H.; Gottschalk, R.; Kumer, J.; Miller, R.E.; Ravikumar, P.; Wiens, J.; Algate, P.A.; Bienvenue, D.; McMahan, C.J.; Natarajan, S.K.; Gross, J.A.; Blankenship, J.W. MOR209/ES414, a novel bispecific antibody targeting PSMA for the treatment of metastatic castration-resistant prostate cancer. Mol. Cancer Ther., 2016, 15(9), 2155-2165.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0242] [PMID: 27406985]
[314]
Robak, T.; Hellmann, A.; Kloczko, J.; Loscertales, J.; Lech-Maranda, E.; Pagel, J.M.; Mato, A.; Byrd, J.C.; Awan, F.T.; Hebart, H.; Garcia-Marco, J.A.; Hill, B.T.; Hallek, M.; Eisenfeld, A.J.; Stromatt, S.C.; Jaeger, U. Randomized phase 2 study of otlertuzumab and bendamustine versus bendamustine in patients with relapsed chronic lymphocytic leukaemia. Br. J. Haematol., 2017, 176(4), 618-628.
[http://dx.doi.org/10.1111/bjh.14464] [PMID: 27977057]
[315]
Thatcher, N.; Hirsch, F.R.; Luft, A.V.; Szczesna, A.; Ciuleanu, T.E.; Dediu, M.; Ramlau, R.; Galiulin, R.K.; Bálint, B.; Losonczy, G.; Kazarnowicz, A.; Park, K.; Schumann, C.; Reck, M.; Depenbrock, H.; Nanda, S.; Kruljac-Letunic, A.; Kurek, R.; Paz-Ares, L.; Socinski, M.A. Necitumumab plus gemcitabine and cisplatin versus gemcitabine and cisplatin alone as first-line therapy in patients with stage IV squamous non-small-cell lung cancer (SQUIRE): an open-label, randomised, controlled phase 3 trial. Lancet Oncol., 2015, 16(7), 763-774.
[http://dx.doi.org/10.1016/S1470-2045(15)00021-2] [PMID: 26045340]
[316]
Meric-Bernstam, F.; Beeram, M.; Mayordomo, J.I.; Hanna, D.L.; Ajani, J.A.; Blum Murphy, M.A.; Murthy, R.K.; Piha-Paul, S.A.; Bauer, T.M.; Bendell, J.C. Single agent activity of ZW25, a HER2-targeted bispecific antibody, in heavily pretreated HER2-expressing cancers. J. Clin. Oncol., 2018, 36(15), 2500.
[http://dx.doi.org/10.1200/JCO.2018.36.15_suppl.2500]
[317]
Olinger, G.G. Jr.; Pettitt, J.; Kim, D.; Working, C.; Bohorov, O.; Bratcher, B.; Hiatt, E.; Hume, S.D.; Johnson, A.K.; Morton, J.; Pauly, M.; Whaley, K.J.; Lear, C.M.; Biggins, J.E.; Scully, C.; Hensley, L.; Zeitlin, L. Delayed treatment of Ebola virus infection with plant-derived monoclonal antibodies provides protection in Rhesus macaques. Proc. Natl. Acad. Sci. USA, 2012, 109(44), 18030-18035.
[http://dx.doi.org/10.1073/pnas.1213709109] [PMID: 23071322]
[318]
Gore, L.; Locatelli, F.; Zugmaier, G.; Handgretinger, R.; O’Brien, M.M.; Bader, P.; Bhojwani, D.; Schlegel, P-G.; Tuglus, C.A.; von Stackelberg, A. Survival after blinatumomab treatment in pediatric patients with relapsed/refractory B-cell precursor acute lymphoblastic leukemia. Blood Cancer J., 2018, 8(9), 80.
[http://dx.doi.org/10.1038/s41408-018-0117-0] [PMID: 30190453]
[319]
Neelapu, S.S.; Locke, F.L.; Bartlett, N.L.; Lekakis, L.J.; Miklos, D.B.; Jacobson, C.A.; Braunschweig, I.; Oluwole, O.O.; Siddiqi, T.; Lin, Y.; Timmerman, J.M.; Stiff, P.J.; Friedberg, J.W.; Flinn, I.W.; Goy, A.; Hill, B.T.; Smith, M.R.; Deol, A.; Farooq, U.; McSweeney, P.; Munoz, J.; Avivi, I.; Castro, J.E.; Westin, J.R.; Chavez, J.C.; Ghobadi, A.; Komanduri, K.V.; Levy, R.; Jacobsen, E.D.; Witzig, T.E.; Reagan, P.; Bot, A.; Rossi, J.; Navale, L.; Jiang, Y.; Aycock, J.; Elias, M.; Chang, D.; Wiezorek, J.; Go, W.Y. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N. Engl. J. Med., 2017, 377(26), 2531-2544.
[http://dx.doi.org/10.1056/NEJMoa1707447] [PMID: 29226797]
[320]
Chakravarthy, U.; Bailey, C.; Brown, D.; Campochiaro, P.; Chittum, M.; Csaky, K.; Tufail, A.; Yates, P.; Cech, P.; Giraudon, M.; Delmar, P.; Szczesny, P.; Sahni, J.; Boulay, A.; Nagel, S.; Fürst-Recktenwald, S.; Schwab, D. Phase I trial of anti-vascular endothelial growth factor/anti-angiopoietin 2 bispecific antibody RG7716 for neovascular age-related macular degeneration. Ophthalmol. Retina, 2017, 1(6), 474-485.
[http://dx.doi.org/10.1016/j.oret.2017.03.003] [PMID: 31047438]
[321]
Rutella, S.; Church, S.E.; Vadakekolathu, J.; Viboch, E.; Sullivan, A.H.; Hood, T.; Warren, S.E.; Cesano, A.; La Motte-Mohs, R.; Muth, J. Adaptive immune gene signatures correlate with response to flotetuzumab, a CD123×CD3 bispecific DART® molecule, in patients with relapsed/refractory acute myeloid leukemia. Blood, 2018, 132(Suppl 1), 444.
[http://dx.doi.org/10.1182/blood-2018-99-111539]
[322]
Fischer, K.; Al-Sawaf, O.; Fink, A-M.; Dixon, M.; Bahlo, J.; Warburton, S.; Kipps, T.J.; Weinkove, R.; Robinson, S.; Seiler, T.; Opat, S.; Owen, C.; López, J.; Humphrey, K.; Humerickhouse, R.; Tausch, E.; Frenzel, L.; Eichhorst, B.; Wendtner, C.M.; Stilgenbauer, S.; Langerak, A.W.; van Dongen, J.J.M.; Böttcher, S.; Ritgen, M.; Goede, V.; Mobasher, M.; Hallek, M. Venetoclax and obinutuzumab in chronic lymphocytic leukemia. Blood, 2017, 129(19), 2702-2705.
[http://dx.doi.org/10.1182/blood-2017-01-761973] [PMID: 28325865]
[323]
Vergunst, C.E.; Gerlag, D.M.; Lopatinskaya, L.; Klareskog, L.; Smith, M.D.; van den Bosch, F.; Dinant, H.J.; Lee, Y.; Wyant, T.; Jacobson, E.W.; Baeten, D.; Tak, P.P. Modulation of CCR2 in rheumatoid arthritis: a double-blind, randomized, placebo-controlled clinical trial. Arthritis Rheum., 2008, 58(7), 1931-1939.
[http://dx.doi.org/10.1002/art.23591] [PMID: 18576354]
[324]
Socinski, M.A.; Jotte, R.M.; Cappuzzo, F.; Orlandi, F.; Stroyakovskiy, D.; Nogami, N.; Rodríguez-Abreu, D.; Moro-Sibilot, D.; Thomas, C.A.; Barlesi, F.; Finley, G.; Kelsch, C.; Lee, A.; Coleman, S.; Deng, Y.; Shen, Y.; Kowanetz, M.; Lopez-Chavez, A.; Sandler, A.; Reck, M. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N. Engl. J. Med., 2018, 378(24), 2288-2301.
[http://dx.doi.org/10.1056/NEJMoa1716948] [PMID: 29863955]
[325]
Lebwohl, M.; Strober, B.; Menter, A.; Gordon, K.; Weglowska, J.; Puig, L.; Papp, K.; Spelman, L.; Toth, D.; Kerdel, F.; Armstrong, A.W.; Stingl, G.; Kimball, A.B.; Bachelez, H.; Wu, J.J.; Crowley, J.; Langley, R.G.; Blicharski, T.; Paul, C.; Lacour, J.P.; Tyring, S.; Kircik, L.; Chimenti, S.; Callis Duffin, K.; Bagel, J.; Koo, J.; Aras, G.; Li, J.; Song, W.; Milmont, C.E.; Shi, Y.; Erondu, N.; Klekotka, P.; Kotzin, B.; Nirula, A. Phase 3 studies comparing brodalumab with ustekinumab in psoriasis. N. Engl. J. Med., 2015, 373(14), 1318-1328.
[http://dx.doi.org/10.1056/NEJMoa1503824] [PMID: 26422722]
[326]
Gerding, D.N.; Kelly, C.P.; Rahav, G.; Lee, C.; Dubberke, E.R.; Kumar, P.N.; Yacyshyn, B.; Kao, D.; Eves, K.; Ellison, M.C.; Hanson, M.E.; Guris, D.; Dorr, M.B. Bezlotoxumab for prevention of recurrent Clostridium difficile infection in patients at increased risk for recurrence. Clin. Infect. Dis., 2018, 67(5), 649-656.
[http://dx.doi.org/10.1093/cid/ciy171] [PMID: 29538686]
[327]
Kühnast, S.; van der Hoorn, J.W.; Pieterman, E.J.; van den Hoek, A.M.; Sasiela, W.J.; Gusarova, V.; Peyman, A.; Schäfer, H-L.; Schwahn, U.; Jukema, J.W.; Princen, H.M. Alirocumab inhibits atherosclerosis, improves the plaque morphology, and enhances the effects of a statin. J. Lipid Res., 2014, 55(10), 2103-2112.
[http://dx.doi.org/10.1194/jlr.M051326] [PMID: 25139399]
[328]
Carlsson, R.; Söderlind, E. n-CoDeR concept: unique types of antibodies for diagnostic use and therapy. Expert Rev. Mol. Diagn., 2001, 1(1), 102-108.
[http://dx.doi.org/10.1586/14737159.1.1.102] [PMID: 11901793]
[329]
Ecker, D.M.; Jones, S.D.; Levine, H.L. The therapeutic monoclonal antibody market. MAbs, 2015, 7(1), 9-14.
[http://dx.doi.org/10.4161/19420862.2015.989042] [PMID: 25529996]
[330]
Blackstone, E.A.; Joseph, P.F. The economics of biosimilars. Am. Health Drug Benefits, 2013, 6(8), 469-478.
[PMID: 24991376]
[331]
Beck, A. Biosimilar, biobetter and next generation therapeutic antibodies. MAbs, 2011, 3(2), 107-110.
[http://dx.doi.org/10.4161/mabs.3.2.14785] [PMID: 21285536]
[332]
Ventola, C.L. Cancer immunotherapy, part 3: challenges and future trends. P&T, 2017, 42(8), 514-521.
[PMID: 28781505]
[333]
Smit, M.A.; Jaffee, E.M.; Lutz, E.R. Cancer immunoprevention-the next frontier. Cancer Prev. Res. (Phila.), 2014, 7(11), 1072-1080.
[http://dx.doi.org/10.1158/1940-6207.CAPR-14-0178] [PMID: 25245763]
[334]
Papaioannou, N.E.; Beniata, O.V.; Vitsos, P.; Tsitsilonis, O.; Samara, P. Harnessing the immune system to improve cancer therapy. Ann. Transl. Med., 2016, 4(14), 261.
[http://dx.doi.org/10.21037/atm.2016.04.01] [PMID: 27563648]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy