Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

An Upcoming Approach to Alzheimer's Disease: Ethnopharmacological Potential of Plant Bioactive Molecules

Author(s): Natália Martins, Sandrina A. Heleno and Isabel C.F.R. Ferreira*

Volume 27, Issue 26, 2020

Page: [4344 - 4371] Pages: 28

DOI: 10.2174/0929867327666200219120806

Price: $65

Abstract

Background: Neurodegenerative disorders have achieved epidemic levels in the last decades; not only the elderly but also adult individuals have been increasingly affected. Among them, Alzheimer’s disease is one of the most prevalent and crippling diseases, associated with high rates of multi-morbidities and dependency. Despite the existence of a wide variety of drugs used as the symptomatic treatment, they have some side effects and toxicity, apart from their limited effectiveness. Botanical preparations have a secular use, being widely recommended for a multitude of purposes, such as for the improvement of brain health.

Objective: The aim of the present report is to systematize the knowledge on plant-food derived bioactive molecules with promising in vitro enzymatic inhibitory activities.

Results: Alkaloids, phenolic compounds and terpenes are the most studied phytochemicals, both derived from natural and commercial sources. In spite of their efficient activity as enzymatic inhibitors, the number of in vivo studies and even clinical trials have confirmed that their real bioactive potential remains scarce.

Conclusion: Thus, it is of the utmost importance to deepen knowledge in this area, once those relevant and informative tools can significantly contribute to the promising advances in the field of Alzheimer’s disease treatment.

Keywords: Neurodegenerative disorders, Alzheimer's disease, phytochemicals, bioactive molecules, in vitro studies, enzymatic inhibitory activity.

[1]
Ahmed, A.; van der Marck, M.A.; van den Elsen, G.; Olde Rikkert, M. Cannabinoids in late-onset Alzheimer’s disease. Clin. Pharmacol. Ther., 2015, 97(6), 597-606.
[http://dx.doi.org/10.1002/cpt.117] [PMID: 25788394]
[2]
Vauzour, D. Effect of flavonoids on learning, memory and neurocognitive performance: relevance and potential implications for Alzheimer’s disease pathophysiology. J. Sci. Food Agric., 2014, 94(6), 1042-1056.
[http://dx.doi.org/10.1002/jsfa.6473] [PMID: 24338740]
[3]
Essa, M.M.; Vijayan, R.K.; Castellano-Gonzalez, G.; Memon, M.A.; Braidy, N.; Guillemin, G.J. Neuroprotective effect of natural products against Alzheimer’s disease. Neurochem. Res., 2012, 37(9), 1829-1842.
[http://dx.doi.org/10.1007/s11064-012-0799-9] [PMID: 22614926]
[4]
Meramat, A.; Rajab, N.F.; Shahar, S.; Sharif, R. Cognitive impairment, genomic instability and trace elements. J. Nutr. Health Aging, 2015, 19(1), 48-57.
[http://dx.doi.org/10.1007/s12603-014-0489-1] [PMID: 25560816]
[5]
Hassaan, Y.; Handoussa, H.; El-Khatib, A.H.; Linscheid, M.W.; El Sayed, N.; Ayoub, N. Evaluation of plant phenolic metabolites as a source of Alzheimer’s drug leads. BioMed Res. Int., 2014, 2014843263
[http://dx.doi.org/10.1155/2014/843263] [PMID: 24999480]
[6]
Alza, N.P.; Richmond, V.; Baier, C.J.; Freire, E.; Baggio, R.; Murray, A.P. Synthesis and cholinesterase inhibition of cativic acid derivatives. Bioorg. Med. Chem., 2014, 22(15), 3838-3849.
[http://dx.doi.org/10.1016/j.bmc.2014.06.030] [PMID: 25017625]
[7]
Konrath, E.L.; Passos, Cdos.S.; Klein, L.C., Jr; Henriques, A.T. Alkaloids as a source of potential anticholinesterase inhibitors for the treatment of Alzheimer’s disease. J. Pharm. Pharmacol., 2013, 65(12), 1701-1725.
[http://dx.doi.org/10.1111/jphp.12090] [PMID: 24236981]
[8]
Kumar, N.S.; Nisha, N. Phytomedicines as potential inhibitors of β amyloid aggregation: significance to Alzheimer’s disease. In: Chin. J. Nat. Med; China Pharmaceutical University, 2014; 12, pp. 801-18.
[9]
Ngo, S.T.; Li, M.S. Top-leads from natural products for treatment of Alzheimer’s disease: docking and molecular dynamics study. Mol. Simul., 2013, 39, 279-291.
[http://dx.doi.org/10.1080/08927022.2012.718769]
[10]
Xin, L.; Yamujala, R.; Wang, Y.; Wang, H.; Wu, W.H.; Lawton, M.A.; Long, C.; Di, R. Acetylcholineestarase-inhibiting alkaloids from Lycoris radiata delay paralysis of amyloid beta-expressing transgenic C. elegans CL4176. PLoS One, 2013, 8(5)e63874
[http://dx.doi.org/10.1371/journal.pone.0063874] [PMID: 23675513]
[11]
Islam, M.R.; Zaman, A.; Jahan, I.; Chakravorty, R.; Chakraborty, S. In silico QSAR analysis of quercetin reveals its potential as therapeutic drug for Alzheimer’s disease. J. Young Pharm., 2013, 5(4), 173-179.
[http://dx.doi.org/10.1016/j.jyp.2013.11.005] [PMID: 24563598]
[12]
Sun, A.Y.; Wang, Q.; Simonyi, A.; Sun, G.Y. Botanical phenolics and brain health. Neuromolecular Med., 2008, 10(4), 259-274.
[http://dx.doi.org/10.1007/s12017-008-8052-z] [PMID: 19191039]
[13]
Marco, L.; do Carmo Carreiras, M. Galanthamine, a natural product for the treatment of Alzheimer’s disease. Recent Patents CNS Drug Discov., 2006, 1(1), 105-111.
[http://dx.doi.org/10.2174/157488906775245246] [PMID: 18221196]
[14]
Katalini, M.; Bosak, A.; Kovarik, Z. Flavonoids as inhibitors of human butyrylcholinesterase variants. Food Technol. Biotechnol., 2014, 52, 64-67.
[15]
Espín, J.C.; García-Conesa, M.T.; Tomás-Barberán, F.A. Nutraceuticals: facts and fiction. Phytochemistry, 2007, 68(22-24), 2986-3008.
[http://dx.doi.org/10.1016/j.phytochem.2007.09.014] [PMID: 17976666]
[16]
Halberstein, R.A. Medicinal plants: historical and cross-cultural usage patterns. Ann. Epidemiol., 2005, 15(9), 686-699.
[http://dx.doi.org/10.1016/j.annepidem.2005.02.004] [PMID: 15921929]
[17]
Tajkarimi, M.M.; Ibrahim, S.A.; Cliver, D.O. Antimicrobial herb and spice compounds in food. Food Control. Elsevier Ltd, 2010, 21, 1199-1218.
[http://dx.doi.org/10.1016/j.foodcont.2010.02.003]
[18]
Villaflores, O.B.; Chen, Y.J.; Chen, C.P.; Yeh, J.M.; Wu, T.Y. Effects of curcumin and demethoxycurcumin on amyloid-β precursor and tau proteins through the internal ribosome entry sites: a potential therapeutic for Alzheimer’s disease. Taiwan. J. Obstet. Gynecol., 2012, 51(4), 554-564.
[http://dx.doi.org/10.1016/j.tjog.2012.09.010] [PMID: 23276558]
[19]
Rajeh, M.A.B.; Zuraini, Z.; Sasidharan, S.; Latha, L.Y.; Amutha, S. Assessment of Euphorbia hirta L. leaf, flower, stem and root extracts for their antibacterial and antifungal activity and brine shrimp lethality. Molecules, 2010, 15(9), 6008-6018.
[http://dx.doi.org/10.3390/molecules15096008] [PMID: 20877206]
[20]
Mendonça-Filho, R.R. Bioactive phytocompounds: new approaches in the phytosciences.editor. Mod. Phytomedicine.Turn. Med. Plants into Drugs; Wiley-VCH, 2006, pp. 1-24.
[21]
Amoo, S.O.; Ndhlala, A.R.; Finnie, J.F.; Van Staden, J. Antifungal, acetylcholinesterase inhibition, antioxidant and phytochemical properties of three Barleria species. South African J. Bot. Elsevier B.V., 2011, 77, 435-445.
[22]
Adewusi, E.A.; Steenkamp, V. Medicinal plants and their derivatives with amyloid beta inhibitory activity as potential targets for drug discovery. Asian Pacific J. Trop. Dis. Asian Pacific Tropical Medicine Press, 2015, 5, 430-440.
[http://dx.doi.org/10.1016/S2222-1808(15)60810-6]
[23]
Jachak, S.M.; Saklani, A. Challenges and opportunities in drug discovery from plants. Curr. Sci., 2007, 92, 1251-1257.
[24]
Fisar, Z. Phytocannabinoids and endocannabinoids. Curr. Drug Abuse Rev., 2009, 2(1), 51-75.
[http://dx.doi.org/10.2174/1874473710902010051] [PMID: 19630737]
[25]
Smid, S.D.; Maag, J.L.; Musgrave, I.F. Dietary polyphenol-derived protection against neurotoxic β-amyloid protein: from molecular to clinical. Food Funct., 2012, 3(12), 1242-1250.
[http://dx.doi.org/10.1039/c2fo30075c] [PMID: 22929970]
[26]
Sun, A.; Xu, X.; Lin, J.; Cui, X.; Xu, R. Neuroprotection by saponins. Phytother. Res., 2015, 29(2), 187-200.
[http://dx.doi.org/10.1002/ptr.5246] [PMID: 25408503]
[27]
Howes, M-J.R.; Houghton, P.J. Plants used in Chinese and Indian traditional medicine for improvement of memory and cognitive function. Pharmacol. Biochem. Behav., 2003, 75(3), 513-527.
[http://dx.doi.org/10.1016/S0091-3057(03)00128-X] [PMID: 12895669]
[28]
Orhan, I.; Şener, B. Lead compounds and drug candidates from some Turkish plants for human health. Adv. Phytomedicine., 2006, 2, 331-352.
[http://dx.doi.org/10.1016/S1572-557X(05)02019-2]
[29]
Darvesh, S. Butyrylcholinesterase as a Diagnostic and Therapeutic Target for Alzheimer’s Disease. Curr. Alzheimer Res., 2016, 13(10), 1173-1177.
[http://dx.doi.org/10.2174/1567205013666160404120542] [PMID: 27040140]
[30]
Schedin-Weiss, S.; Inoue, M.; Hromadkova, L.; Teranishi, Y.; Yamamoto, N.G.; Wiehager, B.; Bogdanovic, N.; Winblad, B.; Sandebring-Matton, A.; Frykman, S.; Tjernberg, L.O. Monoamine oxidase B is elevated in Alzheimer disease neurons, is associated with γ-secretase and regulates neuronal amyloid β-peptide levels. Alzheimers Res. Ther., 2017, 9(1), 57.
[http://dx.doi.org/10.1186/s13195-017-0279-1] [PMID: 28764767]
[31]
Czapski, G.A.; Czubowicz, K.; Strosznajder, J.B.; Strosznajder, R.P. The Lipoxygenases: Their Regulation and Implication in Alzheimer’s Disease. Neurochem. Res., 2016, 41(1-2), 243-257.
[http://dx.doi.org/10.1007/s11064-015-1776-x] [PMID: 26677076]
[32]
Männisto, P.T.; Venäläinen, J.; Jalkanen, A.; García-Horsman, J.A. Prolyl oligopeptidase: a potential target for the treatment of cognitive disorders. Drug News Perspect., 2007, 20(5), 293-305.
[http://dx.doi.org/10.1358/dnp.2007.20.5.1120216] [PMID: 17878957]
[33]
Zhihui, Q. Modulating nitric oxide signaling in the CNS for Alzheimer’s disease therapy. Future Med. Chem., 2013, 5(12), 1451-1468.
[http://dx.doi.org/10.4155/fmc.13.111] [PMID: 23919554]
[34]
Murray, M.T.; Pizzorno, J. The encyclopedia of Natural Medicine; Atria Books: New York, NY, 2012.
[35]
Balch, P.A. Prescription for Nutritional Healing; Penguin Group: London, England, 2006.
[36]
Ergin, V.; Hariry, R.E.; Karasu, C. Carbonyl stress in aging process: role of vitamins and phytochemicals as redox regulators. Aging Dis., 2013, 4(5), 276-294.
[http://dx.doi.org/10.14336/AD.2013.0400276] [PMID: 24124633]
[37]
Doshi, S.B.; Agarwal, A. The role of oxidative stress in menopause. J Midlife Health, 2013, 4(3), 140-146.
[http://dx.doi.org/10.4103/0976-7800.118990] [PMID: 24672185]
[38]
Balch, J.; Stengler, M.; Balch, R. Prescription for drug alternatives: All-natural option for better health without the side effects; John Wiley & Sons, Inc.: USA, 2008.
[39]
Murray MT, Pizzorno J. The Encyclopedia of healing foods; Atria Book: New York, NY, 2005.
[40]
Velderrain-Rodríguez, G.R.; Palafox-Carlos, H.; Wall-Medrano, A.; Ayala-Zavala, J.F.; Chen, C-Y.O.; Robles-Sánchez, M.; Astiazaran-García, H.; Alvarez-Parrilla, E.; González-Aguilar, G.A. Phenolic compounds: their journey after intake. Food Funct., 2014, 5(2), 189-197.
[http://dx.doi.org/10.1039/C3FO60361J] [PMID: 24336740]
[41]
Pallàs, M; Porquet, D; Vicente, A; Camins, A; Sanfeliu, C. Resveratrol: new avenues for a natural compound in neuroprotection. Curr. phrmaceutical Des, 2013, 19, 6726-6731.
[http://dx.doi.org/10.2174/1381612811319380005]
[42]
Goodman, M.; Bostick, R.M.; Kucuk, O.; Jones, D.P. Clinical trials of antioxidants as cancer prevention agents: past, present, and future. Free Radic. Biol. Med., 2011, 51(5), 1068-1084.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.05.018] [PMID: 21683786]
[43]
Obulesu, M.; Lakshmi, M.J. Apoptosis in Alzheimer’s disease: an understanding of the physiology, pathology and therapeutic avenues. Neurochem. Res., 2014, 39(12), 2301-2312.
[http://dx.doi.org/10.1007/s11064-014-1454-4] [PMID: 25322820]
[44]
Halliwell, B. Free radicals and antioxidants: updating a personal view. Nutr. Rev., 2012, 70(5), 257-265.
[http://dx.doi.org/10.1111/j.1753-4887.2012.00476.x] [PMID: 22537212]
[45]
Chaturvedi, R.K.; Flint Beal, M. Mitochondrial diseases of the brain. Free Radic. Biol. Med., 2013, 63, 1-29.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.03.018] [PMID: 23567191]
[46]
Kornfeld, O.S.; Hwang, S.; Disatnik, M-H.; Chen, C-H.; Qvit, N.; Mochly-Rosen, D. Mitochondrial reactive oxygen species at the heart of the matter: new therapeutic approaches for cardiovascular diseases. Circ. Res., 2015, 116(11), 1783-1799.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.305432] [PMID: 25999419]
[47]
Singh, R.P.; Sharad, S.; Kapur, S. Free radicals and oxidative stress in neurodegenerative diseases: relevance of dietary antioxidants. J. Indian Acad. Clin. Med., 2004, 5, 218-225.
[48]
Pervin, M.; Hasnat, M.A.; Lee, Y.M.; Kim, D.H.; Jo, J.E.; Lim, B.O. Antioxidant activity and acetylcholinesterase inhibition of grape skin anthocyanin (GSA). Molecules, 2014, 19(7), 9403-9418.
[http://dx.doi.org/10.3390/molecules19079403] [PMID: 24995924]
[49]
Subash, S.; Essa, M.M.; Al-Adawi, S.; Memon, M.A.; Manivasagam, T.; Akbar, M. Neuroprotective effects of berry fruits on neurodegenerative diseases. Neural Regen. Res., 2014, 9(16), 1557-1566.
[http://dx.doi.org/10.4103/1673-5374.139483] [PMID: 25317174]
[50]
Cui, K.; Luo, X.; Xu, K.; Ven Murthy, M.R. Role of oxidative stress in neurodegeneration: recent developments in assay methods for oxidative stress and nutraceutical antioxidants. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2004, 28(5), 771-799.
[http://dx.doi.org/10.1016/j.pnpbp.2004.05.023] [PMID: 15363603]
[51]
Mullane, K.; Williams, M. Alzheimer’s disease (AD) therapeutics - 1: Repeated clinical failures continue to question the amyloid hypothesis of AD and the current understanding of AD causality. Biochem. Pharmacol., 2018, 158, 359-375.
[http://dx.doi.org/10.1016/j.bcp.2018.09.026] [PMID: 30273553]
[52]
Singh, M.; Arseneault, M.; Sanderson, T.; Murthy, V.; Ramassamy, C. Challenges for research on polyphenols from foods in Alzheimer’s disease: bioavailability, metabolism, and cellular and molecular mechanisms. J. Agric. Food Chem., 2008, 56(13), 4855-4873.
[http://dx.doi.org/10.1021/jf0735073] [PMID: 18557624]
[53]
Patil, P.O.; Bari, S.B.; Firke, S.D.; Deshmukh, P.K.; Donda, S.T.; Patil, D.A. A comprehensive review on synthesis and designing aspects of coumarin derivatives as monoamine oxidase inhibitors for depression and Alzheimer’s disease. Bioorg. Med. Chem., 2013, 21(9), 2434-2450.
[http://dx.doi.org/10.1016/j.bmc.2013.02.017] [PMID: 23517722]
[54]
Sultana, R.; Perluigi, M.; Butterfield, D.A. Lipid peroxidation triggers neurodegeneration: a redox proteomics view into the Alzheimer disease brain. Free Radic. Biol. Med., 2013, 62, 157-169.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.09.027] [PMID: 23044265]
[55]
Esfandiary, E.; Karimipour, M.; Mardani, M.; Alaei, H.; Ghannadian, M.; Kazemi, M.; Mohammadnejad, D.; Hosseini, N.; Esmaeili, A. Novel effects of Rosa damascena extract on memory and neurogenesis in a rat model of Alzheimer’s disease. J. Neurosci. Res., 2014, 92(4), 517-530.
[http://dx.doi.org/10.1002/jnr.23319] [PMID: 24395280]
[56]
Houghton, P.J.; Howes, M-J. Natural products and derivatives affecting neurotransmission relevant to Alzheimer’s and Parkinson’s disease. Neurosignals, 2005, 14(1-2), 6-22.
[http://dx.doi.org/10.1159/000085382] [PMID: 15956811]
[57]
Howes, M-J.R.; Perry, N.S.L.; Houghton, P.J. Plants with traditional uses and activities, relevant to the management of Alzheimer’s disease and other cognitive disorders. Phytother. Res., 2003, 17(1), 1-18.
[http://dx.doi.org/10.1002/ptr.1280] [PMID: 12557240]
[58]
Patil, S.P.; Maki, S.; Khedkar, S.A.; Rigby, A.C.; Chan, C. Withanolide A and asiatic acid modulate multiple targets associated with amyloid-β precursor protein processing and amyloid-β protein clearance. J. Nat. Prod., 2010, 73(7), 1196-1202.
[http://dx.doi.org/10.1021/np900633j] [PMID: 20553006]
[59]
Dinamarca, M.C.; Cerpa, W.; Garrido, J.; Hancke, J.L.; Inestrosa, N.C. Hyperforin prevents beta-amyloid neurotoxicity and spatial memory impairments by disaggregation of Alzheimer’s amyloid-beta-deposits. Mol. Psychiatry, 2006, 11(11), 1032-1048.
[http://dx.doi.org/10.1038/sj.mp.4001866] [PMID: 16880827]
[60]
Murray, M.T. The healing power of herbs; Gramercy Books Random House: New York, NY, 2004.
[61]
Vanaclocha, B.; Cañigueral, S. Fitoterapia: Vademecum de Prescripción, 4th ed; Masson: Barcelona, 2003.
[62]
Balch, J.F.; Stengler, M. Prescription for Natural Cures John Wiley Sons I: New Jersey, 2004.
[63]
Adhami, H.R.; Linder, T.; Kaehlig, H.; Schuster, D.; Zehl, M.; Krenn, L. Catechol alkenyls from Semecarpus anacardium: acetylcholinesterase inhibition and binding mode predictions. J. Ethnopharmacol., 2012, 139(1), 142-148.
[http://dx.doi.org/10.1016/j.jep.2011.10.032] [PMID: 22075454]
[64]
Gutierres, J.M.; Carvalho, F.B.; Schetinger, M.R.C.; Agostinho, P.; Marisco, P.C.; Vieira, J.M.; Rosa, M.M.; Bohnert, C.; Rubin, M.A.; Morsch, V.M.; Spanevello, R.; Mazzanti, C.M. Neuroprotective effect of anthocyanins on acetylcholinesterase activity and attenuation of scopolamine-induced amnesia in rats. Int. J. Dev. Neurosci., 2014, 33, 88-97.
[http://dx.doi.org/10.1016/j.ijdevneu.2013.12.006] [PMID: 24374256]
[65]
de Andrade, J.P.; Berkov, S.; Viladomat, F.; Codina, C.; Zuanazzi, J.A.S.; Bastida, J. Alkaloids from Hippeastrum papilio. Molecules, 2011, 16(8), 7097-7104.
[http://dx.doi.org/10.3390/molecules16087097] [PMID: 21852767]
[66]
Alarcón, J.; Astudillo, L.; Gutierrez, M. Inhibition of acetylcholinesterase activity by dihydro-β-agarofuran sesquiterpenes isolated from Chilean Celastraceae. Z. Natforsch. C J. Biosci., 2008, 63(11-12), 853-856.
[http://dx.doi.org/10.1515/znc-2008-11-1212] [PMID: 19227834]
[67]
Kim, J.Y.; Lee, W.S.; Kim, Y.S.; Curtis-Long, M.J.; Lee, B.W.; Ryu, Y.B.; Park, K.H. Isolation of cholinesterase-inhibiting flavonoids from Morus lhou. J. Agric. Food Chem., 2011, 59(9), 4589-4596.
[http://dx.doi.org/10.1021/jf200423g] [PMID: 21434689]
[68]
Kim, J-H.; Kim, S-I.; Song, K-S. Prolyl endopeptidase inhibitors from green tea. Arch. Pharm. Res., 2001, 24(4), 292-296.
[http://dx.doi.org/10.1007/BF02975094] [PMID: 11534759]
[69]
Cieśla, Ł. Thin-layer chromatography with biodetection in the search for new potential drugs to treat neurodegenerative diseases--state of the art and future perspectives. Med. Chem., 2012, 8(1), 102-111.
[http://dx.doi.org/10.2174/157340612799278333] [PMID: 22420558]
[70]
Rein, M.J.; Renouf, M.; Cruz-Hernandez, C.; Actis-Goretta, L.; Thakkar, S.K.; da Silva Pinto, M. Bioavailability of bioactive food compounds: a challenging journey to bioefficacy. Br. J. Clin. Pharmacol., 2013, 75(3), 588-602.
[http://dx.doi.org/10.1111/j.1365-2125.2012.04425.x] [PMID: 22897361]
[71]
Praticò, D.; Delanty, N. Oxidative injury in diseases of the central nervous system: focus on Alzheimer’s disease. Am. J. Med., 2000, 109(7), 577-585.
[http://dx.doi.org/10.1016/S0002-9343(00)00547-7] [PMID: 11063960]
[72]
Callaway, J.K.; Beart, P.M.; Jarrott, B. A reliable procedure for comparison of antioxidants in rat brain homogenates. J. Pharmacol. Toxicol. Methods, 1998, 39(3), 155-162.
[http://dx.doi.org/10.1016/S1056-8719(98)00022-7] [PMID: 9741390]
[73]
Zhao, M.; Zhu, D.; Sun-Waterhouse, D.; Su, G.; Lin, L.; Wang, X.; Dong, Y. In vitro and in vivo studies on adlay-derived seed extracts: phenolic profiles, antioxidant activities, serum uric acid suppression, and xanthine oxidase inhibitory effects. J. Agric. Food Chem., 2014, 62(31), 7771-7778.
[http://dx.doi.org/10.1021/jf501952e] [PMID: 25029106]
[74]
Badarinath, A.V.; Rao, K.M.; Chetty, C.M.S.; Ramkanth, S.; Rajan, T.V.S.; Gnanaprakash, K. A review on in-vitro antioxidant methods: Comparisions, correlations and considerations. Int. J. Pharm. Tech. Res., 2010, 2, 1276-1285.
[75]
Ramassamy, C. Emerging role of polyphenolic compounds in the treatment of neurodegenerative diseases: a review of their intracellular targets. Eur. J. Pharmacol., 2006, 545(1), 51-64.
[http://dx.doi.org/10.1016/j.ejphar.2006.06.025] [PMID: 16904103]
[76]
Vasänge, M. Assay suitability for natural product screening: searching for leads to fight Alzheimer’s disease. Planta Med., 2014, 80(14), 1200-1209.
[http://dx.doi.org/10.1055/s-0034-1383063] [PMID: 25221979]
[77]
Piotrowska, H.; Kucinska, M.; Murias, M. Biological activity of piceatannol: leaving the shadow of resveratrol. Mutat. Res., 2012, 750(1), 60-82.
[http://dx.doi.org/10.1016/j.mrrev.2011.11.001] [PMID: 22108298]
[78]
Spencer, J.P.E.; Vafeiadou, K.; Williams, R.J.; Vauzour, D. Neuroinflammation: modulation by flavonoids and mechanisms of action. Mol. Aspects Med., 2012, 33(1), 83-97.
[http://dx.doi.org/10.1016/j.mam.2011.10.016] [PMID: 22107709]
[79]
Chlebek, J.; Macáková, K.; Cahlíkovi, L.; Kurfürst, M.; Kunes, J.; Opletal, L. Acetylcholinesterase and butyrylcholinesterase inhibitory compounds from Corydalis cava (Fumariaceae). Nat. Prod. Commun., 2011, 6(5), 607-610.
[http://dx.doi.org/10.1177/1934578X1100600507] [PMID: 21615017]
[80]
Cometa, M.F.; Fortuna, S.; Palazzino, G.; Volpe, M.T.; Rengifo Salgado, E.; Nicoletti, M.; Tomassini, L. New cholinesterase inhibiting bisbenzylisoquinoline alkaloids from Abuta grandifolia. Fitoterapia, 2012, 83(3), 476-480.
[http://dx.doi.org/10.1016/j.fitote.2011.12.015] [PMID: 22230193]
[81]
Nair, J.J.; Aremu, A.O.; van Staden, J. Isolation of narciprimine from Cyrtanthus contractus (Amaryllidaceae) and evaluation of its acetylcholinesterase inhibitory activity. J. Ethnopharmacol., 2011, 137(3), 1102-1106.
[http://dx.doi.org/10.1016/j.jep.2011.07.028] [PMID: 21787856]
[82]
Moon, U.R.; Sircar, D.; Barthwal, R.; Sen, S.K.; Beuerle, T.; Beerhues, L.; Mitra, A. Shoot cultures of Hoppea fastigiata (Griseb.) C.B. Clarke as potential source of neuroprotective xanthones. J. Nat. Med., 2015, 69(3), 375-386.
[http://dx.doi.org/10.1007/s11418-015-0904-x] [PMID: 25900046]
[83]
Yang, Z-D.; Zhang, D-B.; Ren, J.; Yang, M-J. Skimmianine, a furoquinoline alkaloid from Zanthoxylum nitidum as a potential acetylcholinesterase inhibitor. Med. Chem. Res., 2012, 21, 722-725.
[http://dx.doi.org/10.1007/s00044-011-9581-9]
[84]
Pereira, D.M.; Ferreres, F.; Oliveira, J.M.A.; Gaspar, L.; Faria, J.; Valentão, P.; Sottomayor, M.; Andrade, P.B. Pharmacological effects of Catharanthus roseus root alkaloids in acetylcholinesterase inhibition and cholinergic neurotransmission. Phytomedicine, 2010, 17(8-9), 646-652.
[http://dx.doi.org/10.1016/j.phymed.2009.10.008] [PMID: 19962870]
[85]
Ingkaninan, K.; Phengpa, P.; Yuenyongsawad, S.; Khorana, N. Acetylcholinesterase inhibitors from Stephania venosa tuber. J. Pharm. Pharmacol., 2006, 58(5), 695-700.
[http://dx.doi.org/10.1211/jpp.58.5.0015] [PMID: 16640839]
[86]
Bae, Y.H.; Cuong, T.D.; Hung, T.M.; Kim, J.A.; Woo, M.H.; Byeon, J.S.; Choi, J.S.; Min, B.S. Cholinesterase inhibitors from the roots of Harpagophytum procumbens. Arch. Pharm. Res., 2014, 37(9), 1124-1129.
[http://dx.doi.org/10.1007/s12272-013-0316-y] [PMID: 24374905]
[87]
Yang, Z-D.; Duan, D-Z.; Xue, W-W.; Yao, X-J.; Li, S. Steroidal alkaloids from Holarrhena antidysenterica as acetylcholinesterase inhibitors and the investigation for structure-activity relationships. Life Sci., 2012, 90(23-24), 929-933.
[http://dx.doi.org/10.1016/j.lfs.2012.04.017] [PMID: 22569298]
[88]
Zhao, T.; Ding, K.M.; Zhang, L.; Cheng, X.M.; Wang, C.H.; Wang, Z.T. Acetylcholinesterase and butyrylcholinesterase inhibitory activities of β-carboline and quinoline alkaloids derivatives from the plants of genus Peganum. J. Chem., 2013, 2013, 1-6.
[http://dx.doi.org/10.1155/2013/717232]
[89]
Cardoso-Lopes, E.M.; Maier, J.A.; da Silva, M.R.; Regasini, L.O.; Simote, S.Y.; Lopes, N.P.; Pirani, J.R.; Bolzani, Vda.S.; Young, M.C. Alkaloids from stems of Esenbeckia leiocarpa Engl. (Rutaceae) as potential treatment for Alzheimer disease. Molecules, 2010, 15(12), 9205-9213.
[http://dx.doi.org/10.3390/molecules15129205] [PMID: 21160449]
[90]
Cahlíková, L.; Valterová, I.; Macáková, K.; Opletal, L. Analysis of Amaryllidaceae alkaloids from Zephyranthes grandiflora by GC/MS and their cholinesterase activity. Brazilian J. Pharmacogn., 2011, 21, 575-580.
[http://dx.doi.org/10.1590/S0102-695X2011005000089]
[91]
Cavin, A.L.; Hay, A.E.; Marston, A.; Stoeckli-Evans, H.; Scopelliti, R.; Diallo, D.; Hostettmann, K. Bioactive diterpenes from the fruits of Detarium microcarpum. J. Nat. Prod., 2006, 69(5), 768-773.
[http://dx.doi.org/10.1021/np058123q] [PMID: 16724838]
[92]
Dall’Acqua, S.; Maggi, F.; Minesso, P.; Salvagno, M.; Papa, F.; Vittori, S.; Innocenti, G. Identification of non-alkaloid acetylcholinesterase inhibitors from Ferulago campestris (Besser) Grecescu (Apiaceae). Fitoterapia, 2010, 81(8), 1208-1212.
[http://dx.doi.org/10.1016/j.fitote.2010.08.003] [PMID: 20713133]
[93]
Choi, J.S.; Islam, M.N.; Ali, M.Y.; Kim, Y.M.; Park, H.J.; Sohn, H.S.; Jung, H.A. The effects of C-glycosylation of luteolin on its antioxidant, anti-Alzheimer’s disease, anti-diabetic, and anti-inflammatory activities. Arch. Pharm. Res., 2014, 37(10), 1354-1363.
[http://dx.doi.org/10.1007/s12272-014-0351-3] [PMID: 24988985]
[94]
Ibrahim, M.; Farooq, T.; Hussain, N.; Hussain, A.; Gulzar, T.; Hussain, I.; Akash, M.S.; Rehmani, F.S. Acetyl and butyryl cholinesterase inhibitory sesquiterpene lactones from Amberboa ramosa. Chem. Cent. J., 2013, 7(1), 116.
[http://dx.doi.org/10.1186/1752-153X-7-116] [PMID: 23837557]
[95]
Khan, M.T.H.; Orhan, I.; Şenol, F.S.; Kartal, M.; Şener, B.; Dvorská, M.; Smejkal, K.; Slapetová, T. Cholinesterase inhibitory activities of some flavonoid derivatives and chosen xanthone and their molecular docking studies. Chem. Biol. Interact., 2009, 181(3), 383-389.
[http://dx.doi.org/10.1016/j.cbi.2009.06.024] [PMID: 19596285]
[96]
Jung, H.A.; Jung, Y.J.; Hyun, S.K.; Min, B-S.; Kim, D-W.; Jung, J.H.; Choi, J.S. Selective cholinesterase inhibitory activities of a new monoterpene diglycoside and other constituents from Nelumbo nucifera stamens. Biol. Pharm. Bull., 2010, 33(2), 267-272.
[http://dx.doi.org/10.1248/bpb.33.267] [PMID: 20118551]
[97]
Pendota, S.C.; Aderogba, M.A.; Ndhlala, A.R.; Van Staden, J. Antimicrobial and acetylcholinesterase inhibitory activities of Buddleja salviifolia (L.) Lam. leaf extracts and isolated compounds. J. Ethnopharmacol., 2013, 148(2), 515-520.
[http://dx.doi.org/10.1016/j.jep.2013.04.047] [PMID: 23665162]
[98]
Sawasdee, P.; Sabphon, C.; Sitthiwongwanit, D.; Kokpol, U. Anticholinesterase activity of 7-methoxyflavones isolated from Kaempferia parviflora. Phytother. Res., 2009, 23(12), 1792-1794.
[http://dx.doi.org/10.1002/ptr.2858] [PMID: 19548291]
[99]
Zeb, A.; Sadiq, A.; Ullah, F.; Ahmad, S.; Ayaz, M. Investigations of anticholinestrase and antioxidant potentials of methanolic extract, subsequent fractions, crude saponins and flavonoids isolated from Isodon rugosus. Biol. Res., 2014, 47, 76.
[http://dx.doi.org/10.1186/0717-6287-47-76] [PMID: 25723481]
[100]
Topçu, G.; Kolak, U.; Öztürk, M.; Boga, M.; Hatipoglu, S.D.; Bahadori, F. Investigation of anticholinesterase activity of a series of Salvia extracts and the constituents of Salvia staminea. Nat. Prod. J., 2013, 3, 3-9.
[http://dx.doi.org/10.2174/2210315511303010003]
[101]
Yang, Z.; Zhang, D.; Ren, J.; Yang, M.; Li, S. Acetylcholinesterase inhibitory activity of the total alkaloid from traditional Chinese herbal medicine for treating Alzheimer’s disease. Med. Chem. Res., 2012, 21, 734-738.
[http://dx.doi.org/10.1007/s00044-011-9582-8]
[102]
Lai, D-H.; Yang, Z-D.; Xue, W-W.; Sheng, J.; Shi, Y.; Yao, X-J. Isolation, characterization and acetylcholinesterase inhibitory activity of alkaloids from roots of Stemona sessilifolia. Fitoterapia, 2013, 89, 257-264.
[http://dx.doi.org/10.1016/j.fitote.2013.06.010] [PMID: 23831460]
[103]
Seidl, C.; Correia, B.L.; Stinghen, A.E.M.; Santos, C.A.M. Acetylcholinesterase inhibitory activity of uleine from Himatanthus lancifolius. Z. Natforsch. C J. Biosci., 2010, 65(7-8), 440-444.
[http://dx.doi.org/10.1515/znc-2010-7-804] [PMID: 20737911]
[104]
Jung, H.A.; Lee, E.J.; Kim, J.S.; Kang, S.S.; Lee, J.H.; Min, B.S.; Choi, J.S. Cholinesterase and BACE1 inhibitory diterpenoids from Aralia cordata. Arch. Pharm. Res., 2009, 32(10), 1399-1408.
[http://dx.doi.org/10.1007/s12272-009-2009-0] [PMID: 19898803]
[105]
Hajimehdipoor, H.; Mosaddegh, M.; Naghibi, F.; Haeri, A.; Hamzeloo-Moghadam, M. Natural sesquiterpen lactones as acetylcholinesterase inhibitors. An. Acad. Bras. Cienc., 2014, 86(2), 801-806.
[http://dx.doi.org/10.1590/0001-3765201420130005] [PMID: 24838542]
[106]
Guo, A.J.Y.; Xie, H.Q.; Choi, R.C.Y.; Zheng, K.Y.Z.; Bi, C.W.C.; Xu, S.L.; Dong, T.T.; Tsim, K.W. Galangin, a flavonol derived from Rhizoma Alpiniae Officinarum, inhibits acetylcholinesterase activity in vitro. Chem. Biol. Interact., 2010, 187(1-3), 246-248.
[http://dx.doi.org/10.1016/j.cbi.2010.05.002] [PMID: 20452337]
[107]
Cho, J.K.; Ryu, Y.B.; Curtis-Long, M.J.; Ryu, H.W.; Yuk, H.J.; Kim, D.W.; Kim, H.J.; Lee, W.S.; Park, K.H. Cholinestrase inhibitory effects of geranylated flavonoids from Paulownia tomentosa fruits. Bioorg. Med. Chem., 2012, 20(8), 2595-2602.
[http://dx.doi.org/10.1016/j.bmc.2012.02.044] [PMID: 22445674]
[108]
Ryu, H.W.; Curtis-Long, M.J.; Jung, S.; Jeong, I.Y.; Kim, D.S.; Kang, K.Y.; Park, K.H. Anticholinesterase potential of flavonols from paper mulberry (Broussonetia papyrifera) and their kinetic studies. Food Chem., 2012, 132(3), 1244-1250.
[http://dx.doi.org/10.1016/j.foodchem.2011.11.093] [PMID: 29243607]
[109]
Borowiec, K.; Szwajgier, D.; Targoński, Z.; Demchuk, O.M.; Cybulska, J.; Czernecki, T. Cholinesterase inhibitors isolated from bilberry fruit. J. Funct. Foods, 2014, 11, 313-321.
[http://dx.doi.org/10.1016/j.jff.2014.10.008]
[110]
Szwajgier, D.; Borowiec, K. Phenolic acids from malt are efficient acetylcholinesterase and butyrylcholinesterase inhibitors. J. Inst. Brew., 2012, 118, 40-48.
[http://dx.doi.org/10.1002/jib.5]
[111]
Sancheti, S.; Sancheti, S.; Um, B.H.; Seo, S.Y. 1,2,3,4,6-penta-O-galloyl-β-D-glucose: A cholinesterase inhibitor from Terminalia chebula. South African J. Bot. Elsevier B.V., 2010, 76, 285-288.
[http://dx.doi.org/10.1016/j.sajb.2009.11.006]
[112]
Kucukboyaci, N.; Orhan, I.; Şener, B.; Nawaz, S.A.; Choudhary, M.I. Assessment of enzyme inhibitory and antioxidant activities of lignans from Taxus baccata L. Z. Natforsch. C J. Biosci., 2010, 65(3-4), 187-194.
[http://dx.doi.org/10.1515/znc-2010-3-404] [PMID: 20469636]
[113]
Wang, X.; Kim, J-R.; Lee, S-B.; Kim, Y-J.; Jung, M.Y.; Kwon, H-W.; Ahn, Y.J. Effects of curcuminoids identified in rhizomes of Curcuma longa on BACE-1 inhibitory and behavioral activity and lifespan of Alzheimer’s disease Drosophila models. BMC Complement. Altern. Med., 2014, 14, 88.
[http://dx.doi.org/10.1186/1472-6882-14-88] [PMID: 24597901]
[114]
Hou, W.C.; Lin, R.D.; Chen, C.T.; Lee, M.H. Monoamine oxidase B (MAO-B) inhibition by active principles from Uncaria rhynchophylla. J. Ethnopharmacol., 2005, 100(1-2), 216-220.
[http://dx.doi.org/10.1016/j.jep.2005.03.017] [PMID: 15890481]
[115]
Cheng, Z.B.; Lu, X.; Bao, J.M.; Han, Q.H.; Dong, Z.; Tang, G.H.; Gan, L.S.; Luo, H.B.; Yin, S. (±)-Torreyunlignans A-D, rare 8-9′ linked neolignan enantiomers as phosphodiesterase-9A inhibitors from Torreya yunnanensis. J. Nat. Prod., 2014, 77(12), 2651-2657.
[http://dx.doi.org/10.1021/np500528u] [PMID: 25495612]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy