Generic placeholder image

Current Microwave Chemistry

Editor-in-Chief

ISSN (Print): 2213-3356
ISSN (Online): 2213-3364

Mini-Review Article

Recent Progress on Carbon-chalcogen Bond Formation Reaction Under Microwave Irradiation

Author(s): Brindaban C. Ranu*, Tubai Ghosh and Laksmikanta Adak*

Volume 7, Issue 1, 2020

Page: [40 - 49] Pages: 10

DOI: 10.2174/2213335607666200214130544

Price: $65

Abstract

The carbon-chalcogen bond formation is of much importance as organochalcogenides scaffold, and in general, it shows by organochalcogenide scaffolds, in general, show promising biological activities and many compounds containing chalcogenide units are currently used as drugs, agrochemicals and useful materials. Thus, a plethora of methods has been developed for the formation of carbonchalcogen bonds. This review covers the recent developments on the formation of carbon-chalcogen bonds under microwave irradiation and synthesis of useful chalcogenides by employing this process.

Keywords: organo-chalcogenides, carbon-chalcogen bond formation, microwave irradiation, green process, chalcogen heterocycles, solvent free procedure.

Graphical Abstract
[1]
de la Hoz, A.; Díaz-Ortiz, A.; Moreno, A. Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chem. Soc. Rev., 2005, 34(2), 164-178.
[http://dx.doi.org/10.1039/B411438H] [PMID: 15672180]
[2]
Man, A.K.; Shahidan, R. Microwave-assisted chemical reactions. J. Macromol. Sci. Part A Pure Appl. Chem., 2007, 44, 651-657.
[http://dx.doi.org/10.1080/10601320701285136]
[3]
Surati, M.A.; Jauhari, S.; Desai, K.R. A brief review: Microwave assisted organic reaction. Arch. Appl. Sci. Res., 2012, 4, 645-661.
[4]
Grewal, A.S.; Kumar, K.; Redhu, S.; Bhardwaj, S. Microwave assisted synthesis: A Green chemistry approach. Int. Res J Pharm. App Sci., 2013, 3, 278-285.
[5]
Gawande, M.B.; Shelke, S.N.; Zboril, R.; Varma, R.S. Microwave-assisted chemistry: synthetic applications for rapid assembly of nanomaterials and organics. Acc. Chem. Res., 2014, 47(4), 1338-1348.
[http://dx.doi.org/10.1021/ar400309b] [PMID: 24666323]
[6]
Rathi, A.K.; Gawandea, M.B.; Zboril, R.; Varma, R.S. Microwave-assisted synthesis–catalytic applications in aqueous media. Coord. Chem. Rev., 2015, 291, 68-94.
[http://dx.doi.org/10.1016/j.ccr.2015.01.011]
[7]
Ahammed, S.; Kundu, D.; Mukherjee, N.; Ranu, B.C. Microwave assisted synthesis of chalcogenides. Curr. Microw. Chem., 2016, 4, 25-35.
[http://dx.doi.org/10.2174/2213335602666150810204449]
[8]
Sharma, N.; Sharma, U.K.; Van der Eycken, E.V. Microwaveassisted organic synthesis: overview of recent applicationsin “Green Techniques for Organic Synthesis and Medicinal Chemistry”, 2nd Edition; Zhang, W.; Cue, B.W., Eds.; John Wiley & Sons Ltd, 2018, Chapter 17, pp. 441-468.
[http://dx.doi.org/10.1002/9781119288152.ch17]
[9]
Sarotti, A.M.; Joullié, M.M.; Spanevello, R.A.; Suárez, A.G. Microwave-assisted regioselective cycloaddition reactions between 9-substituted anthracenes and levoglucosenone. Org. Lett., 2006, 8(24), 5561-5564.
[http://dx.doi.org/10.1021/ol062254g] [PMID: 17107072]
[10]
Pospíšil, J.; Potáček, M. Microwave-assisted solvent-free intramolecular 1,3-dipolar cycloaddition reactions leading to hexahydrochromeno[4,3-b]-pyrroles: scope and limitations. Tetrahedron, 2007, 63, 337-346.
[http://dx.doi.org/10.1016/j.tet.2006.10.074]
[11]
Appukkuttan, P.; Mehta, V.P.; Van der Eycken, E.V. Microwave-assisted cycloaddition reactions. Chem. Soc. Rev., 2010, 39(5), 1467-1477.
[http://dx.doi.org/10.1039/B815717K] [PMID: 20419202]
[12]
Garbacia, S.; Desai, B.; Lavastre, O.; Kappe, C.O. Microwave-assisted ring-closing metathesis revisited. On the question of the nonthermal microwave effect. J. Org. Chem., 2003, 68(23), 9136-9139.
[http://dx.doi.org/10.1021/jo035135c] [PMID: 14604397]
[13]
Appukkuttan, P.; Dehaen, W.; Van der Eycken, E. Microwave-enhanced synthesis of N-shifted buflavine analogues via a Suzuki-ring-closing metathesis protocol. Org. Lett., 2005, 7(13), 2723-2726.
[http://dx.doi.org/10.1021/ol050806+] [PMID: 15957931]
[14]
Rodríguez, A.M.; Prieto, P.; de la Hoz, A.; Díaz-Ortiz, A.; García, J.I. The issue of ‘molecular radiators’ in microwave-assisted reactions. Computational calculations on ring closing metathesis (RCM). Org. Biomol. Chem., 2014, 12(15), 2436-2445.
[http://dx.doi.org/10.1039/C3OB42536C] [PMID: 24599220]
[15]
Negra, F.D.; Meneghetti, M.; Menna, E. Microwave-assisted synthesis of a soluble single wall carbon nanotube derivative. Fullerenes, Nanotubes, And Carbon Nanotubes., 2003, 11, 25-34.
[http://dx.doi.org/10.1081/FST-120018668]
[16]
Campisciano, V.; Riela, S.; Noto, R.; Gruttadauria, M.; Giacalone, F. Efficient microwave-mediated synthesis of fullerene acceptors for organic photovoltaics. RSC Advances, 2014, 4, 63200-63207.
[http://dx.doi.org/10.1039/C4RA10495A]
[17]
De, S.; Dutta, S.; Saha, B. Microwave assisted conversion of carbohydrates and biopolymers to 5-hydroxymethylfurfural with aluminium chloride catalyst in water. Green Chem., 2011, 13, 2859-2868.
[http://dx.doi.org/10.1039/c1gc15550d]
[18]
Szabolcs, Á.; Molnár, M.; Dibó, G.; Mika, L.T. Microwave-assisted conversion of carbohydrates to levulinic acid: an essential step in biomass conversion. Green Chem., 2013, 15, 439-445.
[http://dx.doi.org/10.1039/C2GC36682G]
[19]
Delbecq, F.; Len, C. Recent advances in the microwave-assisted production of hydroxymethylfurfural by hydrolysis of cellulose derivatives-A review. Molecules, 2018, 23(8) E1973
[http://dx.doi.org/10.3390/molecules23081973] [PMID: 30087293]
[20]
Mehta, V.P.; Modha, S.G.; Ruijter, E.; Van Hecke, K.; Van Meervelt, L.; Pannecouque, C.; Balzarini, J.; Orru, R.V.A.; Van der Eycken, E. A microwave-assisted diastereoselective multicomponent reaction to access dibenzo[c,e]azepinones: synthesis and biological evaluation. J. Org. Chem., 2011, 76(8), 2828-2839.
[http://dx.doi.org/10.1021/jo200251q] [PMID: 21391618]
[21]
Wang, S-L.; Zhang, G.; Jie, D.; Jiang, B.; Wang, X-H.; Tu, S-J. Microwave-assisted multicomponent reactions: rapid and regioselective formation of new extended angular fused aza-heterocycles. Comb. Chem. High Throughput Screen., 2012, 15(5), 400-410.
[http://dx.doi.org/10.2174/138620712800194459] [PMID: 22263890]
[22]
Dalvi, P.B.; Lin, S-F.; Paike, V.; Sun, C-M. Microwave-assisted multicomponent synthesis of dihydroquinoxalinones on soluble polymer support. ACS Comb. Sci., 2015, 17(7), 421-425.
[http://dx.doi.org/10.1021/acscombsci.5b00053] [PMID: 26101959]
[23]
Sinnwell, S.; Ritter, H. Recent advances in microwave-assisted polymer synthesis. Aust. J. Chem., 2007, 60, 729-743.
[http://dx.doi.org/10.1071/CH07219]
[24]
Adamski, M.; Skalski, T.J.G.; Xu, S.; Killer, M.; Schibli, E.M.; Frisken, B.J.; Holdcroft, S. Microwave-assisted Diels–Alder polycondensation of proton conducting poly(phenylene)s. Polym. Chem., 2019, 10, 1668-1685.
[http://dx.doi.org/10.1039/C8PY01804A]
[25]
Xu, Y.; Guo, Q-X. Syntheses of heterocyclic compounds under microwave irradiation. Heterocycles, 2004, 63, 903-974.
[http://dx.doi.org/10.3987/REV-03-574]
[26]
Suna, E.; Mutule, I. Microwave-assisted heterocyclic chemistry. Top. Curr. Chem., 2006, 266, 49-101.
[http://dx.doi.org/10.1007/128_058]
[27]
Garella, D.; Borretto, E.; Di Stilo, A.; Martina, K.; Cravotto, G.; Cintas, P. Microwave-assisted synthesis of N-heterocycles in medicinal chemistry. MedChemComm, 2013, 4, 1323-1343.
[http://dx.doi.org/10.1039/c3md00152k]
[28]
Ramírez, J.R.; Caballero, R.; Guerra, J.; Ruiz-Carretero, A.; Sánchez-Migallón, A.; de la Hoz, A. Solvent-free microwave-assisted synthesis of 2,5- dimethoxyphenylaminotriazines. ACS Sustain. Chem. Eng., 2015, 3, 3405-3411.
[http://dx.doi.org/10.1021/acssuschemeng.5b01136]
[29]
Kamil, F.; Hubeatir, K.A.; Shamel, M.; Al-Amiery, A.A. Microwave-assisted solvent-free synthesis of new polyimine. Cogent Chemistry., 2015, 1 1075853
[http://dx.doi.org/10.1080/23312009.2015.1075853]
[30]
Sarmiento-Sánchez, J.I.; Ochoa-Terán, A.; Picos-Corrales, L.A.; Osuna-Martínez, L.U.; Montes-Ávila, J.; Bastidas-Bastidas, P. Microwave-assisted synthesis of benzoxazinediones under solvent-free conditions. Green Chem. Lett. Rev., 2016, 9, 196-202.
[http://dx.doi.org/10.1080/17518253.2016.1230654]
[31]
Bag, S.; Dasgupta, S.; Török, B. Microwave-assisted heterogeneous catalysis: an environmentally benign tool for contemporary organic synthesis. Curr. Org. Synth., 2011, 8, 237-261.
[http://dx.doi.org/10.2174/157017911794697321]
[32]
Horikoshi, S.; Serpone, N. Role of microwaves in heterogeneous catalytic systems. Catal. Sci. Technol., 2014, 4, 1197-1210.
[http://dx.doi.org/10.1039/c3cy00753g]
[33]
Kokel, A.; Schäfer, C.; Török, B. Application of microwave-assisted heterogeneous catalysis in sustainable synthesis design. Green Chem., 2017, 19, 3729-3751.
[http://dx.doi.org/10.1039/C7GC01393K]
[34]
Wang, K.H.; Wang, J-X. Microwave-assisted synthesis in C-C and carbon-heteroatom coupling reactions.Palladium-Catalyzed Coupling Reactions; Arpad, Molnar., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA, 2013, chapter 8, pp. 287-331.
[http://dx.doi.org/10.1002/9783527648283.ch8]
[35]
Maes, B.U.W. Transition-metal-based carbon–carbon and carbon–heteroatom bond formation for the synthesis and decoration of heterocycles In: Microwave-assisted synthesis of heterocycles. Topics in heterocyclic chemistry; Van der Eycken, E.; Kappe, C.O., Eds.; Springer, Berlin, Heidelberg, 2006; 1, pp. 155-211.
[36]
Appukkuttan, P.; Eycken, E.V. Recent developments in microwave-assisted, transition-metal-catalysed C–C and C–N bond-forming reactions. Eur. J. Org. Chem., 2008, 39, 1133-1155.
[http://dx.doi.org/10.1002/ejoc.200701056]
[37]
Kiss, N.Z.; Bálint, E.; Keglevich, G. Microwave-assisted syntheses in organic chemistry In: Milestones in microwave chemistry; Keglevich, György., Ed.; Springer International Publishing: Switzerland, 2016; chapter 2, pp. 11-45.
[38]
Mugesh, G.; du Mont, W.W.; Sies, H. Chemistry of biologically important synthetic organoselenium compounds. Chem. Rev., 2001, 101(7), 2125-2179.
[http://dx.doi.org/10.1021/cr000426w] [PMID: 11710243]
[39]
Stuhr-Hansen, N.; Beckers, E.H.A.; Engman, L.; Jansen, R.A. Organoselenium-substituted poly(p-phenylenevinylene). Heteroatom Chem., 2005, 16, 656-662.
[http://dx.doi.org/10.1002/hc.20167]
[40]
Okamoto, Y. The Chemistry of Organic Selenium and Tellurium Compounds; Patai, S.; Rappoport, Z., Eds.; Wiley: Chichester, U.K., 1986, Vol. 1, pp. 331-341.
[41]
(a) Paulmier, C. Selenium Reagents and Intermediates in Organic Synthesis, Organic Chemistry Series 4; Baldwin, J.E., Ed.; Pergamon Press Ltd: Oxford, 1986.
(b) Petragnani, N. Tellurium in Organic Synthesis; Katritzky, A.R.; Meth-Cohn, O; Rees, C.W., Ed.; Academic Press: San Diego, 1994.
[42]
Galema, S.A.; Halstead, B.S.J.; Mingos, D.M.P. Dielectric parameters relevant to microwave dielectric heating. Chem. Soc. Rev., 1998, 27, 213-224.
[http://dx.doi.org/10.1039/a827213z]
[43]
Dallinger, D.; Kappe, C.O. Microwave-assisted synthesis in water as solvent. Chem. Rev., 2007, 107(6), 2563-2591.
[http://dx.doi.org/10.1021/cr0509410] [PMID: 17451275]
[44]
Larhed, M.; Moberg, C.; Hallberg, A. Microwave-accelerated homogeneous catalysis in organic chemistry. Acc. Chem. Res., 2002, 35(9), 717-727.
[http://dx.doi.org/10.1021/ar010074v] [PMID: 12234201]
[45]
Varma, R.S.; Baig, N.R. Organic synthesis using microwaves and supported reagents. In: icrowaves in Organic Synthesis; de la Hoz, A.; , Loupy. Wiley-VCH, Weinheim, 2012; Chapter 10, pp. 427-486.
[46]
Westaway, K.C.; Gedye, R. The question of specific activation of organic reactions by microwaves. J. Microw. Power Electromagn. Energy, 1995, 30, 219-230.
[http://dx.doi.org/10.1080/08327823.1995.11688280]
[47]
Langa, F.; de la Cruz, P.; de la Hoz, A.; DWaz-Ortiz, A.; DWez-Barra, E. Microwave irradiation: more than just a method for accelerating reactions. Contemp. Org. Synth., 1997, 4, 373-386.
[http://dx.doi.org/10.1039/CO9970400373]
[48]
Kuhnert, N. Microwave-assisted reactions in organic synthesis--are there any nonthermal microwave effects? Angew. Chem. Int. Ed. Engl., 2002, 41(11), 1863-1866.
[http://dx.doi.org/10.1002/1521-3773(20020603)41:11<1863:AID-ANIE1863>3.0.CO;2-L] [PMID: 19750616]
[49]
Feng, M.; Tang, B.; Liang, S.H.; Jiang, X. Sulfur containing scaffolds in drugs: synthesis and application in medicinal chemistry. Curr. Top. Med. Chem., 2016, 16(11), 1200-1216.
[http://dx.doi.org/10.2174/1568026615666150915111741] [PMID: 26369815]
[50]
Li, Z-H.; Zhang, J.; Liu, X-Q.; Geng, P-F.; Ma, J-L.; Wang, B.; Zhao, T-Q.; Zhao, B.; Wei, H-M.; Wang, C.; Fu, D-J.; Yu, B.; Liu, H-M. Identification of thiazolo[5,4-d]pyrimidine derivatives as potent antiproliferative agents through the drug repurposing strategy. Eur. J. Med. Chem., 2017, 135, 204-212.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.056] [PMID: 28456031]
[51]
Lara, L.S.; Moreira, C.S.; Calvet, C.M.; Lechuga, G.C.; Souza, R.S.; Bourguignon, S.C.; Ferreira, V.F.; Rocha, D.; Pereira, M.C.S. Efficacy of 2-hydroxy-3-phenylsulfanylmethyl-[1,4]-naphthoquinone derivatives against different Trypanosoma cruzi discrete type units: Identification of a promising hit compound. Eur. J. Med. Chem., 2018, 144, 572-581.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.052] [PMID: 29289882]
[52]
Lee, C-F.; Liu, Y-C.; Badsara, S.S. Transition-metal-catalyzed C-S bond coupling reaction. Chem. Asian J., 2014, 9(3), 706-722.
[http://dx.doi.org/10.1002/asia.201301500] [PMID: 24443103]
[53]
Liu, H.; Jiang, X. Transfer of sulfur: from simple to diverse. Chem. Asian J., 2013, 8(11), 2546-2563.
[http://dx.doi.org/10.1002/asia.201300636] [PMID: 23846983]
[54]
Eichman, C.C.; Stambuli, J.P. Transition metal catalyzed synthesis of aryl sulfides. Molecules, 2011, 16(1), 590-608.
[http://dx.doi.org/10.3390/molecules16010590] [PMID: 21242940]
[55]
Beletskaya, I.P.; Ananikov, V.P. Transition-metal-catalyzed C-S, C-Se, and C-Te bond formation via cross-coupling and atom-economic addition reactions. Chem. Rev., 2011, 111(3), 1596-1636.
[http://dx.doi.org/10.1021/cr100347k] [PMID: 21391564]
[56]
Wu, Y-J.; He, H. Copper-catalyzed cross-coupling of aryl halides and thiols using microwave heating. Synlett, 2003, 1789-1790.
[http://dx.doi.org/10.1055/s-2003-41407]
[57]
Gusarova, N.K.; Chernysheva, N.A.; Yas’ko, S.V.; Korchevin, N.A.; Dolgushin, G.V.; Trofimov, A.B.A. Effect of microwave irradiation on the reaction of elemental sulfur with phenylacetylene. Dokl. Chem., 2004, 399, 240-241.
[http://dx.doi.org/10.1007/s10631-005-0020-7]
[58]
Lengar, A.; Kappe, C.O. Tunable carbon-carbon and carbon-sulfur cross-coupling of boronic acids with 3,4-dihydropyrimidine-2-thiones. Org. Lett., 2004, 6(5), 771-774.
[http://dx.doi.org/10.1021/ol036496h] [PMID: 14986971]
[59]
Cao, Y-J.; Lai, Y-Y.; Cao, H.; Xing, X-N.; Wang, X.; Xiao, W-J. A highly efficient carbon-sulfur bond formation reaction via microwave-assisted nucleophileicsubstituteon reaction of thiols to polychloroalkanes without a transition metal catalyst. Can. J. Chem., 2006, 84, 1529-1533.
[http://dx.doi.org/10.1139/v06-151]
[60]
Ranu, B.C.; Saha, A.; Jana, R. Microwave-assisted simple and efficient ligand free copper nanoparticle catalyzed aryl-sulfur bond formation. Adv. Synth. Catal., 2007, 349, 2690-2696.
[http://dx.doi.org/10.1002/adsc.200700289]
[61]
Lee, Y.T.; Choi, S.Y.; Chung, Y.K. Microwave-assisted palladium-catalyzedregioselectivecyanothiolation of alkynes with thiocyanates. Tetrahedron Lett., 2007, 48, 5673-5677.
[http://dx.doi.org/10.1016/j.tetlet.2007.06.041]
[62]
Dahl, T.; Tornøe, C.W.; Bang-Andersen, B.; Nielsen, P.; Jørgensen, M. Palladium-catalyzed three-component approach to promazine with formation of one carbon-sulfur and two carbon-nitrogen bonds. Angew. Chem. Int. Ed. Engl., 2008, 47(9), 1726-1728.
[http://dx.doi.org/10.1002/anie.200705209] [PMID: 18213669]
[63]
Bagley, M.C.; Dix, M.C.; Fusillo, V. Rapid Ullmann-type synthesis of aryl sulfides using a copper(I) catalyst and ligand under microwave irradiation. Tetrahedron Lett., 2009, 50, 3661-3664.
[http://dx.doi.org/10.1016/j.tetlet.2009.03.115]
[64]
Bagley, M.C.; Davis, T.; Dix, M.C.; Fusillo, V.; Pigeaux, M.; Rokicki, M.J.; Kipling, D. Microwave-assisted Ullmann C-S bond formation: synthesis of the P38alpha MAPK clinical candidate VX-745. J. Org. Chem., 2009, 74(21), 8336-8342.
[http://dx.doi.org/10.1021/jo9017155] [PMID: 19778055]
[65]
Gonzalez-Arellano, C.; Luque, R.; Macquarrie, D.J. Microwave efficient S-arylation of thiols with aryl iodides using supported metal nanoparticles. Chem. Commun. (Camb.), 2009, (11), 1410-1412.
[http://dx.doi.org/10.1039/b818767c] [PMID: 19259604]
[66]
Sun, W.; Patel, P.D.; Stephani, R.A.; Chiosis, G. An efficient copper-catalyzed microwave-assisted S-arylation towards the synthesis of 8-arylsulfanyl adenines. Synlett, 2011, 20, 3008-3012.
[67]
Mark, C. Bagley, M.C.; Vincenzo Fusillo, V.; Hills, E.G.B.; Mulholland, A.T.; Newcombe, J.; Pentecost, L.J.; Radley, E.L.; Stephens, B.R.; Turrell, C.R. Microwave-assisted Ullmann−Buchwald C−S bond formation using a copper(I) catalyst and trans-cyclohexane-1,2-diol as ligand. ARKIVOC, 2012, 2012, 294-313.
[68]
Woo, H.; Mohan, B.; Heo, E.; Park, J.C.; Song, H.; Park, K.H. CuO hollow nanosphere-catalyzed cross-coupling of aryl iodides with thiols. Nanoscale Res. Lett., 2013, 8(1), 390-396.
[http://dx.doi.org/10.1186/1556-276X-8-390] [PMID: 24044527]
[69]
Basauri-Molina, M.; Hernández-Ortega, S.; Morales-Morales, D. Microwave-assisted C–C and C–S couplings catalysed by organometallic Pd-SCS or coordination Ni-SNS pincer complexes. Eur. J. Inorg. Chem., 2014, 2014, 4619-4625.
[http://dx.doi.org/10.1002/ejic.201402571]
[70]
Chen, Y-A.; Badsara, S.S.; Tsai, W-T.; Lee, C-F. Microwave assisted copper-catalyzed cross coupling reaction of thiols with aryl iodides in water. Synthesis, 2015, 47, 181-186.
[71]
Zhan, H.; Cao, H.; Qiu, H.; Li, N.; Chen, L.; Liu, J.; Cai, H.; Tan, J. Microwave-assisted C–N and C–S bond-forming reactions: an efficient three-component domino sequence for the synthesis of sulfoether-decoratedimidazo[1,2-a]pyridines. RSC Advances, 2015, 5, 32205-32209.
[http://dx.doi.org/10.1039/C5RA05377C]
[72]
Saha, D.; Wadhwa, P.; Sharma, A. A sequential synthetic strategy towards unexplored dibenzo[b,f][1,4] thiazepinecarboxamides: Copper catalysed C–S cyclisation followed by Ugi type 3CC cascade. RSC Advances, 2015, 5, 33067-33076.
[http://dx.doi.org/10.1039/C5RA04175A]
[73]
Bhanja, P.; Gomes, R.; Satyanarayana, L.; Bhaumik, A. A new Cu-anchored mesoporousorganosilica material for facile C–S coupling reactions under microwave irradiation. J. Mol. Catal. Chem., 2016, 415, 104-112.
[http://dx.doi.org/10.1016/j.molcata.2016.01.033]
[74]
Saini, V.; Khungar, B. Recyclable imidazolium ion-tagged nickel catalyst for microwave-assisted C–S cross-coupling in water using sulfonylhydrazide as the sulfur source. New J. Chem., 2018, 42, 12796-12801.
[http://dx.doi.org/10.1039/C8NJ00904J]
[75]
Woods, J.A.; Hadfield, J.A.; McGown, A.T.; Fox, B.W. Bioactivity and molecular modelling of diphenylsulfides and diphenylselenides. Bioorg. Med. Chem., 1993, 1(5), 333-340.
[http://dx.doi.org/10.1016/S0968-0896(00)82139-2] [PMID: 8081863]
[76]
Nogueira, C.W.; Zeni, G.; Rocha, J.B.T. Organoselenium and organotellurium compounds: toxicology and pharmacology. Chem. Rev., 2004, 104(12), 6255-6285.
[http://dx.doi.org/10.1021/cr0406559] [PMID: 15584701]
[77]
Alberto, E.E.; Nascimento, V.; Braga, A.L. Catalytic application of selenium and tellurium compounds as glutathione peroxidase enzymemimetics. J. Braz. Chem. Soc., 2010, 21, 2032-2041.
[http://dx.doi.org/10.1590/S0103-50532010001100004]
[78]
Suzuki, H.; Abe, H.; Osuka, A. Copper(I) iodide-facilitated nucleophilic substitutions of non-activated aryl iodides with areneselenolates. Chem. Lett., 1981, 10, 151-152.
[http://dx.doi.org/10.1246/cl.1981.151]
[79]
Nishiyama, Y.; Tokunaga, K.; Sonada, N. New synthetic method of diorganylselenides: Palladium-catalyzed reaction of PhSeSnBu3 with aryl and alkyl halides. Org. Lett., 1999, 1, 1725-1727.
[http://dx.doi.org/10.1021/ol990233z]
[80]
(a) Gujadhur, R.K.; Venkataraman, D. A general method for the formation of diarylselenides using copper(I) catalysts. Tetrahedron Lett., 2003, 44, 81-84.
[http://dx.doi.org/10.1016/S0040-4039(02)02480-2]
(b) Santoro, S.; Azeredo, J.B.; Nascimento, V.; Sancineto, L.; Braga, A.L.; Santi, C. The green side of the moon: ecofriendly aspects of organoselenium chemistry. RSC Advances, 2014, 4, 31521-31535.
[http://dx.doi.org/10.1039/C4RA04493B]
[81]
Ericsson, C.; Engman, L. Microwave-assisted group-transfer cyclization of organotellurium compounds. J. Org. Chem., 2004, 69(15), 5143-5146.
[http://dx.doi.org/10.1021/jo040155f] [PMID: 15255754]
[82]
Kumar, S.; Engman, L. Microwave-assisted copper-catalyzed preparation of diaryl chalcogenides. J. Org. Chem., 2006, 71(14), 5400-5403.
[http://dx.doi.org/10.1021/jo060690a] [PMID: 16808537]
[83]
Seijas, J.A.; Vázquez-Tato, M.P.; Mena-Menéndez, A. In: ; Fast microwave assisted synthesis of p-methoxyphenyltellurium trichloride, The 13th International Electronic Conference on Synthetic Organic Chemistry (ECSOC-13), November, 1-30, 2009, CD-ROM edition:. ISBN: 3-906980-23-5, Published in 2010 by MDPI, Basel, Switzerland
[http://dx.doi.org/10.3390/ecsoc-13-00228]
[84]
Beletskaya, I.P.; Sigeev, A.S.; Peregudov, A.S.; Petrovskii, P.V.; Khrustalev, V.N. Microwave-assisted synthesis of diarylselenides. Elucidation of Cu(I)-catalyzed reaction mechanism. Chem. Lett., 2010, 39, 720-722.
[http://dx.doi.org/10.1246/cl.2010.720]
[85]
Bottesellea, G.V.; Godoia, M.; Galettoa, F.Z.; Bettanina, L.; Singhb, D.E.D.; Rodriguesb, O.; Braga, A.L. Microwave-assisted one-pot synthesis of symmetrical diselenides, ditellurides and disulfides from organoyl iodides and elemental chalcogen catalyzed by CuO nanoparticles. J. Mol. Catal. Chem., 2012, 365, 186-193.
[http://dx.doi.org/10.1016/j.molcata.2012.09.003]
[86]
Kundu, D.; Ahammed, S.; Ranu, B.C. Microwave-assisted reaction of aryl diazoniumfluoroborate and diaryldichalcogenides in dimethyl carbonate: a general procedure for the synthesis of unsymmetrical diarylchalcogenides. Green Chem., 2012, 14, 2024-2030.
[http://dx.doi.org/10.1039/c2gc35328h]
[87]
Zhang, S.; Karra, K.; Heintz, C.; Kleckler, E.; Jin, J. Microwave-assisted Cu2O-catalyzed one-pot synthesis of symmetrical diarylselenides from elemental selenium. Tetrahedron Lett., 2013, 54, 4753-4755.
[http://dx.doi.org/10.1016/j.tetlet.2013.06.117]
[88]
Saba, S.; Rafique, J.; Braga, A.L. Synthesis of unsymmetrical diorganylchalcogenides under greener conditions: use of an iodine/DMSO system, solvent and metal-free approach. Adv. Synth. Catal., 2015, 357, 1446-1452.
[http://dx.doi.org/10.1002/adsc.201500024]
[89]
Saba, S.; Rafique, J.; Braga, A.L. DMSO/iodine-catalyzed oxidative C–Se/C–S bond formation: a regioselective synthesis of unsymmetrical chalcogenides with nitrogen- or oxygen-containing arenes. Catal. Sci. Technol., 2016, 6, 3087-3098.
[http://dx.doi.org/10.1039/C5CY01503K]
[90]
Saba, S.; Botteselle, G.V.; Godoi, M.; Frizon, T.E.A.; Galetto, F.Z.; Rafique, J.; Braga, A.L. Copper-catalyzed synthesis of unsymmetrical diorganylchalcogenides (Te/Se/S) from boronic acids under solvent-free conditions. Molecules, 2017, 22(8), 1367.
[http://dx.doi.org/10.3390/molecules22081367] [PMID: 28820487]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy