Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

The Influence of Heating and Photosensitization on the Stability of Lutein- Loaded Lipid-Core Nanocapsules

Author(s): Aelson A.S. Brum, Médelin M. da Silva, Priscilla P. dos Santos, Allana V.S. Brasil, Karina Paese, Silvia S. Guterres, Simone H. Flôres and Alessandro de O. Rios*

Volume 16, Issue 9, 2020

Page: [1340 - 1345] Pages: 6

DOI: 10.2174/1573407216666200211094654

Price: $65

Abstract

Background: Despite lutein is unstable in light, heat, and oxygen, it is a good quencher of singlet oxygen. The present study evaluated the stability of lutein (92% of purity) in Lipid-core Nanocapsules (Lutein-LNC) prepared through interfacial deposition of preformed polymer, during photosensitization (5-25°C) and heating (70-90°C).

Methods: The Lutein-LNC was characterized and presented a polydispersity index of 0.11, an average diameter of 191 nm (dynamic light scattering), zeta potential of -9.14 mV and entrapment efficiency of 100%.

Results and Discussion: During photosensitization and heating, Lutein-LNC exhibited activation Energy (Ea) of 24.67 kcal/mol and 9.96 kcal/mol, respectively, and these values of Lutein-LNC were higher than free lutein values, reported in other studies for both experiments.

Conclusion: The results obtained in this study suggested that nanotechnology can improve the stability of lutein for future applications in the food industry.

Keywords: Heating, lutein, photodegradation, sensitizer, stability, zeaxanthin.

Graphical Abstract
[1]
Li, S.; Wang, C.; Fu, X.; Li, C.; He, X.; Zhang, B.; Huang, Q. Encapsulation of lutein into swelled cornstarch granules: Structure, stability and in vitro digestion. Food Chem., 2018, 268, 362-368.
[http://dx.doi.org/10.1016/j.foodchem.2018.06.078 ] [PMID: 30064770]
[2]
Trumbo, P.R.; Ellwood, K.C. Lutein and zeaxanthin intakes and risk of age-related macular degeneration and cataracts: An evaluation using the Food and Drug Administration’s evidence-based review system for health claims. Am. J. Clin. Nutr., 2006, 84(5), 971-974.
[http://dx.doi.org/10.1093/ajcn/84.5.971 ] [PMID: 17093145]
[3]
Zimmer, J.P.; Hammond, B.R., Jr Possible influences of lutein and zeaxanthin on the developing retina. Clin. Ophthalmol., 2007, 1(1), 25-35.
[PMID: 19668463]
[4]
Nwachukwu, I.D.; Udenigwe, C.C.; Aluko, R.E. Lutein and zeaxanthin: Production technology, bioavailability, mechanisms of action, visual function, and health claim status. Trends Food Sci. Technol., 2016, 49, 74-84.
[http://dx.doi.org/10.1016/j.tifs.2015.12.005]
[5]
Rodriguez-Amaya, D.B. Natural Food Pigments and Colorants.Bioactive Molecules in Food; Mérillon, J-M.; Ramawat, K.G., Eds.; Springer International Publishing: Cham, 2017, pp. 1-35.
[6]
Singhrang, N.; Tocharus, C.; Thummayot, S.; Sutheerawattananonda, M.; Tocharus, J. Protective effects of silk lutein extract from Bombyx mori cocoons on β-Amyloid peptide-induced apoptosis in PC12 cells. Biomed. Pharmacother., 2018, 103, 582-587.
[http://dx.doi.org/10.1016/j.biopha.2018.04.045 ] [PMID: 29677545]
[7]
Choe, E.; Min, D.B. Chemistry and reactions of reactive oxygen species in foods. J. Food Sci., 2005, 70(9), R142-R159.
[http://dx.doi.org/10.1111/j.1365-2621.2005.tb08329.x]
[8]
Snodderly, D.M. Evidence for protection against age-related macular degeneration by carotenoids and antioxidant vitamins. Am. J. Clin. Nutr., 1995, 62(6)(Suppl.), 1448S-1461S.
[http://dx.doi.org/10.1093/ajcn/62.6.1448S ] [PMID: 7495246]
[9]
Krinsky, N.I.; Landrum, J.T.; Bone, R.A. Biologic mechanisms of the protective role of lutein and zeaxanthin in the eye. Annu. Rev. Nutr., 2003, 23, 171-201.
[http://dx.doi.org/10.1146/annurev.nutr.23.011702.073307 ] [PMID: 12626691]
[10]
Shi, X. M.; Chen, F. Stability of lutein under various storage conditions. Food / Nahrung, 1997, 41(1), 38-41.
[11]
Giménez, P.J.; Fernández-López, J.A.; Angosto, J.M.; Obón, J.M. Comparative thermal degradation patterns of natural yellow colorants used in foods. Plant Foods Hum. Nutr., 2015, 70(4), 380-387.
[http://dx.doi.org/10.1007/s11130-015-0499-0 ] [PMID: 26141372]
[12]
Chuacharoen, T.; Sabliov, C.M. Stability and controlled release of lutein loaded in zein nanoparticles with and without lecithin and pluronic F127 surfactants. Colloids Surf. A Physicochem. Eng. Asp., 2016, 503, 11-18.
[http://dx.doi.org/10.1016/j.colsurfa.2016.04.038]
[13]
Jin, H.; Xia, F.; Jiang, C.; Zhao, Y.; He, L. Nanoencapsulation of lutein with hydroxypropylmethyl cellulose phthalate by supercritical antisolvent. Chin. J. Chem. Eng., 2009, 17(4), 672-677.
[http://dx.doi.org/10.1016/S1004-9541(08)60262-1]
[14]
Teo, A.; Lee, S.J.; Goh, K.K.T.; Wolber, F.M. Kinetic stability and cellular uptake of lutein in WPI-stabilised nanoemulsions and emulsions prepared by emulsification and solvent evaporation method. Food Chem., 2017, 221, 1269-1276.
[http://dx.doi.org/10.1016/j.foodchem.2016.11.030 ] [PMID: 27979088]
[15]
Nachtigall, A.M. Extraction, saponification and antioxidant activity of lutein obtained from Tagetes patula L. and Calendula officinalis L. flowers. PhD Thesis, Federal University of Viçosa: Minas Gerais, March. 2007.
[16]
Vechpanich, J.; Shotipruk, A. Recovery of free lutein from tagetes erecta: Determination of suitable saponification and crystallization conditions. Sep. Sci. Technol., 2011, 46(2), 265-271.
[http://dx.doi.org/10.1080/01496395.2010.506904]
[17]
Venturini, C.G.; Jäger, E.; Oliveira, C.P.; Bernardi, A.; Battastini, A.M.O.; Guterres, S.S.; Pohlmann, A.R. Formulation of lipid core nanocapsules. Colloids Surf. A Physicochem. Eng. Asp., 2011, 375(1-3), 200-208.
[http://dx.doi.org/10.1016/j.colsurfa.2010.12.011]
[18]
Coradini, K.; Lima, F.O.; Oliveira, C.M.; Chaves, P.S.; Athayde, M.L.; Carvalho, L.M.; Beck, R.C.R. Co-encapsulation of resveratrol and curcumin in lipid-core nanocapsules improves their in vitro antioxidant effects. Eur. J. Pharm. Biopharm., 2014, 88(1), 178-185.
[http://dx.doi.org/10.1016/j.ejpb.2014.04.009 ] [PMID: 24780440]
[19]
de Campo, C.; Dick, M.; Pereira dos Santos, P.; Haas Costa, T.M.; Paese, K.; Stanisçuaski Guterres, S.; de Oliveira Rios, A.; Hickmann Flôres, S. Zeaxanthin nanoencapsulation with Opuntia monacantha mucilage as structuring material: Characterization and stability evaluation under different temperatures. Colloids Surf. A Physicochem. Eng. Asp., 2018, 558, 410-421.
[http://dx.doi.org/10.1016/j.colsurfa.2018.09.009]
[20]
dos Santos, P.P.; Paese, K.; Guterres, S.S.; Pohlmann, A.R.; Costa, T.H.; Jablonski, A.; Flôres, S.H.; Rios, A.O. Development of lycopene-loaded lipid-core nanocapsules: Physicochemical characterization and stability study. J. Nanopart. Res., 2015, 17(2), 1-11.
[http://dx.doi.org/10.1007/s11051-015-2917-5]
[21]
da Silva, M.M.; Nora, L.; Cantillano, R.F.F.; Paese, K.; Guterres, S.S.; Pohlmann, A.R.; Costa, T.M.H.; Rios, A.O. The production, character-ization, and the stability of carotenoids loaded in lipid-core Nanocapsules. Food Bioprocess Technol., 2016, 1, 1-11.
[22]
Hong, D.Y.; Lee, J-S.; Lee, H.G. Chitosan/poly-γ-glutamic acid nanoparticles improve the solubility of lutein. Int. J. Biol. Macromol., 2016, 85, 9-15.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.12.044 ] [PMID: 26712702]
[23]
Contri, R.V.; Ribeiro, K.L.F.; Fiel, L.A.; Pohlmann, A.R.; Guterres, S.S. Vegetable oils as core of cationic polymeric nanocapsules: Influence on the physicochemical properties. J. Exp. Nanosci., 2013, 8(7-8), 913-924.
[http://dx.doi.org/10.1080/17458080.2011.620019]
[24]
dos Santos, P.P.; Paese, K.; Guterres, S.S.; Pohlmann, A.R.; Jablonski, A.; Flôres, S.H.; Rios, A.O. Stability study of lycopene-loaded lipid-core nanocapsules under temperature and photosensitization. Lebensm. Wiss. Technol., 2016, 71, 190-195.
[http://dx.doi.org/10.1016/j.lwt.2016.03.036]
[25]
Aparicio-Ruiz, R.; Mínguez-Mosquera, M.I.; Gandul-Rojas, B. Thermal degradation kinetics of lutein, β-carotene and β-cryptoxanthin in virgin olive oils. J. Food Compos. Anal., 2011, 24(6), 811-820.
[http://dx.doi.org/10.1016/j.jfca.2011.04.009]
[26]
Mitri, K.; Shegokar, R.; Gohla, S.; Anselmi, C.; Müller, R.H. Lipid nanocarriers for dermal delivery of lutein: Preparation, characterization, stability and performance. Int. J. Pharm., 2011, 414(1-2), 267-275.
[http://dx.doi.org/10.1016/j.ijpharm.2011.05.008 ] [PMID: 21596122]
[27]
Winkler, B.S.; Boulton, M.E.; Gottsch, J.D.; Sternberg, P. Oxidative damage and age-related macular degeneration. Mol. Vis., 1999, 5, 32.
[PMID: 10562656]
[28]
Lobato, K.B.S.; Paese, K.; Forgearini, J.C.; Guterres, S.S.; Jablonski, A.; Rios, A.O. Evaluation of stability of bixin in nanocapsules in model systems of photosensitization and heating. Lebensm. Wiss. Technol., 2015, 60(1), 8-14.
[http://dx.doi.org/10.1016/j.lwt.2014.09.044]
[29]
Li, D-J.; Song, J-F.; Liu, C-Q. Kinetic stability of lutein in freeze-dried sweet corn powder stored under different conditions. Food Sci. Technol. Res., 2014, 20(1), 65-70.
[http://dx.doi.org/10.3136/fstr.20.65]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy