Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Review Article

Stepwise Development of Biomimetic Chimeric Peptides for Gene Delivery

Author(s): Roya Cheraghi, Mahboobeh Nazari*, Mohsen Alipour and Saman Hosseinkhani*

Volume 27, Issue 8, 2020

Page: [698 - 710] Pages: 13

DOI: 10.2174/0929866527666200206153328

Price: $65

Abstract

Gene-based therapy largely relies on the vector type that allows a selective and efficient transfection into the target cells with maximum efficacy and minimal toxicity. Although, genes delivered utilizing modified viruses transfect efficiently and precisely, these vectors can cause severe immunological responses and are potentially carcinogenic. A promising method of overcoming this limitation is the use of non-viral vectors, including cationic lipids, polymers, dendrimers, and peptides, which offer potential routes for compacting DNA for targeted delivery. Although non-viral vectors exhibit reduced transfection efficiency compared to their viral counterpart, their superior biocompatibility, non-immunogenicity and potential for large-scale production make them increasingly attractive for modern therapy. There has been a great deal of interest in the development of biomimetic chimeric peptides. Biomimetic chimeric peptides contain different motifs for gene translocation into the nucleus of the desired cells. They have motifs for gene targeting into the desired cell, condense DNA into nanosize particles, translocate the gene into the nucleus and enhance the release of the particle into the cytoplasm. These carriers were developed in recent years. This review highlights the stepwise development of the biomimetic chimeric peptides currently being used in gene delivery.

Keywords: Gene-based therapy, gene delivery, transfection, non-viral vectors, biomimetic chimeric peptides, gene translocation.

Graphical Abstract
[1]
Nayerossadat, N.; Maedeh, T.; Ali, P.A. Viral and nonviral delivery systems for gene delivery. Adv. Biomed. Res., 2012, 1, 27.
[http://dx.doi.org/10.4103/2277-9175.98152] [PMID: 23210086]
[2]
Ramamoorth, M.; Narvekar, A. Non viral vectors in gene therapy- an overview. J. Clin. Diagn. Res., 2015, 9(1), GE01-GE06.
[http://dx.doi.org/10.7860/JCDR/2015/10443.5394] [PMID: 25738007]
[3]
(a)Leng, M.; Felsenfeld, G. The preferential interactions of polylysine and polyarginine with specific base sequences in DNA. Proc. Natl. Acad. Sci. USA, 1966, 56(4), 1325-1332.
[http://dx.doi.org/10.1073/pnas.56.4.1325] [PMID: 5339293]
(b)Tsuboi, M.; Matsuo, K.; Ts’o, P.O. Interaction of poly-L-lysine and nucleic acids. J. Mol. Biol., 1966, 15(1), 256-267.
[http://dx.doi.org/10.1016/S0022-2836(66)80225-5] [PMID: 5912043]
(c)Shiffman, M.L.; Maciewicz, R.A.; Hu, A.W.; Howard, J.C.; Li, H.J. Protein dissociation from DNA in model systems and chromatin. Nucleic Acids Res., 1978, 5(9), 3409-3426.
[http://dx.doi.org/10.1093/nar/5.9.3409] [PMID: 704361]
[4]
Wu, G.Y.; Wu, C.H. Receptor-mediated in vitro gene transformation by a soluble DNA carrier system. J. Biol. Chem., 1987, 262(10), 4429-4432.
[PMID: 3558345]
[5]
Frankel, A.D.; Pabo, C.O. Cellular uptake of the tat protein from human immunodeficiency virus. Cell, 1988, 55(6), 1189-1193.
[http://dx.doi.org/10.1016/0092-8674(88)90263-2] [PMID: 2849510]
[6]
Vivès, E.; Brodin, P.; Lebleu, B. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J. Biol. Chem., 1997, 272(25), 16010-16017.
[http://dx.doi.org/10.1074/jbc.272.25.16010] [PMID: 9188504]
[7]
Ruben, S.; Perkins, A.; Purcell, R.; Joung, K.; Sia, R.; Burghoff, R.; Haseltine, W.A.; Rosen, C.A. Structural and functional characterization of human immunodeficiency virus tat protein. J. Virol., 1989, 63(1), 1-8.
[PMID: 2535718]
[8]
Derossi, D.; Joliot, A.H.; Chassaing, G.; Prochiantz, A. The third helix of the Antennapedia homeodomain translocates through biological membranes. J. Biol. Chem., 1994, 269(14), 10444-10450.
[PMID: 8144628]
[9]
Heitz, F.; Morris, M.C.; Divita, G. Twenty years of cell-penetrating peptides: From molecular mechanisms to therapeutics. Br. J. Pharmacol., 2009, 157(2), 195-206.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00057.x] [PMID: 19309362]
[10]
Wagner, E.; Plank, C.; Zatloukal, K.; Cotten, M.; Birnstiel, M.L. Influenza virus hemagglutinin HA-2 N-terminal fusogenic peptides augment gene transfer by transferrin-polylysine-DNA complexes: Toward a synthetic virus-like gene-transfer vehicle. Proc. Natl. Acad. Sci. USA, 1992, 89(17), 7934-7938.
[http://dx.doi.org/10.1073/pnas.89.17.7934] [PMID: 1518816]
[11]
Stegmann, T. Membrane fusion mechanisms: The influenza hemagglutinin paradigm and its implications for intracellular fusion. Traffic, 2000, 1(8), 598-604.
[http://dx.doi.org/10.1034/j.1600-0854.2000.010803.x] [PMID: 11208147]
[12]
Haines, A.M.; Irvine, A.S.; Mountain, A.; Charlesworth, J.; Farrow, N.A.; Husain, R.D.; Hyde, H.; Ketteringham, H.; McDermott, R.H.; Mulcahy, A.F.; Mustoe, T.L.; Reid, S.C.; Rouquette, M.; Shaw, J.C.; Thatcher, D.R.; Welsh, J.H.; Williams, D.E.; Zauner, W.; Phillips, R.O. CL22 - a novel cationic peptide for efficient transfection of mammalian cells. Gene Ther., 2001, 8(2), 99-110.
[http://dx.doi.org/10.1038/sj.gt.3301314] [PMID: 11313779]
[13]
Hatefi, A.; Megeed, Z.; Ghandehari, H. Recombinant polymer-protein fusion: A promising approach towards efficient and targeted gene delivery. J. Gene Med., 2006, 8(4), 468-476.
[http://dx.doi.org/10.1002/jgm.872] [PMID: 16416505]
[14]
Canine, B.F.; Wang, Y.; Hatefi, A. Evaluation of the effect of vector architecture on DNA condensation and gene transfer efficiency. J. Control. Release, 2008, 129(2), 117-123.
[http://dx.doi.org/10.1016/j.jconrel.2008.04.012] [PMID: 18524409]
[15]
Wang, Y.; Mangipudi, S.S.; Canine, B.F.; Hatefi, A. A designer biomimetic vector with a chimeric architecture for targeted gene transfer. J. Control. Release, 2009, 137(1), 46-53.
[http://dx.doi.org/10.1016/j.jconrel.2009.03.005] [PMID: 19303038]
[16]
Balicki, D.; Beutler, E. Histone H2A significantly enhances in vitro DNA transfection. Mol. Med., 1997, 3(11), 782-787.
[http://dx.doi.org/10.1007/BF03401715] [PMID: 9407553]
[17]
Luger, K.; Mäder, A.W.; Richmond, R.K.; Sargent, D.F.; Richmond, T.J. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature, 1997, 389(6648), 251-260.
[http://dx.doi.org/10.1038/38444] [PMID: 9305837]
[18]
Balicki, D.; Putnam, C.D.; Scaria, P.V.; Beutler, E. Structure and function correlation in histone H2A peptide-mediated gene transfer. Proc. Natl. Acad. Sci. USA, 2002, 99(11), 7467-7471.
[http://dx.doi.org/10.1073/pnas.102168299] [PMID: 12032306]
[19]
McKenzie, D.L.; Collard, W.T.; Rice, K.G. Comparative gene transfer efficiency of low molecular weight polylysine DNA-condensing peptides. J. Pept. Res., 1999, 54(4), 311-318.
[http://dx.doi.org/10.1034/j.1399-3011.1999.00104.x] [PMID: 10532236]
[20]
McKenzie, D.L.; Smiley, E.; Kwok, K.Y.; Rice, K.G. Low molecular weight disulfide cross-linking peptides as nonviral gene delivery carriers. Bioconjug. Chem., 2000, 11(6), 901-909.
[http://dx.doi.org/10.1021/bc000056i] [PMID: 11087340]
[21]
(a)Parente, R.A.; Nir, S.; Szoka, F.C. Jr. pH-dependent fusion of phosphatidylcholine small vesicles. Induction by a synthetic amphipathic peptide. J. Biol. Chem., 1988, 263(10), 4724-4730.
[PMID: 2450874]
(b)Subbarao, N.K.; Parente, R.A.; Szoka, F.C. Jr. Nadasdi, L.; Pongracz, K. pH-dependent bilayer destabilization by an amphipathic peptide. Biochemistry, 1987, 26(11), 2964-2972.
[http://dx.doi.org/10.1021/bi00385a002] [PMID: 2886149]
(c)Haensler, J.; Szoka, F.C. Jr. Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjug. Chem., 1993, 4(5), 372-379.
[http://dx.doi.org/10.1021/bc00023a012] [PMID: 8274523]
[22]
Li, W.; Nicol, F.; Szoka, F.C. Jr. GALA: A designed synthetic pH-responsive amphipathic peptide with applications in drug and gene delivery. Adv. Drug Deliv. Rev., 2004, 56(7), 967-985.
[http://dx.doi.org/10.1016/j.addr.2003.10.041] [PMID: 15066755]
[23]
Wang, Y.; Canine, B.F.; Hatefi, A. HSV-TK/GCV cancer suicide gene therapy by a designed recombinant multifunctional vector. Nanomedicine (Lond.), 2011, 7(2), 193-200.
[http://dx.doi.org/10.1016/j.nano.2010.08.003] [PMID: 20817124]
[24]
Mangipudi, S.S.; Canine, B.F.; Wang, Y.; Hatefi, A. Development of a genetically engineered biomimetic vector for targeted gene transfer to breast cancer cells. Mol. Pharm., 2009, 6(4), 1100-1109.
[http://dx.doi.org/10.1021/mp800251x] [PMID: 19419197]
[25]
Keller, M.; Tagawa, T.; Preuss, M.; Miller, A.D. Biophysical characterization of the DNA binding and condensing properties of adenoviral core peptide mu. Biochemistry, 2002, 41(2), 652-659.
[http://dx.doi.org/10.1021/bi0156299] [PMID: 11781106]
[26]
Dane, K.Y.; Chan, L.A.; Rice, J.J.; Daugherty, P.S. Isolation of cell specific peptide ligands using fluorescent bacterial display libraries. J. Immunol. Methods, 2006, 309(1-2), 120-129.
[http://dx.doi.org/10.1016/j.jim.2005.11.021] [PMID: 16448666]
[27]
Midoux, P.; Kichler, A.; Boutin, V.; Maurizot, J-C.; Monsigny, M. Membrane permeabilization and efficient gene transfer by a peptide containing several histidines. Bioconjug. Chem., 1998, 9(2), 260-267.
[http://dx.doi.org/10.1021/bc9701611] [PMID: 9548543]
[28]
Cochrane, A.W.; Perkins, A.; Rosen, C.A. Identification of sequences important in the nucleolar localization of human immunodeficiency virus Rev: Relevance of nucleolar localization to function. J. Virol., 1990, 64(2), 881-885.
[PMID: 2404140]
[29]
Canine, B.F.; Wang, Y.; Hatefi, A. Biosynthesis and characterization of a novel genetically engineered polymer for targeted gene transfer to cancer cells. J. Control. Release, 2009, 138(3), 188-196.
[http://dx.doi.org/10.1016/j.jconrel.2009.04.017] [PMID: 19379785]
[30]
Lee, A.Y.; Gulnik, S.V.; Erickson, J.W. Conformational switching in an aspartic proteinase. Nat. Struct. Biol., 1998, 5(10), 866-871.
[http://dx.doi.org/10.1038/2306] [PMID: 9783744]
[31]
Orlova, A.; Magnusson, M.; Eriksson, T.L.; Nilsson, M.; Larsson, B.; Höidén-Guthenberg, I.; Widström, C.; Carlsson, J.; Tolmachev, V.; Ståhl, S.; Nilsson, F.Y. Tumor imaging using a picomolar affinity HER2 binding affibody molecule. Cancer Res., 2006, 66(8), 4339-4348.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-3521] [PMID: 16618759]
[32]
Siomi, H.; Dreyfuss, G. A nuclear localization domain in the hnRNP A1 protein. J. Cell Biol., 1995, 129(3), 551-560.
[http://dx.doi.org/10.1083/jcb.129.3.551] [PMID: 7730395]
[33]
Canine, B.F.; Wang, Y.; Ouyang, W.; Hatefi, A. Development of targeted recombinant polymers that can deliver siRNA to the cytoplasm and plasmid DNA to the cell nucleus. J. Control. Release, 2011, 151(1), 95-101.
[http://dx.doi.org/10.1016/j.jconrel.2010.12.011] [PMID: 21192992]
[34]
Sadeghian, F.; Hosseinkhani, S.; Alizadeh, A.; Hatefi, A. Design, engineering and preparation of a multi-domain fusion vector for gene delivery. Int. J. Pharm., 2012, 427(2), 393-399.
[http://dx.doi.org/10.1016/j.ijpharm.2012.01.062] [PMID: 22342333]
[35]
Khadake, J.R.; Rao, M.R.S. Condensation of DNA and chromatin by an SPKK-containing octapeptide repeat motif present in the C-terminus of histone H1. Biochemistry, 1997, 36(5), 1041-1051.
[http://dx.doi.org/10.1021/bi961617p] [PMID: 9033394]
[36]
Lanford, R.E.; Butel, J.S. Construction and characterization of an SV40 mutant defective in nuclear transport of T antigen. Cell, 1984, 37(3), 801-813.
[http://dx.doi.org/10.1016/0092-8674(84)90415-X] [PMID: 6086146]
[37]
Churchill, M.E.; Travers, A.A. Protein motifs that recognize structural features of DNA. Trends Biochem. Sci., 1991, 16(3), 92-97.
[http://dx.doi.org/10.1016/0968-0004(91)90040-3] [PMID: 1647556]
[38]
Smith, A.E.; Kalderon, D.; Roberts, B.L.; Colledge, W.H.; Edge, M.; Gillett, P.; Markham, A.; Paucha, E.; Richardson, W.D. The nuclear location signal. Proc. R. Soc. Lond. B Biol. Sci., 1985, 226(1242), 43-58.
[http://dx.doi.org/10.1098/rspb.1985.0078] [PMID: 2866523]
[39]
Plank, C.; Oberhauser, B.; Mechtler, K.; Koch, C.; Wagner, E. The influence of endosome-disruptive peptides on gene transfer using synthetic virus-like gene transfer systems. J. Biol. Chem., 1994, 269(17), 12918-12924.
[PMID: 8175709]
[40]
Wyman, T.B.; Nicol, F.; Zelphati, O.; Scaria, P.V.; Plank, C.; Szoka, F.C. Jr. Design, synthesis, and characterization of a cationic peptide that binds to nucleic acids and permeabilizes bilayers. Biochemistry, 1997, 36(10), 3008-3017.
[http://dx.doi.org/10.1021/bi9618474] [PMID: 9062132]
[41]
McCarthy, H.O.; McCaffrey, J.; McCrudden, C.M.; Zholobenko, A.; Ali, A.A.; McBride, J.W.; Massey, A.S.; Pentlavalli, S.; Chen, K-H.; Cole, G.; Loughran, S.P.; Dunne, N.J.; Donnelly, R.F.; Kett, V.L.; Robson, T. Development and characterization of self-assembling nanoparticles using a bio-inspired amphipathic peptide for gene delivery. J. Control. Release, 2014, 189, 141-149.
[http://dx.doi.org/10.1016/j.jconrel.2014.06.048] [PMID: 24995949]
[42]
Nouri, F.S.; Wang, X.; Dorrani, M.; Karjoo, Z.; Hatefi, A. A recombinant biopolymeric platform for reliable evaluation of the activity of pH-responsive amphiphile fusogenic peptides. Biomacromolecules, 2013, 14(6), 2033-2040.
[http://dx.doi.org/10.1021/bm400380s] [PMID: 23682625]
[43]
Fischer, P.M.; Krausz, E.; Lane, D.P. Cellular delivery of impermeable effector molecules in the form of conjugates with peptides capable of mediating membrane translocation. Bioconjug. Chem., 2001, 12(6), 825-841.
[http://dx.doi.org/10.1021/bc0155115] [PMID: 11716670]
[44]
(a)Freed, E.O.; Myers, D.J.; Risser, R. Characterization of the fusion domain of the human immunodeficiency virus type 1 envelope glycoprotein gp41. Proc. Natl. Acad. Sci. USA, 1990, 87(12), 4650-4654.
[http://dx.doi.org/10.1073/pnas.87.12.4650] [PMID: 2191297]
(b)Mobley, P.W.; Curtain, C.C.; Kirkpatrick, A.; Rostamkhani, M.; Waring, A.J.; Gordon, L.M. The amino-terminal peptide of HIV-1 glycoprotein 41 lyses human erythrocytes and CD4+ lymphocytes. Biochim. Biophys. Acta, 1992, 1139(4), 251-256.
[http://dx.doi.org/10.1016/0925-4439(92)90098-8] [PMID: 1355363]
(c)Delahunty, M.D.; Rhee, I.; Freed, E.O.; Bonifacino, J.S. Mutational analysis of the fusion peptide of the human immunodeficiency virus type 1: Identification of critical glycine residues. Virology, 1996, 218(1), 94-102.
[http://dx.doi.org/10.1006/viro.1996.0169] [PMID: 8615045]
[45]
Morris, M.C.; Vidal, P.; Chaloin, L.; Heitz, F.; Divita, G. A new peptide vector for efficient delivery of oligonucleotides into mammalian cells. Nucleic Acids Res., 1997, 25(14), 2730-2736.
[http://dx.doi.org/10.1093/nar/25.14.2730] [PMID: 9207018]
[46]
Deshayes, S.; Gerbal-Chaloin, S.; Morris, M.C.; Aldrian-Herrada, G.; Charnet, P.; Divita, G.; Heitz, F. On the mechanism of non-endosomial peptide-mediated cellular delivery of nucleic acids. Biochim. Biophys. Acta, 2004, 1667(2), 141-147.
[http://dx.doi.org/10.1016/j.bbamem.2004.09.010] [PMID: 15581849]
[47]
Deshayes, S.; Morris, M.C.; Divita, G.; Heitz, F. Interactions of amphipathic CPPs with model membranes. Biochim. Biophys. Acta (BBA)-. Biomembranes, 2006, 1758(3), 328-335.
[http://dx.doi.org/10.1016/j.bbamem.2005.10.004]
[48]
(a)Murray, K.D.; Etheridge, C.J.; Shah, S.I.; Matthews, D.A.; Russell, W.; Gurling, H.M.; Miller, A.D. Enhanced cationic liposome-mediated transfection using the DNA-binding peptide mu (mu) from the adenovirus core. Gene Ther., 2001, 8(6), 453-460.
[http://dx.doi.org/10.1038/sj.gt.3301401] [PMID: 11313824]
(b)Fominaya, J.; Gasset, M.; García, R.; Roncal, F.; Albar, J.P.; Bernad, A. An optimized amphiphilic cationic peptide as an efficient non-viral gene delivery vector. J. Gene Med., 2000, 2(6), 455-464.
[http://dx.doi.org/10.1002/1521-2254(200011/12)2:6<455:AID-JGM145>3.0.CO;2-O] [PMID: 11199266]
(c)Emi, N.; Kidoaki, S.; Yoshikawa, K.; Saito, H. Gene transfer mediated by polyarginine requires a formation of big carrier-complex of DNA aggregate. Biochem. Biophys. Res. Commun., 1997, 231(2), 421-424.
[http://dx.doi.org/10.1006/bbrc.1997.6125] [PMID: 9070292]
[49]
Parhiz, H.; Hashemi, M.; Hatefi, A.; Shier, W.T.; Amel Farzad, S.; Ramezani, M. Arginine-rich hydrophobic polyethylenimine: Potent agent with simple components for nucleic acid delivery. Int. J. Biol. Macromol., 2013, 60, 18-27.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.05.001] [PMID: 23680600]
[50]
Malim, M.H.; Böhnlein, S.; Hauber, J.; Cullen, B.R. Functional dissection of the HIV-1 Rev trans-activator--derivation of a trans-dominant repressor of Rev function. Cell, 1989, 58(1), 205-214.
[http://dx.doi.org/10.1016/0092-8674(89)90416-9] [PMID: 2752419]
[51]
Futaki, S.; Suzuki, T.; Ohashi, W.; Yagami, T.; Tanaka, S.; Ueda, K.; Sugiura, Y. Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J. Biol. Chem., 2001, 276(8), 5836-5840.
[http://dx.doi.org/10.1074/jbc.M007540200] [PMID: 11084031]
[52]
Erazo-Oliveras, A.; Muthukrishnan, N.; Baker, R.; Wang, T-Y.; Pellois, J-P. Improving the endosomal escape of cell-penetrating peptides and their cargos: Strategies and challenges. Pharmaceuticals (Basel), 2012, 5(11), 1177-1209.
[http://dx.doi.org/10.3390/ph5111177] [PMID: 24223492]
[53]
Majidi, A.; Nikkhah, M.; Sadeghian, F.; Hosseinkhani, S. Development of novel recombinant biomimetic chimeric MPG-based peptide as nanocarriers for gene delivery: Imitation of a real cargo. Eur. J. Pharm. Biopharm., 2016, 107, 191-204.
[http://dx.doi.org/10.1016/j.ejpb.2016.06.017] [PMID: 27368745]
[54]
Cheraghi, R.; Nazari, M.; Alipour, M.; Majidi, A.; Hosseinkhani, S. Development of a Targeted anti-HER2 scFv Chimeric Peptide for Gene Delivery into HER2-Positive Breast Cancer Cells. Int. J. Pharm., 2016, 515(1-2), 632-643.
[http://dx.doi.org/10.1016/j.ijpharm.2016.11.008] [PMID: 27825868]
[55]
Alipour, M.; Hosseinkhani, S.; Sheikhnejad, R.; Cheraghi, R. Nano-biomimetic carriers are implicated in mechanistic evaluation of intracellular gene delivery. Sci. Rep., 2017, 7, 41507.
[http://dx.doi.org/10.1038/srep41507] [PMID: 28128339]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy