Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Lipoproteins-Nanocarriers as a Promising Approach for Targeting Liver Cancer: Present Status and Application Prospects

Author(s): Saleh A. Alanazi*, Fars Alanazi, Nazrul Haq, Faiyaz Shakeel, Mohamed M. Badran and Gamaleldin I. Harisa

Volume 17, Issue 10, 2020

Page: [826 - 844] Pages: 19

DOI: 10.2174/1567201817666200206104338

Price: $65

Abstract

The prevalence of liver cancer is increasing over the years and it is the fifth leading cause of mortality worldwide. The intrusive features and burden of low survival rate make it a global health issue in both developing and developed countries. The recommended chemotherapy drugs for patients in the intermediate and advanced stages of various liver cancers yield a low response rate due to the nonspecific nature of drug delivery, thus warranting the search for new therapeutic strategies and potential drug delivery carriers. There are several new drug delivery methods available to ferry the targeted molecules to the specific biological environment. In recent years, the nano assembly of lipoprotein moieties (lipidic nanoparticles) has emerged as a promising and efficiently tailored drug delivery system in liver cancer treatment. This increased precision of nano lipoproteins conjugates in chemotherapeutic targeting offers new avenues for the treatment of liver cancer with high specificity and efficiency. This present review is focused on concisely outlining the knowledge of liver cancer diagnosis, existing treatment strategies, lipoproteins, their preparation, mechanism and their potential application in the treatment of liver cancer.

Keywords: Liver cancer, lipoproteins, LDL, HDL, receptor lipidic nanoparticle, ligand-target, drug delivery systems, anticancer drugs, therapeutic application.

Graphical Abstract
[1]
Allen, T.M.; Cullis, P.R. Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Deliv. Rev., 2013, 65(1), 36-48.
[http://dx.doi.org/10.1016/j.addr.2012.09.037 ] [PMID: 23036225]
[2]
Allison, B.A.; Waterfield, E.; Richter, A.M.; Levy, J.G. The effects of plasma lipoproteins on in vitro tumor cell killing and in vivo tumor photosensitization with benzoporphyrin derivative. Photochem. Photobiol., 1991, 54(5), 709-715.
[http://dx.doi.org/10.1111/j.1751-1097.1991.tb02079.x ] [PMID: 1798748]
[3]
Alves, R.C.; Alves, D.; Guz, B.; Matos, C.; Viana, M.; Harriz, M.; Terrabuio, D.; Kondo, M.; Gampel, O.; Polletti, P. Advanced hepatocellular carcinoma. Review of targeted molecular drugs. Ann. Hepatol., 2011, 10(1), 21-27.
[http://dx.doi.org/10.1016/S1665-2681(19)31582-0 ] [PMID: 21301005]
[4]
Andersen, N.; Froman, R.; Kitchell, B.; Duesbery, N. Clinical and molecular biology of angiosarcoma; Soft Tissue Tumors, 2011, pp. 149-174.
[http://dx.doi.org/10.5772/25309]
[5]
Baillie, G.; Owens, M.D.; Halbert, G.W. A synthetic low density lipoprotein particle capable of supporting U937 proliferation in vitro. J. Lipid Res., 2002, 43(1), 69-73.
[PMID: 11792724]
[6]
Banales, J.M.; Cardinale, V.; Carpino, G.; Marzioni, M.; Andersen, J.B.; Invernizzi, P.; Lind, G.E.; Folseraas, T.; Forbes, S.J.; Fouassier, L.; Geier, A.; Calvisi, D.F.; Mertens, J.C.; Trauner, M.; Benedetti, A.; Maroni, L.; Vaquero, J.; Macias, R.I.; Raggi, C.; Perugorria, M.J.; Gaudio, E.; Boberg, K.M.; Marin, J.J.; Alvaro, D. Expert consensus document: Cholangiocarcinoma: current knowledge and future perspectives consensus statement from the European Network for the Study of Cholangiocarcinoma (ENS-CCA). Nat. Rev. Gastroenterol. Hepatol., 2016, 13(5), 261-280.
[http://dx.doi.org/10.1038/nrgastro.2016.51 ] [PMID: 27095655]
[7]
Bhawna, S.; Kumar, S.U. Hepatoprotective activity of some indigenous plants. Int. J. Pharm. Tech. Res., 2009, 4, 1330-1334.
[8]
Bildstein, L.; Dubernet, C.; Couvreur, P. Prodrug-based intracellular delivery of anticancer agents. Adv. Drug Deliv. Rev., 2011, 63(1-2), 3-23.
[http://dx.doi.org/10.1016/j.addr.2010.12.005 ] [PMID: 21237228]
[9]
Blechacz, B.; Gores, G.J. Cholangiocarcinoma: advances in pathogenesis, diagnosis, and treatment. Hepatology, 2008, 48(1), 308-321.
[http://dx.doi.org/10.1002/hep.22310 ] [PMID: 18536057]
[10]
Bricarello, D.A.; Smilowitz, J.T.; Zivkovic, A.M.; German, J.B.; Parikh, A.N. Reconstituted lipoprotein: a versatile class of biologically-inspired nanostructures. ACS Nano, 2011, 5(1), 42-57.
[http://dx.doi.org/10.1021/nn103098m ] [PMID: 21182259]
[11]
Brito, A.F.; Abrantes, A.M.; Encarnação, J.C.; Tralhão, J.G.; Botelho, M.F. Cholangiocarcinoma: from molecular biology to treatment. Med. Oncol., 2015, 32(11), 245.
[http://dx.doi.org/10.1007/s12032-015-0692-x ] [PMID: 26427701]
[12]
Brito, A.F.; Abrantes, A.M.; Pinto-Costa, C.; Gomes, A.R.; Mamede, A.C.; Casalta-Lopes, J.; Gonçalves, A.C.; Sarmento-Ribeiro, A.B.; Tralhão, J.G.; Botelho, M.F. Hepatocellular carcinoma and chemotherapy: the role of p53. Chemotherapy, 2012, 58(5), 381-386.
[http://dx.doi.org/10.1159/000343656 ] [PMID: 23257706]
[13]
Brown, M.S.; Goldstein, J.L. Receptor-mediated endocytosis: insights from the lipoprotein receptor system. Proc. Natl. Acad. Sci. USA, 1979, 76(7), 3330-3337.
[http://dx.doi.org/10.1073/pnas.76.7.3330 ] [PMID: 226968]
[14]
Cannon, J.G. Bioconjugate techniques3rd edition. Ed. Greg T. In: . Hermanson ; Academic Press: San Diego, CA USA , 1997, 40, p. (4), 631.
[15]
Cao, W.; Ng, K.K.; Corbin, I.; Zhang, Z.; Ding, L.; Chen, J.; Zheng, G. Synthesis and evaluation of a stable bacteriochlorophyll-analog and its incorporation into high-density lipoprotein nanoparticles for tumor imaging. Bioconjug. Chem., 2009, 20(11), 2023-2031.
[http://dx.doi.org/10.1021/bc900404y ] [PMID: 19839633]
[16]
Chan, E.E-H.; Chow, P.K-H. A review of prognostic scores after liver resection in hepatocellular carcinoma: the MSKCC, SLICER and SSCLIP scores. Jpn. J. Clin. Oncol., 2017, 47(4), 287-293.
[PMID: 27980082]
[17]
Chedid, M.F.; Scaffaro, L.A.; Chedid, A.D.; Maciel, A.C.; Cerski, C.T.; Reis, M.J.; Grezzana-Filho, T.J.; de Araujo, A.; Leipnitz, I.; Kruel, C.D.; Alvares-da-Silva, M.R.; Kruel, C.R. Transarterial embolization and percutaneous ethanol injection as an effective bridge therapy before liver transplantation for hepatitis C-related hepatocellular carcinoma. Gastroenterol. Res. Pract., 2016, 20169420274
[http://dx.doi.org/10.1155/2016/9420274 ] [PMID: 26819615]
[18]
Chen, J.; Corbin, I.R.; Li, H.; Cao, W.; Glickson, J.D.; Zheng, G. Ligand conjugated low-density lipoprotein nanoparticles for enhanced optical cancer imaging in vivo. J. Am. Chem. Soc., 2007, 129(18), 5798-5799.
[http://dx.doi.org/10.1021/ja069336k ] [PMID: 17428054]
[19]
Chien, C.Y.; Hwang, C.C.; Yeh, C.N.; Chen, H.Y.; Wu, J.T.; Cheung, C.S.; Lin, C.L.; Yen, C.L.; Wang, W.Y.; Chiang, K.C. Liver angiosarcoma, a rare liver malignancy, presented with intraabdominal bleeding due to rupture--a case report. World J. Surg. Oncol., 2012, 10, 23.
[http://dx.doi.org/10.1186/1477-7819-10-23 ] [PMID: 22280556]
[20]
Choudhury, R.P.; Fisher, E.A. Molecular imaging in atherosclerosis, thrombosis, and vascular inflammation. Arterioscler. Thromb. Vasc. Biol., 2009, 29(7), 983-991.
[http://dx.doi.org/10.1161/ATVBAHA.108.165498 ] [PMID: 19213945]
[21]
Chu, A.C.; Tsang, S.Y.; Lo, E.H.; Fung, K.P. Low density lipoprotein as a targeted carrier for doxorubicin in nude mice bearing human hepatoma HepG2 cells. Life Sci., 2001, 70(5), 591-601.
[http://dx.doi.org/10.1016/S0024-3205(01)01441-2 ] [PMID: 11811903]
[22]
Wu, F.; Wuensch, S.A.; Azadniv, M.; Ebrahimkhani, M.R.; Crispe, I.N. Galactosylated LDL nanoparticles: a novel targeting delivery system to deliver antigen to macrophages and enhance antigen specific T cell responses. Mol. Pharm., 2009, 6(5), 1506-1517.
[http://dx.doi.org/10.1021/mp900081y ] [PMID: 19637876]
[23]
Clavien, P.A.; Petrowsky, H.; DeOliveira, M.L.; Graf, R. Strategies for safer liver surgery and partial liver transplantation. N. Engl. J. Med., 2007, 356(15), 1545-1559.
[http://dx.doi.org/10.1056/NEJMra065156 ] [PMID: 17429086]
[24]
Corbin, I.R.; Li, H.; Chen, J.; Lund-Katz, S.; Zhou, R.; Glickson, J.D.; Zheng, G. Low-density lipoprotein nanoparticles as magnetic resonance imaging contrast agents. Neoplasia, 2006, 8(6), 488-498.
[http://dx.doi.org/10.1593/neo.05835 ] [PMID: 16820095]
[25]
Cormode, D.P.; Roessl, E.; Thran, A.; Skajaa, T.; Gordon, R.E.; Schlomka, J.P.; Fuster, V.; Fisher, E.A.; Mulder, W.J.; Proksa, R.; Fayad, Z.A. Atherosclerotic plaque composition: analysis with multicolor CT and targeted gold nanoparticles. Radiology, 2010, 256(3), 774-782.
[http://dx.doi.org/10.1148/radiol.10092473 ] [PMID: 20668118]
[26]
Crich, S.G.; Lanzardo, S.; Alberti, D.; Belfiore, S.; Ciampa, A.; Giovenzana, G.B.; Lovazzano, C.; Pagliarin, R.; Aime, S. Magnetic resonance imaging detection of tumor cells by targeting low-density lipoprotein receptors with Gd-loaded low-density lipoprotein particles. Neoplasia, 2007, 9(12), 1046-1056.
[http://dx.doi.org/10.1593/neo.07682 ] [PMID: 18084612]
[27]
Cruz, P.M.; Mo, H.; McConathy, W.J.; Sabnis, N.; Lacko, A.G. The role of cholesterol metabolism and cholesterol transport in carcinogenesis: a review of scientific findings, relevant to future cancer therapeutics. Front Pharmacol., , 2013, 25, 4 , 119 .
[28]
Daher, S.; Massarwa, M.; Benson, A.A.; Khoury, T. Current and future treatment of hepatocellular carcinoma: an updated comprehensive review. J. Clin. Transl. Hepatol., 2018, 6(1), 69-78.
[http://dx.doi.org/10.14218/JCTH.2017.00031 ] [PMID: 29607307]
[29]
Damiano, M.G.; Mutharasan, R.K.; Tripathy, S.; McMahon, K.M.; Thaxton, C.S. Templated high density lipoprotein nanoparticles as potential therapies and for molecular delivery. Adv. Drug Deliv. Rev., 2013, 65(5), 649-662.
[http://dx.doi.org/10.1016/j.addr.2012.07.013 ] [PMID: 22921597]
[30]
Danquah, M.K.; Zhang, X.A.; Mahato, R.I. Extravasation of polymeric nanomedicines across tumor vasculature. Adv. Drug Deliv. Rev., 2011, 63(8), 623-639.
[http://dx.doi.org/10.1016/j.addr.2010.11.005 ] [PMID: 21144874]
[31]
de Groen, P.C.; Gores, G.J.; LaRusso, N.F.; Gunderson, L.L.; Nagorney, D.M. Biliary tract cancers. N. Engl. J. Med., 1999, 341(18), 1368-1378.
[http://dx.doi.org/10.1056/NEJM199910283411807 ] [PMID: 10536130]
[32]
de Smidt, P.C.; Versluis, A.J.; van Berkel, T.J. Properties of incorporation, redistribution, and integrity of porphyrin-low-density lipoprotein complexes. Biochemistry, 1993, 32(11), 2916-2922.
[http://dx.doi.org/10.1021/bi00062a023 ] [PMID: 8384481]
[33]
Ding, Y.; Wang, W.; Feng, M.; Wang, Y.; Zhou, J.; Ding, X.; Zhou, X.; Liu, C.; Wang, R.; Zhang, Q. A biomimetic nanovector-mediated targeted cholesterol-conjugated siRNA delivery for tumor gene therapy. Biomaterials, 2012, 33(34), 8893-8905.
[http://dx.doi.org/10.1016/j.biomaterials.2012.08.057 ] [PMID: 22979990]
[34]
Ding, Y.; Wang, Y.; Opoku-Damoah, Y.; Wang, C.; Shen, L.; Yin, L.; Zhou, J. Dual-functional bio-derived nanoparticulates for apoptotic antitumor therapy. Biomaterials, 2015, 72, 90-103.
[http://dx.doi.org/10.1016/j.biomaterials.2015.08.051 ] [PMID: 26344366]
[35]
Eisenberg, S.; Windmueller, H.G.; Levy, R.I. Metabolic fate of rat and human lipoprotein apoproteins in the rat. J. Lipid Res., 1973, 14(4), 446-458.
[PMID: 4351783]
[36]
El-Serag, H.B.; Rudolph, K.L. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology, 2007, 132(7), 2557-2576.
[http://dx.doi.org/10.1053/j.gastro.2007.04.061 ] [PMID: 17570226]
[37]
Falcon-Lizaraso, S.; Leon, C.J.; Perazzo, F.; Goldwasser, F.; Cohn, A.; Kahatt, C.; Weems, G.; Eckhardt, S. Phase II trial of every 2 weeks dosing of Irofulven [IROF] in patients [pts] with unresectable Hepatocellular Carcinoma [HCC]: preliminary results. J. Clin. Oncol., 2004, 22, 4083-4083.
[http://dx.doi.org/10.1200/jco.2004.22.90140.4083]
[38]
Faraj, W.; Dar, F.; Marangoni, G.; Bartlett, A.; Melendez, H.V.; Hadzic, D.; Dhawan, A.; Mieli-Vergani, G.; Rela, M.; Heaton, N. Liver transplantation for hepatoblastoma. Liver Transpl., 2008, 14(11), 1614-1619.
[http://dx.doi.org/10.1002/lt.21586 ] [PMID: 18975296]
[39]
Feng, M.; Cai, Q.; Shi, X.; Huang, H.; Zhou, P.; Guo, X. Recombinant high-density lipoprotein complex as a targeting system of nosiheptide to liver cells. J. Drug Target., 2008, 16(6), 502-508.
[http://dx.doi.org/10.1080/10611860802200938 ] [PMID: 18604663]
[40]
Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer, 2015, 136(5), E359-E386.
[http://dx.doi.org/10.1002/ijc.29210 ] [PMID: 25220842]
[41]
Fiorenza, A.M.; Branchi, A.; Sommariva, D. Serum lipoprotein profile in patients with cancer. A comparison with non-cancer subjects. Int. J. Clin. Lab. Res., 2000, 30(3), 141-145.
[http://dx.doi.org/10.1007/s005990070013 ] [PMID: 11196072]
[42]
Fuchs, C.S.; Clark, J.W.; Ryan, D.P.; Kulke, M.H.; Kim, H.; Earle, C.C.; Vincitore, M.; Mayer, R.J.; Stuart, K.E. A phase II trial of gemcitabine in patients with advanced hepatocellular carcinoma. Cancer, 2002, 94(12), 3186-3191.
[http://dx.doi.org/10.1002/cncr.10607 ] [PMID: 12115351]
[43]
Ghafoori, A.P.; Nelson, J.W.; Willett, C.G.; Chino, J.; Tyler, D.S.; Hurwitz, H.I.; Uronis, H.E.; Morse, M.A.; Clough, R.W.; Czito, B.G. Radiotherapy in the treatment of patients with unresectable extrahepatic cholangiocarcinoma. Int. J. Radiat. Oncol. Biol. Phys., 2011, 81(3), 654-659.
[http://dx.doi.org/10.1016/j.ijrobp.2010.06.018 ] [PMID: 20864265]
[44]
Ghosh, M.; Singh, A.T.; Xu, W.; Sulchek, T.; Gordon, L.I.; Ryan, R.O. Curcumin nanodisks: formulation and characterization. Nanomedicine (Lond.), 2011, 7(2), 162-167.
[http://dx.doi.org/10.1016/j.nano.2010.08.002 ] [PMID: 20817125]
[45]
Ginsburg, G.S.; Small, D.M.; Atkinson, D. Microemulsions of phospholipids and cholesterol esters. Protein-free models of low density lipoprotein. J. Biol. Chem., 1982, 257(14), 8216-8227.
[PMID: 7085667]
[46]
Gish, R.G.; Porta, C.; Lazar, L.; Ruff, P.; Feld, R.; Croitoru, A.; Feun, L.; Jeziorski, K.; Leighton, J.; Gallo, J.; Kennealey, G.T. Phase III randomized controlled trial comparing the survival of patients with unresectable hepatocellular carcinoma treated with nolatrexed or doxorubicin. J. Clin. Oncol., 2007, 25(21), 3069-3075.
[http://dx.doi.org/10.1200/JCO.2006.08.4046 ] [PMID: 17634485]
[47]
Glickson, J.D.; Lund-Katz, S.; Zhou, R.; Choi, H.; Chen, I.W.; Li, H.; Corbin, I.; Popov, A.V.; Cao, W.; Song, L.; Qi, C.; Marotta, D.; Nelson, D.S.; Chen, J.; Chance, B.; Zheng, G. Lipoprotein nanoplatform for targeted delivery of diagnostic and therapeutic agents. Adv. Exp. Med. Biol., 2009, 645, 227-239.
[http://dx.doi.org/10.1007/978-0-387-85998-9_35 ] [PMID: 19227476]
[48]
Akinyemiju, T.; Abera, S.; Ahmed, M.; Alam, N. The burden of primary liver cancer and underlying etiologies from 1990 to 2015 at the global, regional, and national level: results from the global burden of disease study 2015. JAMA Oncol., 2017, 3, 1683-1691.
[49]
Gomes, A.R.; Abrantes, A.M.; Brito, A.F.; Laranjo, M.; Casalta-Lopes, J.E.; Gonçalves, A.C.; Sarmento-Ribeiro, A.B.; Botelho, M.F.; Tralhão, J.G. Influence of P53 on the radiotherapy response of hepatocellular carcinoma. Clin. Mol. Hepatol., 2015, 21(3), 257-267.
[http://dx.doi.org/10.3350/cmh.2015.21.3.257 ] [PMID: 26527121]
[50]
Halm, U.; Etzrodt, G.; Schiefke, I.; Schmidt, F.; Witzigmann, H.; Mössner, J.; Berr, F. A phase II study of pegylated liposomal doxorubicin for treatment of advanced hepatocellular carcinoma. Ann. Oncol., 2000, 11(1), 113-114.
[http://dx.doi.org/10.1023/A:1008386822906 ] [PMID: 10690399]
[51]
Hammel, M.; Laggner, P.; Prassl, R. Structural characterisation of nucleoside loaded low density lipoprotein as a main criterion for the applicability as drug delivery system. Chem. Phys. Lipids, 2003, 123(2), 193-207.
[http://dx.doi.org/10.1016/S0009-3084(03)00002-1 ] [PMID: 12691852]
[52]
Hasegawa, S.; Ikai, I.; Fujii, H.; Hatano, E.; Shimahara, Y. Surgical resection of hilar cholangiocarcinoma: analysis of survival and postoperative complications. World J. Surg., 2007, 31(6), 1256-1263.
[http://dx.doi.org/10.1007/s00268-007-9001-y ] [PMID: 17453285]
[53]
Hayavi, S.; Baillie, G.; Owens, M.D.; Halbert, G.W. Receptor dependent cellular uptake of synthetic low density lipoprotein by mammalian cells in serum-free tissue culture. J. Pharm. Pharmacol., 2006, 58(10), 1337-1342.
[http://dx.doi.org/10.1211/jpp.58.10.0006 ] [PMID: 17034656]
[54]
Heiligtag, F.J.; Niederberger, M. The fascinating world of nanoparticle research. Mater. Today, 2013, 16, 262-271.
[http://dx.doi.org/10.1016/j.mattod.2013.07.004]
[55]
Hevonoja, T.; Pentikäinen, M.O.; Hyvönen, M.T.; Kovanen, P.T.; Ala-Korpela, M. Structure of Low Density Lipoprotein (LDL) particles: basis for understanding molecular changes in modified LDL. Biochim. Biophys. Acta, 2000, 1488(3), 189-210.
[http://dx.doi.org/10.1016/S1388-1981(00)00123-2 ] [PMID: 11082530]
[56]
Hezel, A.F.; Zhu, A.X. Systemic therapy for biliary tract cancers. Oncologist, 2008, 13(4), 415-423.
[http://dx.doi.org/10.1634/theoncologist.2007-0252 ] [PMID: 18448556]
[57]
Higginbotham, K.B.; Lozano, R.; Brown, T.; Patt, Y.Z.; Arima, T.; Abbruzzese, J.L.; Thomas, M.B. A phase I/II trial of TAC-101, an oral synthetic retinoid, in patients with advanced hepatocellular carcinoma. J. Cancer Res. Clin. Oncol., 2008, 134(12), 1325-1335.
[http://dx.doi.org/10.1007/s00432-008-0406-2 ] [PMID: 18504614]
[58]
Hirata, R.D.; Hirata, M.H.; Mesquita, C.H.; Cesar, T.B.; Maranhão, R.C. Effects of apolipoprotein B-100 on the metabolism of a lipid microemulsion model in rats. Biochim. Biophys. Acta, 1999, 1437(1), 53-62.
[http://dx.doi.org/10.1016/S1388-1981(98)00004-3 ] [PMID: 9931432]
[59]
Hiyama, E. Pediatric hepatoblastoma: diagnosis and treatment. Transl. Pediatr., 2014, 3(4), 293-299.
[PMID: 26835349]
[60]
Høgdall, D.; O’Rourke, C.J.; Taranta, A.; Oliveira, D.V.; Andersen, J.B. Molecular pathogenesis and current therapy in intrahepatic cholangiocarcinoma. Dig. Dis., 2016, 34(4), 440-451.
[http://dx.doi.org/10.1159/000444562 ] [PMID: 27170400]
[61]
Huang, C.; Jin, H.; Qian, Y.; Qi, S.; Luo, H.; Luo, Q.; Zhang, Z. Hybrid melittin cytolytic peptide-driven ultrasmall lipid nanoparticles block melanoma growth in vivo. ACS Nano, 2013, 7(7), 5791-5800.
[http://dx.doi.org/10.1021/nn400683s ] [PMID: 23790040]
[62]
Huang, M.; Liu, G. The study of innate drug resistance of human hepatocellular carcinoma Bel7402 cell line. Cancer Lett., 1999, 135(1), 97-105.
[http://dx.doi.org/10.1016/S0304-3835(98)00280-8 ] [PMID: 10077227]
[63]
Hughes, M.A.; Frassica, D.A.; Yeo, C.J.; Riall, T.S.; Lillemoe, K.D.; Cameron, J.L.; Donehower, R.C.; Laheru, D.A.; Hruban, R.H.; Abrams, R.A. Adjuvant concurrent chemoradiation for adenocarcinoma of the distal common bile duct. Int. J. Radiat. Oncol. Biol. Phys., 2007, 68(1), 178-182.
[http://dx.doi.org/10.1016/j.ijrobp.2006.11.048 ] [PMID: 17276614]
[64]
Kerr, D.J.; Hynds, S.; Wheldon, T.E.; Shepherd, J.; Kaye, S.B. Cytotoxic drug targeting to lung cancer cells in vitro with a complex of Low Density Lipoprotein (LDL) – daunomycin. Br. J. Cancer, 1987, 55, 335.
[65]
Ikeda, M.; Okusaka, T.; Ueno, H.; Takezako, Y.; Morizane, C. A phase II trial of continuous infusion of 5-fluorouracil, mitoxantrone, and cisplatin for metastatic hepatocellular carcinoma. Cancer, 2005, 103(4), 756-762.
[http://dx.doi.org/10.1002/cncr.20841 ] [PMID: 15637692]
[66]
Itatsu, K.; Sasaki, M.; Yamaguchi, J.; Ohira, S.; Ishikawa, A.; Ikeda, H.; Sato, Y.; Harada, K.; Zen, Y.; Sato, H.; Ohta, T.; Nagino, M.; Nimura, Y.; Nakanuma, Y. Cyclooxygenase-2 is involved in the up-regulation of matrix metalloproteinase-9 in cholangiocarcinoma induced by tumor necrosis factor-alpha. Am. J. Pathol., 2009, 174(3), 829-841.
[http://dx.doi.org/10.2353/ajpath.2009.080012 ] [PMID: 19218340]
[67]
Jaiswal, M.; LaRusso, N.F.; Burgart, L.J.; Gores, G.J. Inflammatory cytokines induce DNA damage and inhibit DNA repair in cholangiocarcinoma cells by a nitric oxide-dependent mechanism. Cancer Res., 2000, 60(1), 184-190.
[PMID: 10646872]
[68]
Jiang, J.; Nilsson-Ehle, P.; Xu, N. Influence of liver cancer on lipid and lipoprotein metabolism. Lipids Health Dis., 2006, 5, 4.
[http://dx.doi.org/10.1186/1476-511X-5-4 ] [PMID: 16515689]
[69]
Jin, H.; Lovell, J.F.; Chen, J.; Lin, Q.; Ding, L.; Ng, K.K.; Pandey, R.K.; Manoharan, M.; Zhang, Z.; Zheng, G. Mechanistic insights into LDL nanoparticle-mediated siRNA delivery. Bioconjug. Chem., 2012, 23(1), 33-41.
[http://dx.doi.org/10.1021/bc200233n ] [PMID: 22142191]
[70]
Jin, H.; Lovell, J.F.; Chen, J.; Ng, K.; Cao, W.; Ding, L.; Zhang, Z.; Zheng, G. Cytosolic delivery of LDL nanoparticle cargo using photochemical internalization. Photochem. Photobiol. Sci., 2011, 10(5), 810-816.
[http://dx.doi.org/10.1039/c0pp00350f ] [PMID: 21344108]
[71]
Jonas, A. Reconstitution of high-density lipoproteins. Methods Enzymol., 1986, 128, 553-582.
[http://dx.doi.org/10.1016/0076-6879(86)28092-1 ] [PMID: 3724523]
[72]
Jung, C.; Kaul, M.G.; Bruns, O.T.; Dučić, T.; Freund, B.; Heine, M.; Reimer, R.; Meents, A.; Salmen, S.C.; Weller, H.; Nielsen, P.; Adam, G.; Heeren, J.; Ittrich, H. Intraperitoneal injection improves the uptake of nanoparticle-labeled high-density lipoprotein to atherosclerotic plaques compared with intravenous injection: a multimodal imaging study in ApoE knockout mice. Circ Cardiovasc Imaging, 2014, 7(2), 303-311.
[http://dx.doi.org/10.1161/CIRCIMAGING.113.000607 ] [PMID: 24357264]
[73]
Jurenka, J.S. Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: a review of preclinical and clinical research. Altern. Med. Rev., 2009, 14(2), 141-153.
[PMID: 19594223]
[74]
Kader, A.; Davis, P.J.; Kara, M.; Liu, H. Drug targeting using Low Density Lipoprotein (LDL): physicochemical factors affecting drug loading into LDL particles. J. Control. Release, 1998, 55(2-3), 231-243.
[http://dx.doi.org/10.1016/S0168-3659(98)00052-2 ] [PMID: 9795069]
[75]
Kader, A.; Pater, A. Loading anticancer drugs into HDL as well as LDL has little affect on properties of complexes and enhances cytotoxicity to human carcinoma cells. J. Control. Release, 2002, 80(1-3), 29-44.
[http://dx.doi.org/10.1016/S0168-3659(01)00536-3 ] [PMID: 11943385]
[76]
Kanwar, R.K.; Chaudhary, R.; Tsuzuki, T.; Kanwar, J.R. Emerging engineered magnetic nanoparticulate probes for molecular MRI of atherosclerosis: how far have we come? Nanomedicine (Lond.), 2012, 7(6), 899-916.
[http://dx.doi.org/10.2217/nnm.12.57 ] [PMID: 22715913]
[77]
Kato, A.; Miyazaki, M.; Ambiru, S.; Yoshitomi, H.; Ito, H.; Nakagawa, K.; Shimizu, H.; Yokosuka, O.; Nakajima, N. Multidrug Resistance gene (MDR-1) expression as a useful prognostic factor in patients with human hepatocellular carcinoma after surgical resection. J. Surg. Oncol., 2001, 78(2), 110-115.
[http://dx.doi.org/10.1002/jso.1129 ] [PMID: 11579388]
[78]
Kessel, D. Porphyrin-lipoprotein association as a factor in porphyrin localization. Cancer Lett., 1986, 33(2), 183-188.
[http://dx.doi.org/10.1016/0304-3835(86)90023-6 ] [PMID: 3791189]
[79]
Kim, Y.; Fay, F.; Cormode, D.P.; Sanchez-Gaytan, B.L.; Tang, J.; Hennessy, E.J.; Ma, M.; Moore, K.; Farokhzad, O.C.; Fisher, E.A.; Mulder, W.J.; Langer, R.; Fayad, Z.A. Single step reconstitution of multifunctional high-density lipoprotein-derived nanomaterials using microfluidics. ACS Nano, 2013, 7(11), 9975-9983.
[http://dx.doi.org/10.1021/nn4039063 ] [PMID: 24079940]
[80]
Kopek, N.; Holt, M.I.; Hansen, A.T.; Høyer, M. Stereotactic body radiotherapy for unresectable cholangiocarcinoma. Radiother. Oncol., 2010, 94(1), 47-52.
[http://dx.doi.org/10.1016/j.radonc.2009.11.004 ] [PMID: 19963295]
[81]
Krieger, M. Reconstitution of the hydrophobic core of low-density lipoprotein. Methods Enzymol., 1986, 128, 608-613.
[http://dx.doi.org/10.1016/0076-6879(86)28094-5 ] [PMID: 3724525]
[82]
Krieger, M.; Brown, M.S.; Faust, J.R.; Goldstein, J.L. Replacement of endogenous cholesteryl esters of low density lipoprotein with exogenous cholesteryl linoleate. Reconstitution of a biologically active lipoprotein particle. J. Biol. Chem., 1978, 253(12), 4093-4101.
[PMID: 207690]
[83]
Krieger, M.; Smith, L.C.; Anderson, R.G.; Goldstein, J.L.; Kao, Y.J.; Pownall, H.J.; Gotto, A.M., Jr; Brown, M.S. Reconstituted low density lipoprotein: a vehicle for the delivery of hydrophobic fluorescent probes to cells. J. Supramol. Struct., 1979, 10(4), 467-478.
[http://dx.doi.org/10.1002/jss.400100409 ] [PMID: 229357]
[84]
Kuai, R.; Li, D.; Chen, Y.E.; Moon, J.J.; Schwendeman, A. High-density lipoproteins: nature’s multifunctional nanoparticles. ACS Nano, 2016, 10(3), 3015-3041.
[http://dx.doi.org/10.1021/acsnano.5b07522 ] [PMID: 26889958]
[85]
Kuo, M.T.; Zhao, J.Y.; Teeter, L.D.; Ikeguchi, M.; Chisari, F.V. Activation of multidrug resistance (P-glycoprotein) mdr3/mdr1a gene during the development of hepatocellular carcinoma in hepatitis B virus transgenic mice. Cell Growth Differ., 1992, 3(8), 531-540.
[PMID: 1356418]
[86]
Lee, J.; Park, J.O.; Kim, W.S.; Park, S.H.; Park, K.W.; Choi, M.S.; Lee, J.H.; Koh, K.C.; Paik, S.W.; Yoo, B.C.; Joh, J.; Kim, K.; Jung, C.W.; Park, Y.S. Im, Y.H.; Kang, W.K.; Lee, M.H.; Park, K. Phase II study of doxorubicin and cisplatin in patients with metastatic hepatocellular carcinoma. Cancer Chemother. Pharmacol., 2004, 54(5), 385-390.
[http://dx.doi.org/10.1007/s00280-004-0837-7 ] [PMID: 15248028]
[87]
Li, H.; Marotta, D.E.; Kim, S.; Busch, T.M.; Wileyto, E.P.; Zheng, G. High payload delivery of optical imaging and photodynamic therapy agents to tumors using phthalocyanine-reconstituted low-density lipoprotein nanoparticles. J. Biomed. Opt., 2005, 10(4), 41203.
[http://dx.doi.org/10.1117/1.2011429 ] [PMID: 16178627]
[88]
Lin, Q.; Chen, J.; Ng, K.K.; Cao, W.; Zhang, Z.; Zheng, G. Imaging the cytosolic drug delivery mechanism of HDL-like nanoparticles. Pharm. Res., 2014, 31(6), 1438-1449.
[http://dx.doi.org/10.1007/s11095-013-1046-z ] [PMID: 23625096]
[89]
Liu, X.; Suo, R.; Xiong, S.L.; Zhang, Q.H.; Yi, G.H. HDL drug carriers for targeted therapy. Clin. Chim. Acta, 2013, 415, 94-100.
[http://dx.doi.org/10.1016/j.cca.2012.10.008 ] [PMID: 23063777]
[90]
Lopes, F. de L.; Coelho, F.F.; Kruger, J.A.; Fonseca, G.M.; Araujo, R.L.; Jeismann, V.B.; Herman, P. Influence of hepatocellular carcinoma etiology in the survival after resection. Arq. Bras. Cir. Dig., 2016, 29, 105-108.
[http://dx.doi.org/10.1590/0102-6720201600020010]
[91]
Lundberg, B. Preparation of drug-low density lipoprotein complexes for delivery of antitumoral drugs via the low density lipoprotein pathway. Cancer Res., 1987, 47(15), 4105-4108.
[PMID: 3607752]
[92]
Lundberg, B.; Suominen, L. Preparation of biologically active analogs of serum low density lipoprotein. J. Lipid Res., 1984, 25(6), 550-558.
[PMID: 6747459]
[93]
Macdonald, O.K.; Crane, C.H. Palliative and postoperative radiotherapy in biliary tract cancer. Surg. Oncol. Clin. N. Am., 2002, 11(4), 941-954.
[http://dx.doi.org/10.1016/S1055-3207(02)00038-8 ] [PMID: 12607581]
[94]
Mankertz, J.; Nündel, M.; von Baeyer, H.; Riedel, E. Low density lipoproteins as drug carriers in the therapy of macrophage-associated diseases. Biochem. Biophys. Res. Commun., 1997, 240(1), 112-115.
[http://dx.doi.org/10.1006/bbrc.1997.7625 ] [PMID: 9367893]
[95]
Markman, J.L.; Rekechenetskiy, A.; Holler, E.; Ljubimova, J.Y. Nanomedicine therapeutic approaches to overcome cancer drug resistance. Adv. Drug Deliv. Rev., 2013, 65(13-14), 1866-1879.
[http://dx.doi.org/10.1016/j.addr.2013.09.019 ] [PMID: 24120656]
[96]
Masquelier, M.; Lundberg, B.; Peterson, C.; Vitols, S. Cytotoxic effect of a lipophilic alkylating agent after incorporation into low density lipoprotein or emulsions: studies in human leukemic cells. Leuk. Res., 2006, 30(2), 136-144.
[http://dx.doi.org/10.1016/j.leukres.2005.06.012 ] [PMID: 16085310]
[97]
Mateu, L.; Tardieu, A.; Luzzati, V.; Aggerbeck, L.; Scanu, A.M. On the structure of human serum low density lipoprotein. J. Mol. Biol., 1972, 70(1), 105-116.
[http://dx.doi.org/10.1016/0022-2836(72)90166-0 ] [PMID: 4342194]
[98]
McConathy, W.J.; Nair, M.P.; Paranjape, S.; Mooberry, L.; Lacko, A.G. Evaluation of synthetic/reconstituted high-density lipoproteins as delivery vehicles for paclitaxel. Anticancer Drugs, 2008, 19(2), 183-188.
[http://dx.doi.org/10.1097/CAD.0b013e3282f1da86 ] [PMID: 18176115]
[99]
Mikhail, S.; Cosgrove, D.; Zeidan, A. Hepatocellular carcinoma: systemic therapies and future perspectives. Expert Rev. Anticancer Ther., 2014, 14(10), 1205-1218.
[http://dx.doi.org/10.1586/14737140.2014.949246 ] [PMID: 25199765]
[100]
Moerlein, S.M.; Daugherty, A.; Sobel, B.E.; Welch, M.J. Metabolic imaging with gallium-68- and indium-111-labeled low-density lipoprotein. J. Nucl. Med., 1991, 32(2), 300-307.
[PMID: 1992034]
[101]
Mooberry, L.K.; Nair, M.; Paranjape, S.; McConathy, W.J.; Lacko, A.G. Receptor mediated uptake of paclitaxel from a synthetic high density lipoprotein nanocarrier. J. Drug Target., 2010, 18(1), 53-58.
[http://dx.doi.org/10.3109/10611860903156419 ] [PMID: 19637935]
[102]
Mutharasan, R.K.; Foit, L.; Thaxton, C.S. High-density lipoproteins for therapeutic delivery systems. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(2), 188-197.
[http://dx.doi.org/10.1039/C5TB01332A ] [PMID: 27069624]
[103]
Nagino, M.; Ebata, T.; Yokoyama, Y.; Igami, T.; Sugawara, G.; Takahashi, Y.; Nimura, Y. Evolution of surgical treatment for perihilar cholangiocarcinoma: a single-center 34-year review of 574 consecutive resections. Ann. Surg., 2013, 258(1), 129-140.
[http://dx.doi.org/10.1097/SLA.0b013e3182708b57 ] [PMID: 23059502]
[104]
Nagorney, D.M.; Donohue, J.H.; Farnell, M.B.; Schleck, C.D.; Ilstrup, D.M. Outcomes after curative resections of cholangiocarcinoma. Arch. Surg., 1993, 128(8), 871-877.
[http://dx.doi.org/10.1001/archsurg.1993.01420200045008 ] [PMID: 8393652]
[105]
Nakayama, T.; Butler, J.S.; Sehgal, A.; Severgnini, M.; Racie, T.; Sharman, J.; Ding, F.; Morskaya, S.S.; Brodsky, J.; Tchangov, L.; Kosovrasti, V.; Meys, M.; Nechev, L.; Wang, G.; Peng, C.G.; Fang, Y.; Maier, M.; Rajeev, K.G.; Li, R.; Hettinger, J.; Barros, S.; Clausen, V.; Zhang, X.; Wang, Q.; Hutabarat, R.; Dokholyan, N.V.; Wolfrum, C.; Manoharan, M.; Kotelianski, V.; Stoffel, M.; Sah, D.W. Harnessing a physiologic mechanism for siRNA delivery with mimetic lipoprotein particles. Mol. Ther., 2012, 20(8), 1582-1589.
[http://dx.doi.org/10.1038/mt.2012.33 ] [PMID: 22850721]
[106]
Nakeeb, A.; Pitt, H.A.; Sohn, T.A.; Coleman, J.; Abrams, R.A.; Piantadosi, S.; Hruban, R.H.; Lillemoe, K.D.; Yeo, C.J.; Cameron, J.L. Cholangiocarcinoma. A spectrum of intrahepatic, perihilar, and distal tumors. Ann. Surg., 1996, 224(4), 463-473.
[http://dx.doi.org/10.1097/00000658-199610000-00005 ] [PMID: 8857851]
[107]
Nelson, J.W.; Ghafoori, A.P.; Willett, C.G.; Tyler, D.S.; Pappas, T.N.; Clary, B.M.; Hurwitz, H.I.; Bendell, J.C.; Morse, M.A.; Clough, R.W.; Czito, B.G. Concurrent chemoradiotherapy in resected extrahepatic cholangiocarcinoma. Int. J. Radiat. Oncol. Biol. Phys., 2009, 73(1), 148-153.
[http://dx.doi.org/10.1016/j.ijrobp.2008.07.008 ] [PMID: 18805651]
[108]
Ng, K.K.; Lovell, J.F.; Vedadi, A.; Hajian, T.; Zheng, G. Self-assembled porphyrin nanodiscs with structure-dependent activation for phototherapy and photodiagnostic applications. ACS Nano, 2013, 7(4), 3484-3490.
[http://dx.doi.org/10.1021/nn400418y ] [PMID: 23464857]
[109]
Ng, K.K.; Lovell, J.F.; Zheng, G. Lipoprotein-inspired nanoparticles for cancer theranostics. Acc. Chem. Res., 2011, 44(10), 1105-1113.
[http://dx.doi.org/10.1021/ar200017e ] [PMID: 21557543]
[110]
Nikanjam, M.; Blakely, E.A.; Bjornstad, K.A.; Shu, X.; Budinger, T.F.; Forte, T.M. Synthetic nano-low density lipoprotein as targeted drug delivery vehicle for glioblastoma multiforme. Int. J. Pharm., 2007, 328(1), 86-94.
[http://dx.doi.org/10.1016/j.ijpharm.2006.07.046 ] [PMID: 16959446]
[111]
Nikanjam, M.; Gibbs, A.R.; Hunt, C.A.; Budinger, T.F.; Forte, T.M. Synthetic nano-LDL with paclitaxel oleate as a targeted drug delivery vehicle for glioblastoma multiforme. J. Control. Release, 2007, 124(3), 163-171.
[http://dx.doi.org/10.1016/j.jconrel.2007.09.007 ] [PMID: 17964677]
[112]
Notarnicola, M.; Messa, C.; Orlando, A.; D’Attoma, B.; Tutino, V.; Rivizzigno, R.; Caruso, M.G. Effect of genistein on cholesterol metabolism-related genes in a colon cancer cell line. Genes Nutr., 2008, 3(1), 35-40.
[http://dx.doi.org/10.1007/s12263-008-0082-5 ] [PMID: 18850198]
[113]
O’Reilly, E.M.; Stuart, K.E.; Sanz-Altamira, P.M.; Schwartz, G.K.; Steger, C.M.; Raeburn, L.; Kemeny, N.E.; Kelsen, D.P.; Saltz, L.B. A phase II study of irinotecan in patients with advanced hepatocellular carcinoma. Cancer, 2001, 91(1), 101-105.
[http://dx.doi.org/10.1002/1097-0142(20010101)91:1<101:AID-CNCR13>3.0.CO;2-K ] [PMID: 11148565]
[114]
Oda, M.N.; Hargreaves, P.L.; Beckstead, J.A.; Redmond, K.A.; van Antwerpen, R.; Ryan, R.O. Reconstituted high density lipoprotein enriched with the polyene antibiotic amphotericin B. J. Lipid Res., 2006, 47(2), 260-267.
[http://dx.doi.org/10.1194/jlr.D500033-JLR200 ] [PMID: 16314670]
[115]
Oram, J.F.; Vaughan, A.M. ATP-Binding cassette cholesterol transporters and cardiovascular disease. Circ. Res., 2006, 99(10), 1031-1043.
[http://dx.doi.org/10.1161/01.RES.0000250171.54048.5c ] [PMID: 17095732]
[116]
Owens, M.D.; Baillie, G.; Halbert, G.W. Physicochemical properties of microemulsion analogues of low density lipoprotein containing amphiphatic apoprotein B receptor sequences. Int. J. Pharm., 2001, 228(1-2), 109-117.
[http://dx.doi.org/10.1016/S0378-5173(01)00818-3 ] [PMID: 11576773]
[117]
Patt, Y.Z.; Hassan, M.M.; Aguayo, A.; Nooka, A.K.; Lozano, R.D.; Curley, S.A.; Vauthey, J.N.; Ellis, L.M.; Schnirer, I.I.; Wolff, R.A.; Charnsangavej, C.; Brown, T.D. Oral capecitabine for the treatment of hepatocellular carcinoma, cholangiocarcinoma, and gallbladder carcinoma. Cancer, 2004, 101(3), 578-586.
[http://dx.doi.org/10.1002/cncr.20368 ] [PMID: 15274071]
[118]
Pinlaor, S.; Sripa, B.; Ma, N.; Hiraku, Y.; Yongvanit, P.; Wongkham, S.; Pairojkul, C.; Bhudhisawasdi, V.; Oikawa, S.; Murata, M.; Semba, R.; Kawanishi, S. Nitrative and oxidative DNA damage in intrahepatic cholangiocarcinoma patients in relation to tumor invasion. World J. Gastroenterol., 2005, 11(30), 4644-4649.
[http://dx.doi.org/10.3748/wjg.v11.i30.4644 ] [PMID: 16094703]
[119]
Pittman, R.C.; Glass, C.K.; Atkinson, D.; Small, D.M. Synthetic high density lipoprotein particles. Application to studies of the apoprotein specificity for selective uptake of cholesterol esters. J. Biol. Chem., 1987, 262(6), 2435-2442.
[PMID: 3029080]
[120]
Poelstra, K.; Prakash, J.; Beljaars, L. Drug targeting to the diseased liver. J. Control. Release, 2012, 161(2), 188-197.
[http://dx.doi.org/10.1016/j.jconrel.2012.02.011 ] [PMID: 22370583]
[121]
Polo, L.; Valduga, G.; Jori, G.; Reddi, E. Low-density lipoprotein receptors in the uptake of tumour photosensitizers by human and rat transformed fibroblasts. Int. J. Biochem. Cell Biol., 2002, 34(1), 10-23.
[http://dx.doi.org/10.1016/S1357-2725(01)00092-9 ] [PMID: 11733181]
[122]
Ponty, E.; Favre, G.; Benaniba, R.; Boneu, A.; Lucot, H.; Carton, M.; Soula, G. Biodistribution study of 99mTc-labeled LDL in B16-melanoma-bearing mice. Visualization of a preferential uptake by the tumor. Int. J. Cancer, 1993, 54(3), 411-417.
[http://dx.doi.org/10.1002/ijc.2910540311 ] [PMID: 8509217]
[123]
Prassl, R.; Laggner, P. Molecular structure of low density lipoprotein: current status and future challenges. Eur. Biophys. J., 2009, 38(2), 145-158.
[http://dx.doi.org/10.1007/s00249-008-0368-y ] [PMID: 18797861]
[124]
Pussinen, P.J.; Karten, B.; Wintersperger, A.; Reicher, H.; McLean, M.; Malle, E.; Sattler, W. The human breast carcinoma cell line HBL-100 acquires exogenous cholesterol from high-density lipoprotein via CLA-1 (CD-36 and LIMPII analogous 1)-mediated selective cholesteryl ester uptake. Biochem. J., 2000, 349(Pt 2), 559-566.
[http://dx.doi.org/10.1042/bj3490559 ] [PMID: 10880355]
[125]
Razumilava, N.; Gores, G.J. Cholangiocarcinoma. Lancet, 2014, 383(9935), 2168-2179.
[http://dx.doi.org/10.1016/S0140-6736(13)61903-0 ] [PMID: 24581682]
[126]
de Vrueh, R.L.A.; Rump, E.T.; van De Bilt, E.; van Veghel, R.; Balzarini, J.; Biessen, E.A.L.; van Berkel, T.J.C.; Bijsterbosch, M.K. Carrier-mediated delivery of 9-(2-phosphonylmethoxyethyl) adenine to parenchymal liver cells: a novel therapeutic approach for hepatitis B. Antimicrob. Agents Chemother., 2000, 44(3), 477-483.
[http://dx.doi.org/10.1128/AAC.44.3.477-483.2000 ] [PMID: 10681306]
[127]
Rodrigueza, W.V.; Thuahnai, S.T.; Temel, R.E.; Lund-Katz, S.; Phillips, M.C.; Williams, D.L. Mechanism of scavenger receptor class B type I-mediated selective uptake of cholesteryl esters from high density lipoprotein to adrenal cells. J. Biol. Chem., 1999, 274(29), 20344-20350.
[http://dx.doi.org/10.1074/jbc.274.29.20344 ] [PMID: 10400657]
[128]
Rudd, J.H.; Hyafil, F.; Fayad, Z.A. Inflammation imaging in atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 2009, 29(7), 1009-1016.
[http://dx.doi.org/10.1161/ATVBAHA.108.165563 ] [PMID: 19304673]
[129]
Sabnis, N.; Lacko, A.G. Drug delivery via lipoprotein-based carriers: answering the challenges in systemic therapeutics. Ther. Deliv., 2012, 3(5), 599-608.
[http://dx.doi.org/10.4155/tde.12.41 ] [PMID: 22834404]
[130]
Sabnis, N.; Nair, M.; Israel, M.; McConathy, W.J.; Lacko, A.G. Enhanced solubility and functionality of valrubicin (AD-32) against cancer cells upon encapsulation into biocompatible nanoparticles. Int. J. Nanomedicine, 2012, 7, 975-983.
[PMID: 22393294]
[131]
Sabnis, N.; Pratap, S.; Akopova, I.; Bowman, P.W.; Lacko, A.G. Pre-clinical evaluation of rHDL encapsulated retinoids for the treatment of neuroblastoma. Front Pediatr., 2013, 1, 6.
[http://dx.doi.org/10.3389/fped.2013.00006 ] [PMID: 24459664]
[132]
Shahzad, M.M.; Mangala, L.S.; Han, H.D.; Lu, C.; Bottsford-Miller, J.; Nishimura, M.; Mora, E.M.; Lee, J.W.; Stone, R.L.; Pecot, C.V.; Thanapprapasr, D.; Roh, J.W.; Gaur, P.; Nair, M.P.; Park, Y.Y.; Sabnis, N.; Deavers, M.T.; Lee, J.S.; Ellis, L.M.; Lopez-Berestein, G.; McConathy, W.J.; Prokai, L.; Lacko, A.G.; Sood, A.K. Targeted delivery of small interfering RNA using reconstituted high-density lipoprotein nanoparticles. Neoplasia, 2011, 13(4), 309-319.
[http://dx.doi.org/10.1593/neo.101372 ] [PMID: 21472135]
[133]
Shaw, J.M.; Shaw, K.V. Key issues in the delivery of pharmacological agents using lipoproteins: design of a synthetic apoprotein-lipid carrier. Targeted Diagn. Ther., 1991, 5, 351-383.
[PMID: 1665722]
[134]
Shearn, C.T.; Petersen, D.R. Understanding the tumor suppressor PTEN in chronic alcoholism and hepatocellular carcinoma. Adv. Exp. Med. Biol., 2015, 815, 173-184.
[http://dx.doi.org/10.1007/978-3-319-09614-8_10 ] [PMID: 25427907]
[135]
Shin, J.Y.; Yang, Y.; Heo, P.; Lee, J.C.; Kong, B.; Cho, J.Y.; Yoon, K.; Shin, C.S.; Seo, J.H.; Kim, S.G.; Kweon, D.H. pH-responsive high-density lipoprotein-like nanoparticles to release paclitaxel at acidic pH in cancer chemotherapy. Int. J. Nanomedicine, 2012, 7, 2805-2816.
[PMID: 22745543]
[136]
Silva, R.A.; Huang, R.; Morris, J.; Fang, J.; Gracheva, E.O.; Ren, G.; Kontush, A.; Jerome, W.G.; Rye, K.A.; Davidson, W.S. Structure of apolipoprotein A-I in spherical high density lipoproteins of different sizes. Proc. Natl. Acad. Sci. USA, 2008, 105(34), 12176-12181.
[http://dx.doi.org/10.1073/pnas.0803626105 ] [PMID: 18719128]
[137]
Singh, A.T.; Evens, A.M.; Anderson, R.J.; Beckstead, J.A.; Sankar, N.; Sassano, A.; Bhalla, S.; Yang, S.; Platanias, L.C.; Forte, T.M.; Ryan, R.O.; Gordon, L.I. All trans retinoic acid nanodisks enhance retinoic acid receptor mediated apoptosis and cell cycle arrest in mantle cell lymphoma. Br. J. Haematol., 2010, 150(2), 158-169.
[http://dx.doi.org/10.1111/j.1365-2141.2010.08209.x ] [PMID: 20507312]
[138]
Singh, A.T.; Ghosh, M.; Forte, T.M.; Ryan, R.O.; Gordon, L.I. Curcumin nanodisk-induced apoptosis in mantle cell lymphoma. Leuk. Lymphoma, 2011, 52(8), 1537-1543.
[http://dx.doi.org/10.3109/10428194.2011.584253 ] [PMID: 21699455]
[139]
Skajaa, T.; Cormode, D.P.; Jarzyna, P.A.; Delshad, A.; Blachford, C.; Barazza, A.; Fisher, E.A.; Gordon, R.E.; Fayad, Z.A.; Mulder, W.J. The biological properties of iron oxide core high-density lipoprotein in experimental atherosclerosis. Biomaterials, 2011, 32(1), 206-213.
[http://dx.doi.org/10.1016/j.biomaterials.2010.08.078 ] [PMID: 20926130]
[140]
Skajaa, T.; Zhao, Y.; van den Heuvel, D.J.; Gerritsen, H.C.; Cormode, D.P.; Koole, R.; van Schooneveld, M.M.; Post, J.A.; Fisher, E.A.; Fayad, Z.A.; de Mello Donega, C.; Meijerink, A.; Mulder, W.J. Quantum dot and Cy5.5 labeled nanoparticles to investigate lipoprotein biointeractions via Förster resonance energy transfer. Nano Lett., 2010, 10(12), 5131-5138.
[http://dx.doi.org/10.1021/nl1037903 ] [PMID: 21087054]
[141]
Song, L.; Li, H.; Sunar, U.; Chen, J.; Corbin, I.; Yodh, A.G.; Zheng, G. Naphthalocyanine-reconstituted LDL nanoparticles for in vivo cancer imaging and treatment. Int. J. Nanomedicine, 2007, 2(4), 767-774.
[PMID: 18203443]
[142]
Thaxton, C.S.; Rink, J.S.; Naha, P.C.; Cormode, D.P. Lipoproteins and lipoprotein mimetics for imaging and drug delivery. Adv. Drug. Deliv. Rev., 2016, 106(Pt A), 116-131.
[http://dx.doi.org/10.1016/j.addr.2016.04.020] [PMID: 27133387]
[143]
Torkhovskaia, T.I.; Ipatova, O.M.; Medvedeva, N.V.; Ivanov, V.S.; Ivanova, L.I. [Plasma lipoproteins as drug carriers. Effect of phospholipid formulations]. Vestn. Akad. Med. Nauk SSSR, 2010, 5(5), 42-50.
[PMID: 20608046]
[144]
Trigatti, B.L.; Krieger, M.; Rigotti, A. Influence of the HDL receptor SR-BI on lipoprotein metabolism and atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 2003, 23(10), 1732-1738.
[http://dx.doi.org/10.1161/01.ATV.0000091363.28501.84 ] [PMID: 12920050]
[145]
Usmani, A.; Mishra, A. Current updates on risk factors of hepatocellular carcinoma. Res. Reviews, 2017, 8, 9.
[146]
Usmani, A.; Mishra, A.; Ahmad, M. Nanomedicines: a theranostic approach for hepatocellular carcinoma. Artif. Cells Nanomed. Biotechnol., 2018, 46(4), 680-690.
[http://dx.doi.org/10.1080/21691401.2017.1374282 ] [PMID: 28884605]
[147]
Usmani, A.; Mujahid, M.; Khushtar, M.; Siddiqui, H.H.; Rahman, M.A. Hepatoprotective effect of Anacyclus pyrethrum Linn. against antitubercular drug-induced hepatotoxicity in SD rats. J. Complement. Integr. Med., 2016, 13(3), 295-300.
[http://dx.doi.org/10.1515/jcim-2016-0001 ] [PMID: 27101559]
[148]
Vance, J.E.; Vance, D.E. Biochemistry of lipids, lipoproteins and membranes., 2008.
[149]
Vickers, K.C.; Palmisano, B.T.; Shoucri, B.M.; Shamburek, R.D.; Remaley, A.T. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat. Cell Biol., 2011, 13(4), 423-433.
[http://dx.doi.org/10.1038/ncb2210 ] [PMID: 21423178]
[150]
Vickers, K.C.; Remaley, A.T. Functional diversity of HDL cargo. J. Lipid Res., 2013, •••R035964
[151]
Vitols, S.; Peterson, C.; Larsson, O.; Holm, P.; Aberg, B. Elevated uptake of low density lipoproteins by human lung cancer tissue in vivo. Cancer Res., 1992, 52(22), 6244-6247.
[PMID: 1423268]
[152]
Vitols, S.; Söderberg-Reid, K.; Masquelier, M.; Sjöström, B.; Peterson, C. Low density lipoprotein for delivery of a water-insoluble alkylating agent to malignant cells. In vitro and in vivo studies of a drug-lipoprotein complex. Br. J. Cancer, 1990, 62(5), 724-729.
[http://dx.doi.org/10.1038/bjc.1990.367 ] [PMID: 2245164]
[153]
Wang, J.; Jia, J.; Liu, J.; He, H.; Zhang, W.; Li, Z. Tumor targeting effects of a novel modified paclitaxel-loaded discoidal mimic high density lipoproteins. Drug Deliv., 2013, 20(8), 356-363.
[http://dx.doi.org/10.3109/10717544.2013.834418 ] [PMID: 24079327]
[154]
Wang, Y.; Wang, C.; Ding, Y.; Li, J.; Li, M.; Liang, X.; Zhou, J.; Wang, W. Biomimetic HDL nanoparticle mediated tumor targeted delivery of indocyanine green for enhanced photodynamic therapy. Colloids Surf. B Biointerfaces, 2016, 148, 533-540.
[http://dx.doi.org/10.1016/j.colsurfb.2016.09.037 ] [PMID: 27690242]
[155]
Wasan, K.M.; Cassidy, S.M. Role of plasma lipoproteins in modifying the biological activity of hydrophobic drugs. J. Pharm. Sci., 1998, 87(4), 411-424.
[http://dx.doi.org/10.1021/js970407a ] [PMID: 9548892]
[156]
Wolfrum, C.; Shi, S.; Jayaprakash, K.N.; Jayaraman, M.; Wang, G.; Pandey, R.K.; Rajeev, K.G.; Nakayama, T.; Charrise, K.; Ndungo, E.M.; Zimmermann, T.; Koteliansky, V.; Manoharan, M.; Stoffel, M. Mechanisms and optimization of in vivo delivery of lipophilic siRNAs. Nat. Biotechnol., 2007, 25(10), 1149-1157.
[http://dx.doi.org/10.1038/nbt1339 ] [PMID: 17873866]
[157]
Yang, M.; Jin, H.; Chen, J.; Ding, L.; Ng, K.K.; Lin, Q.; Lovell, J.F.; Zhang, Z.; Zheng, G. Efficient cytosolic delivery of siRNA using HDL-mimicking nanoparticles. Small, 2011, 7(5), 568-573.
[http://dx.doi.org/10.1002/smll.201001589 ] [PMID: 21370456]
[158]
Yeo, W.; Mok, T.S.; Zee, B.; Leung, T.W.; Lai, P.B.; Lau, W.Y.; Koh, J.; Mo, F.K.; Yu, S.C.; Chan, A.T.; Hui, P.; Ma, B.; Lam, K.C.; Ho, W.M.; Wong, H.T.; Tang, A.; Johnson, P.J. A randomized phase III study of doxorubicin versus cisplatin/interferon alpha-2b/doxorubicin/fluorouracil (PIAF) combination chemotherapy for unresectable hepatocellular carcinoma. J. Natl. Cancer Inst., 2005, 97(20), 1532-1538.
[http://dx.doi.org/10.1093/jnci/dji315 ] [PMID: 16234567]
[159]
Yuan, Y.; Wang, W.; Wang, B.; Zhu, H.; Zhang, B.; Feng, M. Delivery of hydrophilic drug doxorubicin hydrochloride-targeted liver using apoAI as carrier. J. Drug Target., 2013, 21(4), 367-374.
[http://dx.doi.org/10.3109/1061186X.2012.757769 ] [PMID: 23600747]
[160]
Zhang, X.; Chen, B. Recombinant high density lipoprotein reconstituted with apolipoprotein AI cysteine mutants as delivery vehicles for 10-hydroxycamptothecin. Cancer Lett., 2010, 298(1), 26-33.
[http://dx.doi.org/10.1016/j.canlet.2010.05.023 ] [PMID: 20579804]
[161]
Luthi, A.J.; Zhang, H.; Kim, D.; Giljohann, D.A.; Mirkin, C.A.; Thaxton, C.S. Tailoring of biomimetic high-density lipoprotein nanostructures changes cholesterol binding and efflux. ACS Nano, 2012, 6(1), 276-285.
[http://dx.doi.org/10.1021/nn2035457 ] [PMID: 22117189]
[162]
Raut, S.; Mooberry, L.; Sabnis, N.; Garud, A.; Dossou, A.S.; Lacko, A. Reconstituted HDL: drug delivery platform for overcoming biological barriers to cancer therapy. Front. Pharmacol., 2018, 9, 1154.
[http://dx.doi.org/10.3389/fphar.2018.01154 ] [PMID: 30374303]
[163]
Zhang, Z.; Cao, W.; Jin, H.; Lovell, J.F.; Yang, M.; Ding, L.; Chen, J.; Corbin, I.; Luo, Q.; Zheng, G. Biomimetic nanocarrier for direct cytosolic drug delivery. Angew. Chem. Int. Ed. Engl., 2009, 48(48), 9171-9175.
[http://dx.doi.org/10.1002/anie.200903112 ] [PMID: 19876988]
[164]
Almer, G.; Mangge, H.; Zimmer, A.; Prassl, R. Lipoprotein-related and apolipoprotein-mediated delivery systems for drug targeting and imaging. Curr. Med. Chem., 2015, 22(31), 3631-3651.
[http://dx.doi.org/10.2174/0929867322666150716114625 ] [PMID: 26180001]
[165]
Weilhammer, D.R.; Blanchette, C.D.; Fischer, N.O.; Alam, S.; Loots, G.G.; Corzett, M.; Thomas, C.; Lychak, C.; Dunkle, A.D.; Ruitenberg, J.J.; Ghanekar, S.A.; Sant, A.J.; Rasley, A. The use of nanolipoprotein particles to enhance the immunostimulatory properties of innate immune agonists against lethal influenza challenge. Biomaterials, 2013, 34(38), 10305-10318.
[http://dx.doi.org/10.1016/j.biomaterials.2013.09.038 ] [PMID: 24075406]
[166]
Shah, P.K. High-density lipoprotein mimetics: focus on synthetic high-density lipoprotein. Am. J. Cardiol. , 2007, 100(11 A), S62-S67.
[http://dx.doi.org/10.1016/j.amjcard.2007.09.081] [PMID: 18047855]
[167]
Caparon, M.H.; Rust, K.J.; Hunter, A.K.; McLaughlin, J.K.; Thomas, K.E.; Herberg, J.T.; Shell, R.E.; Lanter, P.B.; Bishop, B.F.; Dufield, R.L.; Wang, X.; Ho, S.V. Integrated solution to purification challenges in the manufacture of a soluble recombinant protein in E. coli. Biotechnol. Bioeng., 2010, 105(2), 239-249.
[http://dx.doi.org/10.1002/bit.22542 ] [PMID: 19777583]
[168]
Segrest, J.P.; Jones, M.K.; De Loof, H.; Brouillette, C.G.; Venkatachalapathi, Y.V.; Anantharamaiah, G.M. The amphipathic helix in the exchangeable apolipoproteins: a review of secondary structure and function. J. Lipid Res., 1992, 33(2), 141-166.
[PMID: 1569369]
[169]
Rosenson, R.S.; Brewer, H.B., Jr; Davidson, W.S.; Fayad, Z.A.; Fuster, V.; Goldstein, J.; Hellerstein, M.; Jiang, X.C.; Phillips, M.C.; Rader, D.J.; Remaley, A.T.; Rothblat, G.H.; Tall, A.R.; Yvan-Charvet, L. Cholesterol efflux and atheroprotection: advancing the concept of reverse cholesterol transport. Circulation, 2012, 125(15), 1905-1919.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.111.066589 ] [PMID: 22508840]
[170]
Dasseux, J-L.; Ackermann, R. Lipoproteins for therapeutic delivery: Recent advances and future opportunities. US9187551 , 2015.
[171]
Kannel, W.B.; Dawber, T.R.; Friedman, G.D.; Glennon, W.E.; McNamara, P.M. Risk factors in coronary heart disease. An evaluation of serveral serum lipids as predictors of coronary heart disease; the Framingham study. Ann. Intern. Med., 1964, 61, 888-899.
[http://dx.doi.org/10.7326/0003-4819-61-5-888 ] [PMID: 14233810]
[172]
Ameli, S.; Hultgardh-Nilsson, A.; Cercek, B.; Shah, P.K.; Forrester, J.S.; Ageland, H.; Nilsson, J. Recombinant apolipoprotein A-I Milano reduces intimal thickening after balloon injury in hypercholesterolemic rabbits. Circulation, 1994, 90(4), 1935-1941.
[http://dx.doi.org/10.1161/01.CIR.90.4.1935 ] [PMID: 7923682]
[173]
Soma, M.R.; Donetti, E.; Parolini, C.; Sirtori, C.R.; Fumagalli, R.; Franceschini, G. Recombinant apolipoprotein A-IMilano dimer inhibits carotid intimal thickening induced by perivascular manipulation in rabbits. Circ. Res., 1995, 76(3), 405-411.
[http://dx.doi.org/10.1161/01.RES.76.3.405 ] [PMID: 7859387]
[174]
Nissen, S.E.; Tsunoda, T.; Tuzcu, E.M.; Schoenhagen, P.; Cooper, C.J.; Yasin, M.; Eaton, G.M.; Lauer, M.A.; Sheldon, W.S.; Grines, C.L.; Halpern, S.; Crowe, T.; Blankenship, J.C.; Kerensky, R. Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial. JAMA, 2003, 290(17), 2292-2300.
[http://dx.doi.org/10.1001/jama.290.17.2292 ] [PMID: 14600188]
[175]
Sacks, F.M.; Rudel, L.L.; Conner, A.; Akeefe, H.; Kostner, G.; Baki, T.; Rothblat, G.; de la Llera-Moya, M.; Asztalos, B.; Perlman, T.; Zheng, C.; Alaupovic, P.; Maltais, J.A.; Brewer, H.B. Selective delipidation of plasma HDL enhances reverse cholesterol transport in vivo. J. Lipid Res., 2009, 50(5), 894-907.
[http://dx.doi.org/10.1194/jlr.M800622-JLR200 ] [PMID: 19144994]
[176]
Waksman, R.; Torguson, R.; Kent, K.M.; Pichard, A.D.; Suddath, W.O.; Satler, L.F.; Martin, B.D.; Perlman, T.J.; Maltais, J.A.; Weissman, N.J.; Fitzgerald, P.J.; Brewer, H.B., Jr A first-in-man, randomized, placebo-controlled study to evaluate the safety and feasibility of autologous delipidated high-density lipoprotein plasma infusions in patients with acute coronary syndrome. J. Am. Coll. Cardiol., 2010, 55(24), 2727-2735.
[http://dx.doi.org/10.1016/j.jacc.2009.12.067 ] [PMID: 20538165]
[177]
Andrews, J.; Janssan, A.; Nguyen, T.; Pisaniello, A.D.; Scherer, D.J.; Kastelein, J.J.; Merkely, B.; Nissen, S.E.; Ray, K.; Schwartz, G.G.; Worthley, S.G.; Keyserling, C.; Dasseux, J.L.; Butters, J.; Girardi, J.; Miller, R.; Nicholls, S.J. Effect of serial infusions of reconstituted high-density lipoprotein (CER-001) on coronary atherosclerosis: rationale and design of the CARAT study. Cardiovasc. Diagn. Ther., 2017, 7(1), 45-51.
[http://dx.doi.org/10.21037/cdt.2017.01.01 ] [PMID: 28164012]
[178]
Study shows no reduction in plaque with synthetic HDL-C injection. Am. College Cardiol., 2017.www.acc.org/latest-in-cardiology/articles/2017/03/13/17/44/sat-8am-carat-effect-of-serial-infusions-of-cer-001-on-cad-acc-2017
[179]
Redmond, K.A.; Nguyen, T.S.; Ryan, R.O. All-trans-retinoic acid nanodisks. Int. J. Pharm., 2007, 339(1-2), 246-250.
[http://dx.doi.org/10.1016/j.ijpharm.2007.02.033 ] [PMID: 17412536]
[180]
Ghosh, M.; Ren, G.; Simonsen, J.B.; Ryan, R.O. Cationic lipid nanodisks as an siRNA delivery vehicle. Biochem. Cell Biol., 2014, 92(3), 200-205.
[http://dx.doi.org/10.1139/bcb-2014-0027 ] [PMID: 24840721]
[181]
Ghosh, M.; Ryan, R.O. ApoE enhances nanodisk-mediated curcumin delivery to glioblastoma multiforme cells. Nanomedicine (Lond.), 2014, 9(6), 763-771.
[http://dx.doi.org/10.2217/nnm.13.35 ] [PMID: 23879635]
[182]
Mukherjee, S.; Maxfield, F.R. Role of membrane organization and membrane domains in endocytic lipid trafficking. Traffic, 2000, 1(3), 203-211.
[http://dx.doi.org/10.1034/j.1600-0854.2000.010302.x ] [PMID: 11208103]
[183]
Brown, D.A.; London, E. Functions of lipid rafts in biological membranes. Annu. Rev. Cell Dev. Biol., 1998, 14, 111-136.
[http://dx.doi.org/10.1146/annurev.cellbio.14.1.111 ] [PMID: 9891780]
[184]
Simons, K.; Toomre, D. Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol., 2000, 1(1), 31-39.
[http://dx.doi.org/10.1038/35036052 ] [PMID: 11413487]
[185]
Langlet, C.; Bernard, A.M.; Drevot, P.; He, H.T. Membrane rafts and signaling by the multichain immune recognition receptors. Curr. Opin. Immunol., 2000, 12(3), 250-255.
[http://dx.doi.org/10.1016/S0952-7915(00)00084-4 ] [PMID: 10781401]
[186]
Strittmatter, W.J.; Saunders, A.M.; Schmechel, D.; Pericak-Vance, M.; Enghild, J.; Salvesen, G.S.; Roses, A.D. Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc. Natl. Acad. Sci. USA, 1993, 90(5), 1977-1981.
[http://dx.doi.org/10.1073/pnas.90.5.1977 ] [PMID: 8446617]
[187]
Fivaz, M.; Abrami, L.; van der Goot, F.G. Landing on lipid rafts. Trends Cell Biol., 1999, 9(6), 212-213.
[http://dx.doi.org/10.1016/S0962-8924(99)01567-6 ] [PMID: 10354632]
[188]
Wang, J.K.; Kiyokawa, E.; Verdin, E.; Trono, D. The Nef protein of HIV-1 associates with rafts and primes T cells for activation. Proc. Natl. Acad. Sci. USA, 2000, 97(1), 394-399.
[http://dx.doi.org/10.1073/pnas.97.1.394 ] [PMID: 10618429]
[189]
Nguyen, D.H.; Hildreth, J.E. Evidence for budding of human immunodeficiency virus type 1 selectively from glycolipid-enriched membrane lipid rafts. J. Virol., 2000, 74(7), 3264-3272.
[http://dx.doi.org/10.1128/JVI.74.7.3264-3272.2000 ] [PMID: 10708443]
[190]
Navab, M.; Anantharamaiah, G.M.; Reddy, S.T.; Hama, S.; Hough, G.; Grijalva, V.R.; Yu, N.; Ansell, B.J.; Datta, G.; Garber, D.W.; Fogelman, A.M. Apolipoprotein A-I mimetic peptides. Arterioscler. Thromb. Vasc. Biol., 2005, 25(7), 1325-1331.
[http://dx.doi.org/10.1161/01.ATV.0000165694.39518.95 ] [PMID: 15831812]
[191]
Gomaraschi, M.; Calabresi, L.; Rossoni, G.; Iametti, S.; Franceschini, G.; Stonik, J.A.; Remaley, A.T. Anti-inflammatory and cardioprotective activities of synthetic high-density lipoprotein containing apolipoprotein A-I mimetic peptides. J. Pharmacol. Exp. Ther., 2008, 324(2), 776-783.
[http://dx.doi.org/10.1124/jpet.107.129411 ] [PMID: 18042829]
[192]
Van Lenten, B.J.; Wagner, A.C.; Anantharamaiah, G.M.; Navab, M.; Reddy, S.T.; Buga, G.M.; Fogelman, A.M. Apolipoprotein A-I mimetic peptides. Curr. Atheroscler. Rep., 2009, 11(1), 52-57.
[http://dx.doi.org/10.1007/s11883-009-0008-8 ] [PMID: 19080728]
[193]
Neyen, C.; Mukhopadhyay, S.; Gordon, S.; Hagemann, T. An apolipoprotein A-I mimetic targets scavenger receptor A on tumor-associated macrophages: a prospective anticancer treatment? OncoImmunology, 2013, 2(6)e24461
[http://dx.doi.org/10.4161/onci.24461 ] [PMID: 23894706]
[194]
Zheng, G.; Chen, J.; Li, H.; Glickson, J.D. Rerouting lipoprotein nanoparticles to selected alternate receptors for the targeted delivery of cancer diagnostic and therapeutic agents. Proc. Natl. Acad. Sci. USA, 2005, 102(49), 17757-17762.
[http://dx.doi.org/10.1073/pnas.0508677102 ] [PMID: 16306263]
[195]
Biju, V. Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy. Chem. Soc. Rev., 2014, 43(3), 744-764.
[http://dx.doi.org/10.1039/C3CS60273G ] [PMID: 24220322]
[196]
Fortier, C.; Durocher, Y.; De Crescenzo, G. Surface modification of nonviral nanocarriers for enhanced gene delivery. Nanomedicine (Lond.), 2014, 9(1), 135-151.
[http://dx.doi.org/10.2217/nnm.13.194 ] [PMID: 24354815]
[197]
Gabizon, A.; Dagan, A.; Goren, D.; Barenholz, Y.; Fuks, Z. Liposomes as in vivo carriers of adriamycin: reduced cardiac uptake and preserved antitumor activity in mice. Cancer Res., 1982, 42(11), 4734-4739.
[PMID: 7127308]
[198]
Safra, T.; Muggia, F.; Jeffers, S.; Tsao-Wei, D.D.; Groshen, S.; Lyass, O.; Henderson, R.; Berry, G.; Gabizon, A. Pegylated liposomal doxorubicin (doxil): reduced clinical cardiotoxicity in patients reaching or exceeding cumulative doses of 500 mg/m2. Ann. Oncol., 2000, 11(8), 1029-1033.
[http://dx.doi.org/10.1023/A:1008365716693 ] [PMID: 11038041]
[199]
Hyun-Young, J.; James, S.P.; Dong-Eun, K.; Je-Yoel, C.; Pyung-Hwan, K.; Keun-Sik, K. Galactosylated liposomes for targeted co-delivery of doxorubicin/vimentin siRNA to hepatocellular carcinoma. Nanomaterials (Basel), 2016, 6, 141-156.
[http://dx.doi.org/10.3390/nano6080141]
[200]
Yan, X.; Scherphof, G.L.; Kamps, J.A. Liposome opsonization. J. Liposome Res., 2005, 15(1-2), 109-139.
[http://dx.doi.org/10.1081/LPR-64971 ] [PMID: 16194930]
[201]
Hashida, M.; Nishikawa, M.; Takakura, Y. Hepatic targeting of drugs and proteins by chemical modification. J. Control. Release, 1995, 36, 99-107.
[http://dx.doi.org/10.1016/0168-3659(95)00050-I]
[202]
Managit, C.; Kawakami, S.; Yamashita, F.; Hashida, M. Effect of galactose density on asialoglycoprotein receptor-mediated uptake of galactosylated liposomes. J. Pharm. Sci., 2005, 94(10), 2266-2275.
[http://dx.doi.org/10.1002/jps.20443 ] [PMID: 16136555]
[203]
Hattori, Y.; Kawakami, S.; Yamashita, F.; Hashida, M. Controlled biodistribution of galactosylated liposomes and incorporated probucol in hepatocyte-selective drug targeting. J. Control. Release, 2000, 69(3), 369-377.
[http://dx.doi.org/10.1016/S0168-3659(00)00338-2 ] [PMID: 11102677]
[204]
Managit, C.; Kawakami, S.; Yamashita, F.; Hashida, M. Uptake characteristics of galactosylated emulsion by HepG2 hepatoma cells. Int. J. Pharm., 2005, 301(1-2), 255-261.
[http://dx.doi.org/10.1016/j.ijpharm.2005.05.020 ] [PMID: 16076536]
[205]
Wang, S.N.; Deng, Y.H.; Xu, H.; Wu, H.B.; Qiu, Y.K.; Chen, D.W. Synthesis of a novel galactosylated lipid and its application to the hepatocyte-selective targeting of liposomal doxorubicin. Eur. J. Pharm. Biopharm., 2006, 62(1), 32-38.
[http://dx.doi.org/10.1016/j.ejpb.2005.07.004 ] [PMID: 16226883]
[206]
Terada, T.; Iwai, M.; Kawakami, S.; Yamashita, F.; Hashida, M. Novel PEG-matrix metalloproteinase-2 cleavable peptide-lipid containing galactosylated liposomes for hepatocellular carcinoma-selective targeting. J. Control. Release, 2006, 111(3), 333-342.
[http://dx.doi.org/10.1016/j.jconrel.2005.12.023 ] [PMID: 16488046]
[207]
Zhou, X.; Zhang, M.; Yung, B.; Li, H.; Zhou, C.; Lee, L.J.; Lee, R.J. Lactosylated liposomes for targeted delivery of doxorubicin to hepatocellular carcinoma. Int. J. Nanomedicine, 2012, 7, 5465-5474.
[PMID: 23093902]
[208]
Ye, B.; Yulin, Z.; Mengqiao, W.; Lianlian, L.; Robert, J.; Lee, J.X.; Lesheng, T. Targeted delivery of cordycepin to liver cancer cells using transferrin-conjugated liposomes. Anticancer Res., 2017, 37, 5207-5214.
[209]
Li-hua, L.; Pin-jing, Z.; Hua, N.; Yu-chao, C.; Dan, T.; Jin, C.; Yi, C. Pharmacokinetics and tissue distribution of docetaxel liposome mediated by a novel galactosylated cholesterol derivatives synthesized by lipase-catalyzed esterification in non-aqueous phase. Drug Deliv., 2016, 23(4), 1282-1290.
[210]
Murahashi, N.; Ishihara, H.; Sasaki, A.; Sakagami, M.; Hamana, H. Hepatic accumulation of glutamic acid branched neogalactosyllipid modified liposomes. Biol. Pharm. Bull., 1997, 20(3), 259-266.
[http://dx.doi.org/10.1248/bpb.20.259 ] [PMID: 9084883]
[211]
Shimada, K.; Kamps, J.A.; Regts, J.; Ikeda, K.; Shiozawa, T.; Hirota, S.; Scherphof, G.L. Biodistribution of liposomes containing synthetic galactose-terminated diacylglyceryl-poly(ethyleneglycol)s. Biochim. Biophys. Acta, 1997, 1326(2), 329-341.
[http://dx.doi.org/10.1016/S0005-2736(97)00036-9 ] [PMID: 9218563]
[212]
Rensen, P.C.N.; Sliedregt, L.A.J.M.; Ferns, M.; Kieviet, E.; van Rossenberg, S.M.; van Leeuwen, S.H.; van Berkel, T.J.; Biessen, E.A. Determination of the upper size limit for uptake and processing of ligands by the asialoglycoprotein receptor on hepatocytes in vitro and in vivo. J. Biol. Chem., 2001, 276(40), 37577-37584.
[http://dx.doi.org/10.1074/jbc.M101786200 ] [PMID: 11479285]
[213]
Kawakami, S.; Munakata, C.; Fumoto, S.; Yamashita, F.; Hashida, M. Novel galactosylated liposomes for hepatocyte-selective targeting of lipophilic drugs. J. Pharm. Sci., 2001, 90(2), 105-113.
[http://dx.doi.org/10.1002/1520-6017(200102)90:2<105:AID-JPS1>3.0.CO;2-1 ] [PMID: 11169527]
[214]
Wang, L.; Zhang, S.Q.; Gu, Y. Liver-targeted resveratrol liposome. Pharmaceut. J. PLA, 2006, 22, 241-245.
[215]
Counsell, R.E.; Pohland, R.C. Lipoproteins as potential site-specific delivery systems for diagnostic and therapeutic agents. J. Med. Chem., 1982, 25(10), 1115-1120.
[http://dx.doi.org/10.1021/jm00352a001 ] [PMID: 6754931]
[216]
Brinkman, N.; Bigler, D.; Bolli, R.; Foertsch, V. Methods for purification of alpha-1-antitrypsin andapolipoprotein A-1. US8962802 2015.
[217]
Vucica, Y.; Warren, G.L. Reconstituted HDL formulation. US9125943 2015.
[218]
Nanjee, M.N.; Crouse, J.R.; King, J.M.; Hovorka, R.; Rees, S.E.; Carson, E.R.; Morgenthaler, J.J.; Lerch, P.; Miller, N.E. Effects of intravenous infusion of lipid-free apo A-I in humans. Arterioscler. Thromb. Vasc. Biol., 1996, 16(9), 1203-1214.
[http://dx.doi.org/10.1161/01.ATV.16.9.1203 ] [PMID: 8792776]
[219]
Nanjee, M.N.; Doran, J.E.; Lerch, P.G.; Miller, N.E. Acute effects of intravenous infusion of ApoA1/phosphatidylcholine discs on plasma lipoproteins in humans. Arterioscler. Thromb. Vasc. Biol., 1999, 19(4), 979-989.
[http://dx.doi.org/10.1161/01.ATV.19.4.979 ] [PMID: 10195926]
[222]
Keyserling, C.H.; Barbaras, R.; Benghozi, R.; Dasseux, J.L. Development of CER-001: preclinical dose selection through to phase I clinical findings. Clin. Drug Investig., 2017, 37(5), 483-491.
[http://dx.doi.org/10.1007/s40261-017-0506-3 ] [PMID: 28213743]
[223]
Kootte, R.S.; Smits, L.P.; van der Valk, F.M.; Dasseux, J.L.; Keyserling, C.H.; Barbaras, R.; Paolini, J.F.; Santos, R.D.; van Dijk, T.H.; Dallinga-van Thie, G.M.; Nederveen, A.J.; Mulder, W.J.; Hovingh, G.K.; Kastelein, J.J.; Groen, A.K.; Stroes, E.S. Effect of open-label infusion of an apoA-I-containing particle (CER-001) on RCT and artery wall thickness in patients with FHA. J. Lipid Res., 2015, 56(3), 703-712.
[http://dx.doi.org/10.1194/jlr.M055665 ] [PMID: 25561459]
[224]
[225]
Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: classification, preparation, and applications. Nanoscale Res. Lett., 2013, 8(1), 102.
[http://dx.doi.org/10.1186/1556-276X-8-102 ] [PMID: 23432972]
[226]
Kuai, R.; Li, D.; Chen, Y.E.; Moon, J.J.; Schwendeman, A. High-density lipoproteins [HDL] – nature’s multi-functional nanoparticles. ACS Nano, 2016, 10(3), 3015-3041.
[http://dx.doi.org/10.1021/acsnano.5b07522 ] [PMID: 26889958]
[227]
Chyu, K.Y.; Shah, P.K. HDL/ApoA-1 infusion and ApoA-1 gene therapy in atherosclerosis. Front. Pharmacol., 2015, 6, 187.
[http://dx.doi.org/10.3389/fphar.2015.00187 ] [PMID: 26388776]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy