Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Exciting Potential of Nanoparticlized Lipidic System for Effective Treatment of Breast Cancer and Clinical Updates: A Translational Prospective

Author(s): Ranjit K. Harwansh*, Shiv Bahadur, Rohitas Deshmukh and Md. A. Rahman

Volume 26, Issue 11, 2020

Page: [1191 - 1205] Pages: 15

DOI: 10.2174/1381612826666200131101156

Price: $65

Abstract

Breast cancer (BC) is a multifactorial disease and becoming a major health issue in women throughout the globe. BC is a malignant type of cancer which results from transcriptional changes in proteins and genes. Besides the availability of modern medicines and detection tools, BC has become a topmost deadly disease and its cure still remains challenging. Nanotechnology based approaches are being employed for the diagnosis and treatment of BC at clinical stages. Nanosystems have a significant role in the study of the interaction of malignant cells with their microenvironment through receptor-based targeted approach. Nowadays, lipid-based nanocarriers are being popularized in the domain of pharmaceutical and medical biology for cancer therapy. Lipidic nanoparticlized systems (LNPs) have proven to have high loading efficiency, less toxicity, improved therapeutic efficacy, enhanced bioavailability and stability of the bioactive compounds compared to traditional drug delivery systems. In the present context, several LNPs based formulations have been undertaken in various phases of clinical trials in different countries. This review highlights the importance of chemotherapeutics based lipidic nanocarriers and their anticipated use for the treatment of BC. Furthermore, the clinical trials and future prospective of LNPs have been widely elaborated.

Keywords: Lipidic nanoparticlized system, nanocarriers, nanoparticles, breast cancer, clinical trials, bioactive compunds.

[1]
Barkat MA, Harshita , Ahmad J, Khan MA, Beg S, Ahmad FJ. insights into the targeting potential of thymoquinone for therapeutic intervention against triple-negative breast cancer. Curr Drug Targets 2018; 19(1): 70-80.
[http://dx.doi.org/10.2174/1389450118666170612095959] [PMID: 28606050]
[2]
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[3]
Lancaster RB, Gulla S, De Los Santos J, Umphrey H. Breast cancer screening and optimizing recommendations. Semin Roentgenol 2018; 53(4): 280-93.
[http://dx.doi.org/10.1053/j.ro.2018.08.002] [PMID: 30449346]
[4]
International agency for research on cancer (IARC). 2019. Available at: http://gco.iarc.fr
[5]
Menta A, Fouad TM, Lucci A, et al. Inflammatory breast cancer: what to know about this unique, aggressive breast cancer. Surg Clin North Am 2018; 98(4): 787-800.
[http://dx.doi.org/10.1016/j.suc.2018.03.009] [PMID: 30005774]
[6]
Provenzano E, Ulaner GA, Chin SF. Molecular classification of breast cancer. PET Clin 2018; 13(3): 325-38.
[http://dx.doi.org/10.1016/j.cpet.2018.02.004] [PMID: 30100073]
[7]
Chi Y, Xu H, Wang F, et al. ZKSCAN3 promotes breast cancer cell proliferation, migration and invasion. Biochem Biophys Res Commun 2018; 503(4): 2583-9.
[http://dx.doi.org/10.1016/j.bbrc.2018.07.019] [PMID: 30049438]
[8]
Chang L, Weiner LS, Hartman SJ, et al. Breast cancer treatment and its effects on aging. J Geriatr Oncol 2019; 10(2): 346-55.
[http://dx.doi.org/10.1016/j.jgo.2018.07.010] [PMID: 30078714]
[9]
Barkat MA, Beg S, Pottoo FH, Ahmad FJ. Nanopaclitaxel therapy: an evidence based review on the battle for next-generation formulation challenges. Nanomedicine (Lond) 2019; 14(10): 1323-41.
[http://dx.doi.org/10.2217/nnm-2018-0313] [PMID: 31124758]
[10]
Harshita , Barkat MA, Rizwanullah M, et al. Paclitaxel-loaded nanolipidic carriers with improved oral bioavailability and anticancer activity against human liver carcinoma. AAPS Pharm Sci Tech 2019; 20(2): 87.
[http://dx.doi.org/10.1208/s12249-019-1304-4] [PMID: 30675689]
[11]
Freitas RA. Nanomedicine. Vol I. Basic capabilities. Georgetown, TX: Landes BioScience. 1999: 509.
[12]
Gourley PL. Brief overview of BioMicroNano technologies. Biotechnol Prog 2005; 21(1): 2-10.
[http://dx.doi.org/10.1021/bp0498239] [PMID: 15903234]
[13]
Galindo-Rodriguez SA, Allemann E, Fessi H, Doelker E. Polymeric nanoparticles for oral delivery of drugs and vaccines: a critical evaluation of in vivo studies. Crit Rev Ther Drug Carrier Syst 2005; 22(5): 419-64.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v22.i5.10] [PMID: 16313233]
[14]
Emerich DF, Thanos CG. Targeted nanoparticle-based drug delivery and diagnosis. J Drug Target 2007; 15(3): 163-83.
[http://dx.doi.org/10.1080/10611860701231810] [PMID: 17454354]
[15]
Zhang L, Zhu D, Dong X, et al. Folate-modified lipid-polymer hybrid nanoparticles for targeted paclitaxel delivery. Int J Nanomedicine 2015; 10: 2101-14.
[PMID: 25844039]
[16]
Jain KK. Nanotechnology-based drug delivery for cancer. Technol Cancer Res Treat 2005; 4(4): 407-16.
[http://dx.doi.org/10.1177/153303460500400408] [PMID: 16029059]
[17]
Pathak K, Keshri L, Shah M. Lipid nanocarriers: influence of lipids on product development and pharmacokinetics. Crit Rev Ther Drug Carrier Syst 2011; 28(4): 357-93.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v28.i4.20] [PMID: 21967401]
[18]
Rahman MA, Harwansh R, Mirza MA, Hussain S, Hussain A. Oral lipid based drug delivery system (LBDDS): formulation, characterization and application: a review. Curr Drug Deliv 2011; 8(4): 330-45.
[http://dx.doi.org/10.2174/156720111795767906] [PMID: 21453264]
[19]
Talluri SV, Kuppusamy G, Karri VV, Tummala S, Madhunapantula SV. Lipid-based nanocarriers for breast cancer treatment - comprehensive review. Drug Deliv 2016; 23(4): 1291-305.
[http://dx.doi.org/10.3109/10717544.2015.1092183] [PMID: 26430913]
[20]
Malam Y, Loizidou M, Seifalian AM. Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci 2009; 30(11): 592-9.
[http://dx.doi.org/10.1016/j.tips.2009.08.004] [PMID: 19837467]
[21]
Hoffman AS. The origins and evolution of “controlled” drug delivery systems. J Control Release 2008; 132(3): 153-63.
[http://dx.doi.org/10.1016/j.jconrel.2008.08.012] [PMID: 18817820]
[22]
Wong HL, Bendayan R, Rauth AM, Li Y, Wu XY. Chemotherapy with anticancer drugs encapsulated in solid lipid nanoparticles. Adv Drug Deliv Rev 2007; 59(6): 491-504.
[http://dx.doi.org/10.1016/j.addr.2007.04.008] [PMID: 17532091]
[23]
Juillerat-Jeanneret L. The targeted delivery of cancer drugs across the blood-brain barrier: chemical modifications of drugs or drug-nanoparticles? Drug Discov Today 2008; 13(23-24): 1099-106.
[http://dx.doi.org/10.1016/j.drudis.2008.09.005] [PMID: 18848640]
[24]
Mukherjee S, Ray S, Thakur RS. Solid lipid nanoparticles: a modern formulation approach in drug delivery system. Indian J Pharm Sci 2009; 71(4): 349-58.
[http://dx.doi.org/10.4103/0250-474X.57282] [PMID: 20502539]
[25]
Garcion E, Lamprecht A, Heurtault B, et al. A new generation of anticancer, drug-loaded, colloidal vectors reverses multidrug resistance in glioma and reduces tumor progression in rats. Mol Cancer Ther 2006; 5(7): 1710-22.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0289] [PMID: 16891457]
[26]
Roger E, Lagarce F, Benoit JP. Development and characterization of a novel lipid nanocapsule formulation of Sn38 for oral administration. Eur J Pharm Biopharm 2011; 79(1): 181-8.
[http://dx.doi.org/10.1016/j.ejpb.2011.01.021] [PMID: 21303693]
[27]
Saliou B, Thomas O, Lautram N, et al. Development and in vitro evaluation of a novel lipid nanocapsule formulation of etoposide. Eur J Pharm Sci 2013; 50(2): 172-80.
[http://dx.doi.org/10.1016/j.ejps.2013.06.013] [PMID: 23831519]
[28]
Vrignaud S, Hureaux J, Wack S, Benoit JP, Saulnier P. Design, optimization and in vitro evaluation of reverse micelle-loaded lipid nanocarriers containing erlotinib hydrochloride. Int J Pharm 2012; 436(1-2): 194-200.
[http://dx.doi.org/10.1016/j.ijpharm.2012.06.026] [PMID: 22721853]
[29]
Montigaud Y, Ucakar B, Krishnamachary B, et al. Optimized acriflavine-loaded lipid nanocapsules as a safe and effective delivery system to treat breast cancer. Int J Pharm 2018; 551(1-2): 322-8.
[http://dx.doi.org/10.1016/j.ijpharm.2018.09.034] [PMID: 30236645]
[30]
Tsakiris N, Papavasileiou M, Bozzato E, Lopes A, Vigneron AM, Préat V. Combinational drug-loaded lipid nanocapsules for the treatment of cancer. Int J Pharm 2019; 569118588
[http://dx.doi.org/10.1016/j.ijpharm.2019.118588] [PMID: 31377406]
[31]
Burger KN, Staffhorst RW, de Vijlder HC, et al. Nanocapsules: lipid-coated aggregates of cisplatin with high cytotoxicity. Nat Med 2002; 8(1): 81-4.
[http://dx.doi.org/10.1038/nm0102-81] [PMID: 11786911]
[32]
Wong HL, Bendayan R, Rauth AM, Xue HY, Babakhanian K, Wu XY. A mechanistic study of enhanced doxorubicin uptake and retention in multidrug resistant breast cancer cells using a polymer-lipid hybrid nanoparticle system. J Pharmacol Exp Ther 2006; 317(3): 1372-81.
[http://dx.doi.org/10.1124/jpet.106.101154] [PMID: 16547167]
[33]
Wong HL, Rauth AM, Bendayan R, et al. A new polymer-lipid hybrid nanoparticle system increases cytotoxicity of doxorubicin against multidrug-resistant human breast cancer cells. Pharm Res 2006; 23(7): 1574-85.
[http://dx.doi.org/10.1007/s11095-006-0282-x] [PMID: 16786442]
[34]
Barras A, Mezzetti A, Richard A, et al. Formulation and characterization of polyphenol-loaded lipid nanocapsules. Int J Pharm 2009; 379(2): 270-7.
[http://dx.doi.org/10.1016/j.ijpharm.2009.05.054] [PMID: 19501139]
[35]
Shutava TG, Balkundi SS, Lvov YM. (-)-Epigallocatechin gallate/gelatin layer-by-layer assembled films and microcapsules. J Colloid Interface Sci 2009; 330(2): 276-83.
[http://dx.doi.org/10.1016/j.jcis.2008.10.082] [PMID: 19027120]
[36]
Granja A, Frias I, Neves AR, Pinheiro M, Reis S. Therapeutic potential of epigallocatechin gallate nanodelivery systems. BioMed Res Int 2017; 20175813793
[http://dx.doi.org/10.1155/2017/5813793] [PMID: 28791306]
[37]
Lu B, Xiong SB, Yang H, Yin XD, Chao RB. Solid lipid nanoparticles of mitoxantrone for local injection against breast cancer and its lymph node metastases. Eur J Pharm Sci 2006; 28(1-2): 86-95.
[http://dx.doi.org/10.1016/j.ejps.2006.01.001] [PMID: 16472996]
[38]
Yallapu MM, Gupta BK, Jaggi M, Chauhan SC. Fabrication of curcumin encapsulated PLGA nanoparticles for improved therapeutic effects in metastatic cancer cells. J Colloid Interface Sci 2010; 351(1): 19-29.
[http://dx.doi.org/10.1016/j.jcis.2010.05.022] [PMID: 20627257]
[39]
Muqbil I, Masood A, Sarkar FH, Mohammad RM, Azmi AS. Progress in nanotechnology based approaches to enhance the potential of chemopreventive agents. Cancers (Basel) 2011; 3(1): 428-45.
[http://dx.doi.org/10.3390/cancers3010428] [PMID: 24212623]
[40]
Lee MK, Lim SJ, Kim CK. Preparation, characterization and in vitro cytotoxicity of paclitaxel-loaded sterically stabilized solid lipid nanoparticles. Biomaterials 2007; 28(12): 2137-46.
[http://dx.doi.org/10.1016/j.biomaterials.2007.01.014] [PMID: 17257668]
[41]
Fricker G, Kromp T, Wendel A, et al. Phospholipids and lipid-based formulations in oral drug delivery. Pharm Res 2010; 27(8): 1469-86.
[http://dx.doi.org/10.1007/s11095-010-0130-x] [PMID: 20411409]
[42]
Salvi VR, Pawar P. Nanostructured lipid carriers (NLC) system: a novel drug targeting carrier. J Drug Deliv Sci Technol 2019; 51: 255-67.
[http://dx.doi.org/10.1016/j.jddst.2019.02.017]
[43]
Li X, Jia X, Niu H. Nanostructured lipid carriers co-delivering lapachone and doxorubicin for overcoming multidrug resistance in breast cancer therapy. Int J Nanomedicine 2018; 13: 4107-19.
[http://dx.doi.org/10.2147/IJN.S163929] [PMID: 30034236]
[44]
Ong YS, Saiful Yazan L, Ng WK, et al. Thymoquinone loaded in nanostructured lipid carrier showed enhanced anticancer activity in 4T1 tumor-bearing mice. Nanomedicine (Lond) 2018; 13(13): 1567-82.
[http://dx.doi.org/10.2217/nnm-2017-0322] [PMID: 30028248]
[45]
Fernandes RS, Silva JO, Monteiro LOF, et al. Doxorubicin-loaded nanocarriers: A comparative study of liposome and nanostructured lipid carrier as alternatives for cancer therapy. Biomed Pharmacother 2016; 84: 252-7.
[http://dx.doi.org/10.1016/j.biopha.2016.09.032] [PMID: 27664949]
[46]
Wang L, Luo Q, Lin T, et al. PEGylated nanostructured lipid carriers (PEG-NLC) as a novel drug delivery system for biochanin A. Drug Dev Ind Pharm 2015; 41(7): 1204-12.
[http://dx.doi.org/10.3109/03639045.2014.938082] [PMID: 25010850]
[47]
Borges GSM, Silva JO, Fernandes RS, et al. Sclareol is a potent enhancer of doxorubicin: Evaluation of the free combination and co-loaded nanostructured lipid carriers against breast cancer. Life Sci 2019; 232116678
[http://dx.doi.org/10.1016/j.lfs.2019.116678] [PMID: 31344429]
[48]
Poonia N, Kaur Narang J, Lather V, et al. Resveratrol loaded functionalized nanostructured lipid carriers for breast cancer targeting: Systematic development, characterization and pharmacokinetic evaluation. Colloids Surf B Biointerfaces 2019; 181: 756-66.
[http://dx.doi.org/10.1016/j.colsurfb.2019.06.004] [PMID: 31234063]
[49]
Irby D, Du C, Li F. Lipid-drug conjugate for enhancing drug delivery. Mol Pharm 2017; 14(5): 1325-38.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b01027] [PMID: 28080053]
[50]
Hasan M, Leak RK, Stratford RE, Zlotos DP, Witt-Enderby PA. Drug conjugates-an emerging approach to treat breast cancer. Pharmacol Res Perspect 2018; 6(4)e00417
[http://dx.doi.org/10.1002/prp2.417] [PMID: 29983986]
[51]
Zhang YJ, Zhan X, Wang L, Ho RJ, Sasaki T. pH-responsive artemisinin dimer in lipid nanoparticles are effective against human breast cancer in a xenograft model. J Pharm Sci 2015; 104(5): 1815-24.
[http://dx.doi.org/10.1002/jps.24407] [PMID: 25753991]
[52]
Zhang T, Li M, Yang R, et al. Therapeutic efficacy of lipid emulsions of docetaxel-linoleic acid conjugate in breast cancer. Int J Pharm 2018; 546(1-2): 61-9.
[http://dx.doi.org/10.1016/j.ijpharm.2018.05.032] [PMID: 29763687]
[53]
Radhakrishnan R, Pooja D, Kulhari H, et al. Bombesin conjugated solid lipid nanoparticles for improved delivery of epigallocatechin gallate for breast cancer treatment. Chem Phys Lipids 2019; 3084(19): 30011-8
[http://dx.doi.org/10.1016/j.chemphyslip.2019.04.005]
[54]
Wong HL, Rauth AM, Bendayan R, Wu XY. In vivo evaluation of a new polymer-lipid hybrid nanoparticle (PLN) formulation of doxorubicin in a murine solid tumor model. Eur J Pharm Biopharm 2007; 65(3): 300-8.
[http://dx.doi.org/10.1016/j.ejpb.2006.10.022] [PMID: 17156986]
[55]
Yang Z, Luo X, Zhang X, Liu J, Jiang Q. Targeted delivery of 10-hydroxycamptothecin to human breast cancers by cyclic RGD-modified lipid-polymer hybrid nanoparticles. Biomed Mater 2013; 8(2)025012
[http://dx.doi.org/10.1088/1748-6041/8/2/025012] [PMID: 23507576]
[56]
Dave V, Tak K, Sohgaura A, Gupta A, Sadhu V, Reddy KR. Lipid-polymer hybrid nanoparticles: Synthesis strategies and biomedical applications. J Microbiol Methods 2019; 160: 130-42.
[http://dx.doi.org/10.1016/j.mimet.2019.03.017] [PMID: 30898602]
[57]
Shuhendler AJ, Cheung RY, Manias J, Connor A, Rauth AM, Wu XY. A novel doxorubicin-mitomycin C co-encapsulated nanoparticle formulation exhibits anti-cancer synergy in multidrug resistant human breast cancer cells. Breast Cancer Res Treat 2010; 119(2): 255-69.
[http://dx.doi.org/10.1007/s10549-008-0271-3] [PMID: 19221875]
[58]
Li J, Xu W, Yuan X, et al. Polymer-lipid hybrid anti-HER2 nanoparticles for targeted salinomycin delivery to HER2-positive breast cancer stem cells and cancer cells. Int J Nanomedicine 2017; 12: 6909-21.
[http://dx.doi.org/10.2147/IJN.S144184] [PMID: 29075110]
[59]
Wan Y, Dai W, Nevagi RJ, Toth I, Moyle PM. Multifunctional peptide-lipid nanocomplexes for efficient targeted delivery of DNA and siRNA into breast cancer cells. Acta Biomater 2017; 59: 257-68.
[http://dx.doi.org/10.1016/j.actbio.2017.06.032] [PMID: 28655658]
[60]
Jadon RS, Sharma M. Docetaxel-loaded lipid-polymer hybrid nanoparticles for breast cancer therapeutics. J Drug Deliv Sci Technol 2019; 51: 475-84.
[http://dx.doi.org/10.1016/j.jddst.2019.03.039]
[61]
Su X, Wang Z, Li L, et al. Lipid-polymer nanoparticles encapsulating doxorubicin and 2′-deoxy-5-azacytidine enhance the sensitivity of cancer cells to chemical therapeutics. Mol Pharm 2013; 10(5): 1901-9.
[http://dx.doi.org/10.1021/mp300675c] [PMID: 23570548]
[62]
Jain SK, Chaurasiya A, Gupta Y, et al. Development and characterization of 5-FU bearing ferritin appended solid lipid nanoparticles for tumour targeting. J Microencapsul 2008; 25(5): 289-97.
[http://dx.doi.org/10.1080/02652040701799598] [PMID: 18608808]
[63]
Zheng Y, Yu B, Weecharangsan W, et al. Transferrin-conjugated lipid-coated PLGA nanoparticles for targeted delivery of aromatase inhibitor 7alpha-APTADD to breast cancer cells. Int J Pharm 2010; 390(2): 234-41.
[http://dx.doi.org/10.1016/j.ijpharm.2010.02.008] [PMID: 20156537]
[64]
Gao LY, Liu XY, Chen CJ, et al. Core-shell type lipid/rPAA-Chol polymer hybrid nanoparticles for in vivo siRNA delivery. Biomaterials 2014; 35(6): 2066-78.
[http://dx.doi.org/10.1016/j.biomaterials.2013.11.046] [PMID: 24315577]
[65]
Kong SD, Sartor M, Hu CMJ, Zhang W, Zhang L, Jin S. Magnetic field activated lipid-polymer hybrid nanoparticles for stimuli-responsive drug release. Acta Biomater 2013; 9(3): 5447-52.
[http://dx.doi.org/10.1016/j.actbio.2012.11.006] [PMID: 23149252]
[66]
Kumar SS, Mahesh A, Mahadevan S, Mandal AB. Synthesis and characterization of curcumin loaded polymer/lipid based nanoparticles and evaluation of their antitumor effects on MCF-7 cells. Biochim Biophys Acta 2014; 1840(6): 1913-22.
[http://dx.doi.org/10.1016/j.bbagen.2014.01.016] [PMID: 24440669]
[67]
Mulik RS, Mönkkönen J, Juvonen RO, Mahadik KR, Paradkar AR. Transferrin mediated solid lipid nanoparticles containing curcumin: enhanced in vitro anticancer activity by induction of apoptosis. Int J Pharm 2010; 398(1-2): 190-203.
[http://dx.doi.org/10.1016/j.ijpharm.2010.07.021] [PMID: 20655375]
[68]
Liu Y, Li K, Pan J, Liu B, Feng SS. Folic acid conjugated nanoparticles of mixed lipid monolayer shell and biodegradable polymer core for targeted delivery of Docetaxel. Biomaterials 2010; 31(2): 330-8.
[http://dx.doi.org/10.1016/j.biomaterials.2009.09.036] [PMID: 19783040]
[69]
Marino P, Preatoni A, Cantoni A, Buccheri G. Single-agent chemotherapy versus combination chemotherapy in advanced non-small cell lung cancer: a quality and meta-analysis study. Lung Cancer 1995; 13(1): 1-12.
[http://dx.doi.org/10.1016/0169-5002(95)00477-I] [PMID: 8528635]
[70]
Prasad P, Shuhendler A, Cai P, Rauth AM, Wu XY. Doxorubicin and mitomycin C co-loaded polymer-lipid hybrid nanoparticles inhibit growth of sensitive and multidrug resistant human mammary tumor xenografts. Cancer Lett 2013; 334(2): 263-73.
[http://dx.doi.org/10.1016/j.canlet.2012.08.008] [PMID: 22902994]
[71]
Wang H, Zhao P, Su W, et al. PLGA/polymeric liposome for targeted drug and gene co-delivery. Biomaterials 2010; 31(33): 8741-8.
[http://dx.doi.org/10.1016/j.biomaterials.2010.07.082] [PMID: 20727587]
[72]
Zu YG, Yuan S, Zhao XH, Zhang Y, Zhang XN, Jiang R. [Preparation, activity and targeting ability evaluation in vitro on folate mediated epigallocatechin-3-gallate albumin nanoparticles]. Yao Xue Xue Bao 2009; 44(5): 525-31.
[PMID: 19618731]
[73]
Aravind A, Jeyamohan P, Nair R, et al. AS1411 aptamer tagged PLGA-lecithin-PEG nanoparticles for tumor cell targeting and drug delivery. Biotechnol Bioeng 2012; 109(11): 2920-31.
[http://dx.doi.org/10.1002/bit.24558] [PMID: 22615073]
[74]
Wang Z, Ho PC. Self-assembled core-shell vascular-targeted nanocapsules for temporal antivasculature and anticancer activities. Small 2010; 6(22): 2576-83.
[http://dx.doi.org/10.1002/smll.201001122] [PMID: 20976704]
[75]
Nguyen HT, Tran TH, Thapa RK, et al. Targeted co-delivery of polypyrrole and rapamycin by trastuzumab-conjugated liposomes for combined chemo-photothermal therapy. Int J Pharm 2017; 527(1-2): 61-71.
[http://dx.doi.org/10.1016/j.ijpharm.2017.05.034] [PMID: 28528212]
[76]
Fang DL, Chen Y, Xu B, et al. Development of lipid-shell and polymer core nanoparticles with water-soluble salidroside for anti-cancer therapy. Int J Mol Sci 2014; 15(3): 3373-88.
[http://dx.doi.org/10.3390/ijms15033373] [PMID: 24573250]
[77]
Maillard S, Ameller T, Gauduchon J, et al. Innovative drug delivery nanosystems improve the anti-tumor activity in vitro and in vivo of anti-estrogens in human breast cancer and multiple myeloma. J Steroid Biochem Mol Biol 2005; 94(1-3): 111-21.
[http://dx.doi.org/10.1016/j.jsbmb.2004.12.023] [PMID: 15862956]
[78]
Abbasalipourkabir R, Salehzadeh A, Abdullah R. Antitumor activity of tamoxifen loaded solid lipid nanoparticles on induced mammary tumor gland in sprague-dawley rats. Afr J Biotechnol 2010; 9(43): 7337-45.
[79]
ALHaj NATamoxifen drug loading solid lipid nanoparticles prepared by hot high pressure homogenization techniques. Am J Pharmacol Toxicol 2008; 3(3): 219-24.
[http://dx.doi.org/10.3844/ajptsp.2008.219.224]
[80]
Barnard K, Klimberg VS. An update on randomized clinical trials in breast cancer. Surg Oncol Clin N Am 2017; 26(4): 587-620.
[http://dx.doi.org/10.1016/j.soc.2017.05.013] [PMID: 28923221]
[81]
NIH. US National Library Of Medicine. Availble at: https://clinicaltrials.gov/
[82]
Tagami T, Ozeki T. Recent trends in clinical trials related to carrier-based drugs. J Pharm Sci 2017; 106(9): 2219-26.
[http://dx.doi.org/10.1016/j.xphs.2017.02.026] [PMID: 28259767]
[83]
Yingchoncharoen P, Kalinowski DS, Richardson DR. Lipid-based drug delivery systems in cancer therapy: what is available and what is yet to come. Pharmacol Rev 2016; 68(3): 701-87.
[http://dx.doi.org/10.1124/pr.115.012070] [PMID: 27363439]
[84]
Singh SK, Singh S, Lillard JWJ Jr, Singh R. Drug delivery approaches for breast cancer. Int J Nanomedicine 2017; 12: 6205-18.
[http://dx.doi.org/10.2147/IJN.S140325] [PMID: 28883730]
[85]
Puri A, Loomis K, Smith B, et al. Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. Crit Rev Ther Drug Carrier Syst 2009; 26(6): 523-80.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v26.i6.10] [PMID: 20402623]
[86]
Gokce EH, Ozyazici M, Souto EB. Nanoparticulate strategies for effective delivery of poorly soluble therapeutics. Ther Deliv 2010; 1(1): 149-67.
[http://dx.doi.org/10.4155/tde.10.4] [PMID: 22816125]
[87]
Wang T, Luo Y. Biological fate of ingested lipid-based nanoparticles: current understanding and future directions. Nanoscale 2019; 11(23): 11048-63.
[http://dx.doi.org/10.1039/C9NR03025E] [PMID: 31149694]
[88]
Li Z, Tan S, Li S, Shen Q, Wang K. Cancer drug delivery in the nano era: An overview and perspectives (Review). Oncol Rep 2017; 38(2): 611-24.
[http://dx.doi.org/10.3892/or.2017.5718] [PMID: 28627697]
[89]
Parvanian S, Mostafavi SM, Aghashiri M. Multifunctional nanoparticle developments in cancer diagnosis and treatment. Sen Biosen Res 2017; 13: 81-7.
[http://dx.doi.org/10.1016/j.sbsr.2016.08.002]
[90]
Harwansh RK, Deshmukh R, Barkat MA, Rahman MA. Bioinspired polymeric-based core-shell smart nano-systems. Pharm Nanotechnol 2019; 7(3): 181-205.
[http://dx.doi.org/10.2174/2211738507666190429104550] [PMID: 31486750]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy