Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

In Silico Modeling of the α7 Nicotinic Acetylcholine Receptor: New Pharmacological Challenges Associated with Multiple Modes of Signaling

Author(s): Alican Gulsevin*, Roger L. Papke and Nicole Horenstein*

Volume 20, Issue 10, 2020

Page: [841 - 864] Pages: 24

DOI: 10.2174/1389557520666200130105256

Price: $65

Abstract

The α7 nicotinic acetylcholine receptor is a homopentameric ion-channel of the Cys-loop superfamily characterized by its low probability of opening, high calcium permeability, and rapid desensitization. The α7 receptor has been targeted for the treatment of the cognitive symptoms of schizophrenia, depression, and Alzheimer’s disease, but it is also involved in inflammatory modulation as a part of the cholinergic anti-inflammatory pathway. Despite its functional importance, in silico studies of the α7 receptor cannot produce a general model explaining the structural features of receptor activation, nor predict the mode of action for various ligand classes. Two particular problems in modeling the α7 nAChR are the absence of a high-resolution structure and the presence of five potentially nonequivalent orthosteric ligand binding sites. There is wide variability regarding the templates used for homology modeling, types of ligands investigated, simulation methods, and simulation times. However, a systematic survey focusing on the methodological similarities and differences in modeling α7 has not been done. In this work, we make a critical analysis of the modeling literature of α7 nAChR by comparing the findings of computational studies with each other and with experimental studies under the main topics of structural studies, ligand binding studies, and comparisons with other nAChR. In light of our findings, we also summarize current problems in the field and make suggestions for future studies concerning modeling of the α7 receptor.

Keywords: Anti-inflammatory, nAChR, central nervous system, molecular dynamics, Cys-loop, schizophrenia.

Graphical Abstract
[1]
Yu, C.R.; Role, L.W. Functional contribution of the α7 subunit to multiple subtypes of nicotinic receptors in embryonic chick sympathetic neurones. J. Physiol., 1998, 509(Pt 3), 651-665.
[http://dx.doi.org/10.1111/j.1469-7793.1998.651bm.x] [PMID: 9596789]
[2]
Séguéla, P.; Wadiche, J.; Dineley-Miller, K.; Dani, J.A.; Patrick, J.W. Molecular cloning, functional properties, and distribution of rat brain α 7: a nicotinic cation channel highly permeable to calcium. J. Neurosci., 1993, 13(2), 596-604.
[http://dx.doi.org/10.1523/JNEUROSCI.13-02-00596.1993] [PMID: 7678857]
[3]
Couturier, S.; Bertrand, D.; Matter, J.M.; Hernandez, M.C.; Bertrand, S.; Millar, N.; Valera, S.; Barkas, T.; Ballivet, M. A neuronal nicotinic acetylcholine receptor subunit (α 7) is developmentally regulated and forms a homo-oligomeric channel blocked by α- BTX. Neuron, 1990, 5(6), 847-856.http://www.ncbi.nlm.nih.gov/pubmed/1702646 [Internet].
[http://dx.doi.org/10.1016/0896-6273(90)90344-F] [PMID: 1702646]
[4]
Martin, L.F.; Freedman, R. Schizophrenia and the α7 Nicotinic Acetylcholine Receptor., 2007.http://www.sciencedirect.com/science/article/pii/S0074774206780084
[http://dx.doi.org/10.1016/S0074-7742(06)78008-4]
[5]
Beinat, C.; Banister, S.D.; Herrera, M.; Law, V.; Kassiou, M. The therapeutic potential of α7 nicotinic acetylcholine receptor (α7 nAChR) agonists for the treatment of the cognitive deficits associated with schizophrenia. CNS Drugs, 2015, 29(7), 529-542.http://link.springer.com/10.1007/s40263-015-0260-0%5Cnhttp://www.ncbi.nlm.nih.gov/pubmed/26242477 [Internet].
[http://dx.doi.org/10.1007/s40263-015-0260-0] [PMID: 26242477]
[6]
Wallace, TL; Ballard, TM; Pouzet, B; Riedel, WJ; Wettstein, JG Drug targets for cognitive enhancement in neuropsychiatric disorders. CNS Drugs, 2015, 29(7), 529-542. 2011
[7]
Mineur, Y.S.; Mose, T.N.; Blakeman, S.; Picciotto, M.R. Hippocampal α7 nicotinic ACh receptors contribute to modulation of depression-like behaviour in C57BL/6J mice. Br. J. Pharmacol., 2017, 1-12.
[PMID: 28264149]
[8]
Zhao, D.; Xu, X.; Pan, L.; Zhu, W.; Fu, X.; Guo, L.; Lu, Q.; Wang, J. Pharmacologic activation of cholinergic alpha7 nicotinic receptors mitigates depressive-like behavior in a mouse model of chronic stress. J. Neuroinflammat., 2017, 14(1), 234.https://jneuroinflammation.biomedcentral.com/articles/10.1186/s12974-017-1007-2 [Internet].
[http://dx.doi.org/10.1186/s12974-017-1007-2] [PMID: 29197398]
[9]
Borovikova, L.V.; Ivanova, S.; Zhang, M.; Yang, H.; Botchkina, G.I.; Watkins, L.R.; Wang, H.; Abumrad, N.; Eaton, J.W.; Tracey, K.J. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature, 2000, 405(6785), 458-462.
[http://dx.doi.org/10.1038/35013070] [PMID: 10839541]
[10]
Wang, H.; Yu, M.; Ochani, M.; Amella, C.A.; Tanovic, M.; Susarla, S.; Li, J.H.; Wang, H.; Yang, H.; Ulloa, L.; Al-Abed, Y.; Czura, C.J.; Tracey, K.J. Nicotinic acetylcholine receptor α7 subunit is an essential regulator of inflammation. Nature, 2003, 421(6921), 384-388.
[http://dx.doi.org/10.1038/nature01339] [PMID: 12508119]
[11]
Horenstein, N.A.; Papke, R.L. Anti-inflammatory silent agonists. ACS Med. Chem. Lett., 2017, 8(10), 989-991. [Internet].
[http://dx.doi.org/10.1021/acsmedchemlett.7b00368] [PMID: 29057037]
[12]
Papke, R.L.; Bagdas, D.; Kulkarni, A.R.; Gould, T.; AlSharari, S.D.; Thakur, G.A.; Damaj, M.I. The analgesic-like properties of the alpha7 nAChR silent agonist NS6740 is associated with non-conducting conformations of the receptor. Neuropharmacology, 2015, 91, 34-42.
[http://dx.doi.org/10.1016/j.neuropharm.2014.12.002] [PMID: 25497451]
[13]
Thomsen, M.S.; Mikkelsen, J.D. The α7 nicotinic acetylcholine receptor ligands methyllycaconitine, NS6740 and GTS-21 reduce lipopolysaccharide-induced TNF-α release from microglia. J. Neuroimmunol., 2012, 251(1-2), 65-72. [Internet]
[http://dx.doi.org/10.1016/j.jneuroim.2012.07.006] [PMID: 22884467]
[14]
Li, H.; Zhang, Z-Z.; Zhan, J.; He, X-H.; Song, X-M.; Wang, Y-L. Protective effect of PNU-120596, a selective α7 nicotinic acetylcholine receptor-positive allosteric modulator, on myocardial ischemia-reperfusion injury in rats. J. Cardiovasc. Pharmacol., 2012, 59(6), 507-513.
[http://dx.doi.org/10.1097/FJC.0b013e31824c86c3] [PMID: 22343370]
[15]
Palma, E.; Bertrand, S.; Binzoni, T.; Bertrand, D. Neuronal nicotinic α 7 receptor expressed in Xenopus oocytes presents five putative binding sites for methyllycaconitine. J. Physiol., 1996, 491(Pt 1), 151-161. [Internet].
[http://dx.doi.org/10.1113/jphysiol.1996.sp021203] [PMID: 9011607]
[16]
Van Arnam, E.B.; Blythe, E.E.; Lester, H.A.; Dougherty, D.A. An unusual pattern of ligand-receptor interactions for the α7 nicotinic acetylcholine receptor, with implications for the binding of varenicline. Mol. Pharmacol., 2013, 84(2), 201-207.http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3716316&tool=pmcentrez&rendertype=abstract [Internet].
[http://dx.doi.org/10.1124/mol.113.085795] [PMID: 23680636]
[17]
Zhong, W.; Gallivan, J.P.; Zhang, Y.; Li, L.; Lester, H.A.; Dougherty, D.A. From ab initio quantum mechanics to molecular neurobiology: A cation-π binding site in the nicotinic receptor. Proc. Natl. Acad. Sci. USA, 1998, 95(21), 12088-12093.http://www.pnas.org/content/95/21/12088 [Internet].
[http://dx.doi.org/10.1073/pnas.95.21.12088] [PMID: 9770444]
[18]
Lee, W.Y.; Free, C.R.; Sine, S.M. Binding to gating transduction in nicotinic receptors: Cys-loop energetically couples to pre-M1 and M2-M3 regions. J. Neurosci., 2009, 29(10), 3189-3199.http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2728446&tool=pmcentrez&rendertype=abstract [Internet].
[http://dx.doi.org/10.1523/JNEUROSCI.6185-08.2009] [PMID: 19279256]
[19]
Stokes, C.; Treinin, M.; Papke, R.L. Looking below the surface of nicotinic acetylcholine receptors. Trends Pharmacol. Sci., 2015, 36(8), 514-523.http://www.sciencedirect.com/science/article/pii/S0165614715000929 [Internet].
[http://dx.doi.org/10.1016/j.tips.2015.05.002] [PMID: 26067101]
[20]
Kabbani, N.; Nordman, J.C.; Corgiat, B.A.; Veltri, D.P.; Shehu, A.; Seymour, V.A.; Adams, D.J. Are nicotinic acetylcholine receptors coupled to G proteins? BioEssays, 2013, 35(12), 1025-1034.
[http://dx.doi.org/10.1002/bies.201300082] [PMID: 24185813]
[21]
Kracun, S.; Harkness, P.C.; Gibb, A.J.; Millar, N.S. Influence of the M3-M4 intracellular domain upon nicotinic acetylcholine receptor assembly, targeting and function. Br. J. Pharmacol., 2008, 153(7), 1474-1484.http://doi.wiley.com/10.1038/sj.bjp.0707676 [Internet].
[http://dx.doi.org/10.1038/sj.bjp.0707676] [PMID: 18204482]
[22]
Purohit, P.; Mitra, A.; Auerbach, A. A stepwise mechanism for acetylcholine receptor channel gating. Nature, 2007, 446(7138), 930-933.
[http://dx.doi.org/10.1038/nature05721] [PMID: 17443187]
[23]
Horenstein, N.A.; Papke, R.L.; Kulkarni, A.R.; Chaturbhuj, G.U.; Stokes, C.; Manther, K.; Thakur, G.A. Critical molecular determinants of α7 nicotinic acetylcholine receptor allosteric activation: Separation of direct allosteric activation and positive allosteric modulation. J. Biol. Chem., 2016, 291(10), 5049-5067.
[http://dx.doi.org/10.1074/jbc.M115.692392] [PMID: 26742843]
[24]
Gulsevin, A.; Papke, R.L.; Stokes, C.; Garai, S.; Thakur, G.A.; Quadri, M.; Horenstein, N.A. Allosteric agonism of α7 nicotinic acetylcholine receptors: Receptor modulation outside the orthosteric site. Mol. Pharmacol., 2019, 95(6), 606-614.http://molpharm.aspetjournals.org/lookup/doi/10.1124/mol.119.115758 [Internet].
[http://dx.doi.org/10.1124/mol.119.115758] [PMID: 30944209]
[25]
Gill, J.K.; Savolainen, M.; Young, G.T.; Zwart, R.; Sher, E.; Millar, N.S. Agonist activation of α7 nicotinic acetylcholine receptors via an allosteric transmembrane site. Proc. Natl. Acad. Sci. USA, 2011, 108(14), 5867-5872.http://www.pnas.org/cgi/doi/10.1073/pnas.1017975108 [Internet].
[http://dx.doi.org/10.1073/pnas.1017975108] [PMID: 21436053]
[26]
Young, G.T.; Zwart, R.; Walker, A.S.; Sher, E.; Millar, N.S. Potentiation of α7 nicotinic acetylcholine receptors via an allosteric transmembrane site. Proc. Natl. Acad. Sci. USA, 2008, 105(38), 14686-14691.
[http://dx.doi.org/10.1073/pnas.0804372105] [PMID: 18791069]
[27]
Dellisanti, C.D.; Yao, Y.; Stroud, J.C.; Wang, Z-Z.; Chen, L. Crystal structure of the extracellular domain of nAChR α1 bound to α-bungarotoxin at 1.94 A resolution. Nat. Neurosci., 2007, 10(8), 953-962.
[http://dx.doi.org/10.1038/nn1942] [PMID: 17643119]
[28]
Kouvatsos, N.; Giastas, P.; Chroni-Tzartou, D.; Poulopoulou, C.; Tzartos, S.J. Crystal structure of a human neuronal nAChR extracellular domain in pentameric assembly: Ligand-bound α2 homopentamer. Proc. Natl. Acad. Sci. USA, 2016, 113(34), 9635-9640.http://www.pnas.org/lookup/doi/10.1073/pnas.1602619113 [Internet].
[http://dx.doi.org/10.1073/pnas.1602619113] [PMID: 27493220]
[29]
Zouridakis, M.; Giastas, P.; Zarkadas, E.; Chroni-Tzartou, D.; Bregestovski, P.; Tzartos, S.J. Crystal structures of free and antagonist-bound states of human α9 nicotinic receptor extracellular domain. Nat. Struct. Mol. Biol., 2014, 21(11), 976-980.http://www.ncbi.nlm.nih.gov/pubmed/25282151 [Internet].
[http://dx.doi.org/10.1038/nsmb.2900] [PMID: 25282151]
[30]
Unwin, N. Refined structure of the nicotinic acetylcholine receptor at 4A resolution. J. Mol. Biol., 2005, 346(4), 967-989.
[http://dx.doi.org/10.1016/j.jmb.2004.12.031] [PMID: 15701510]
[31]
Morales-Perez, C.L.; Noviello, C.M.; Hibbs, R.E. X-ray structure of the human α4β2 nicotinic receptor. Nature, 2016, 538(7625), 411-415.http://www.nature.com/doifinder/10.1038/nature19785%5Cnhttp://www.ncbi.nlm.nih.gov/pubmed/27698419 [Internet].
[http://dx.doi.org/10.1038/nature19785] [PMID: 27698419]
[32]
Walsh, R.M.; Roh, S.H.; Gharpure, A.; Morales-Perez, C.L.; Teng, J.; Hibbs, R.E. Structural principles of distinct assemblies of the human α4β2 nicotinic receptor, 2018.http://www.rcsb.org/structure/6CNK
[http://dx.doi.org/10.1038/s41586-018-0081-7]
[33]
Smit, A.B.; Syed, N.I.; Schaap, D.; van Minnen, J.; Klumperman, J.; Kits, K.S.; Lodder, H.; van der Schors, R.C.; van Elk, R.; Sorgedrager, B.; Brejc, K.; Sixma, T.K.; Geraerts, W.P. A glia-derived acetylcholine-binding protein that modulates synaptic transmission. Nature, 2001, 411(6835), 261-268. [Internet]
[http://dx.doi.org/10.1038/35077000] [PMID: 11357121]
[34]
Sixma, T.K.; Smit, A.B. Acetylcholine binding protein (AChBP): A secreted glial protein that provides a high-resolution model for the extracellular domain of pentameric ligand-gated ion channels. Annu. Rev. Biophys. Biomol. Struct., 2003, 32(1), 311-334.http://www.annualreviews.org/doi/10.1146/annurev.biophys.32.110601.142536 [Internet].
[http://dx.doi.org/10.1146/annurev.biophys.32.110601.142536] [PMID: 12695308]
[35]
Celie, P.H.N.; Klaassen, R.V.; van Rossum-Fikkert, S.E.; van Elk, R.; van Nierop, P.; Smit, A.B.; Sixma, T.K. Crystal structure of acetylcholine-binding protein from Bulinus truncatus reveals the conserved structural scaffold and sites of variation in nicotinic acetylcholine receptors. J. Biol. Chem., 2005, 280(28), 26457-26466.
[http://dx.doi.org/10.1074/jbc.M414476200] [PMID: 15899893]
[36]
McCormack, T.; Petrovich, R.M.; Mercier, K.A.; DeRose, E.F.; Cuneo, M.J.; Williams, J.; Johnson, K.L.; Lamb, P.W.; London, R.E.; Yakel, J.L. Identification and functional characterization of a novel acetylcholine-binding protein from the marine annelid Capitella teleta. Biochemistry, 2010, 49(10), 2279-2287.
[http://dx.doi.org/10.1021/bi902023y] [PMID: 20136097]
[37]
Brejc, K.; van Dijk, W.J.; Klaassen, R.V.; Schuurmans, M.; van Der Oost, J.; Smit, A.B.; Sixma, T.K. Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature, 2001, 411(6835), 269-276. [Internet].
[http://dx.doi.org/10.1038/35077011] [PMID: 11357122]
[38]
Hansen, S.B.; Sulzenbacher, G.; Huxford, T.; Marchot, P.; Taylor, P.; Bourne, Y. Structures of Aplysia AChBP complexes with nicotinic agonists and antagonists reveal distinctive binding interfaces and conformations., 2005.http://emboj.embopress.org/cgi/doi/10.1038/sj.emboj.7600828
[http://dx.doi.org/10.1038/sj.emboj.7600828]
[39]
Shahsavar, A.; Gajhede, M.; Kastrup, J.S.; Balle, T. Structural Studies of Nicotinic Acetylcholine Receptors: Using Acetylcholine- Binding Protein as a Structural Surrogate. Basic Clin. Pharmacol. Toxicol., 2016, 118(6), 399-407.http://doi.wiley.com/10.1111/bcpt.12528 [Internet].
[http://dx.doi.org/10.1111/bcpt.12528] [PMID: 26572235]
[40]
Ulens, C.; Akdemir, A.; Jongejan, A.; van Elk, R.; Bertrand, S.; Perrakis, A.; Leurs, R.; Smit, A.B.; Sixma, T.K.; Bertrand, D.; de Esch, I.J. Use of acetylcholine binding protein in the search for novel α7 nicotinic receptor ligands. In silico docking, pharmacological screening, and X-ray analysis. J. Med. Chem., 2009, 52(8), 2372-2383.
[http://dx.doi.org/10.1021/jm801400g] [PMID: 19331415]
[41]
Akdemir, A.; Edink, E.; Thompson, A.J.; Lummis, S.C.R.; Kooistra, A.J.; de Graaf, C.; de Esch, I.J. Identification of novel α7 nicotinic receptor ligands by in silico screening against the crystal structure of a chimeric α7 receptor ligand binding domain. Bioorg. Med. Chem., 2012, 20(19), 5992-6002.
[http://dx.doi.org/10.1016/j.bmc.2012.06.054] [PMID: 22959526]
[42]
Utsintong, M.; Talley, T.T.; Taylor, P.W.; Olson, A.J.; Vajragupta, O. Virtual screening against α-cobratoxin. J. Biomol. Screen., 2009, 14(9), 1109-1118.
[http://dx.doi.org/10.1177/1087057109344617] [PMID: 19734437]
[43]
Ruepp, M.D.; Wei, H.; Leuenberger, M.; Lochner, M.; Thompson, A.J. The binding orientations of structurally-related ligands can differ; A cautionary note. Neuropharmacology, 2017, 119, 48-61. [Internet]
[http://dx.doi.org/10.1016/j.neuropharm.2017.01.023] [PMID: 28137449]
[44]
Li, S-X.; Huang, S.; Bren, N.; Noridomi, K.; Dellisanti, C.D.; Sine, S.M.; Chen, L. Ligand-binding domain of an α7-nicotinic receptor chimera and its complex with agonist. Nat. Neurosci., 2011, 14(10), 1253-1259., [Internet].
[http://dx.doi.org/10.1038/nn.2908] [PMID: 21909087]
[45]
Spurny, R.; Debaveye, S.; Farinha, A.; Veys, K.; Vos, A.M.; Gossas, T.; Atack, J.; Bertrand, S.; Bertrand, D.; Danielson, U.H.; Tresadern, G.; Ulens, C. Molecular blueprint of allosteric binding sites in a homologue of the agonist-binding domain of the α7 nicotinic acetylcholine receptor. Proc. Natl. Acad. Sci. USA, 2015, 112(19), E2543-E2552.http://www.pnas.org/lookup/doi/10.1073/pnas.1418289112 [Internet].
[http://dx.doi.org/10.1073/pnas.1418289112] [PMID: 25918415]
[46]
Delbart, F.; Brams, M.; Gruss, F.; Noppen, S.; Peigneur, S.; Boland, S. An allosteric binding site of the α7 nicotinic acetylcholine receptor revealed in a humanized acetylcholine-binding protein. J. Biol. Chem., 2017, 293, 2534-2545.http://www.jbc.org/lookup/doi/10.1074/jbc.M117.815316
[47]
Nemecz, A.; Taylor, P. Creating an α7 nicotinic acetylcholine recognition domain from the acetylcholine-binding protein: crystallographic and ligand selectivity analyses. J. Biol. Chem., 2011, 286(49), 42555-42565.
[http://dx.doi.org/10.1074/jbc.M111.286583] [PMID: 22009746]
[48]
Ferreira, L.G.; Dos Santos, R.N.; Oliva, G.; Andricopulo, A.D. Molecular docking and structure-based drug design strategies. Molecules, 2015, 20(7), 13384-13421.
[http://dx.doi.org/10.3390/molecules200713384] [PMID: 26205061]
[49]
Meng, E.C.; Shoichet, B.K.; Kuntz, I.D. Automated docking with grid‐based energy evaluation. J. Comput. Chem., 1992, 13(4), 505-524.
[http://dx.doi.org/10.1002/jcc.540130412]
[50]
Sherman, W.; Beard, H.S.; Farid, R. Use of an induced fit receptor structure in virtual screening. Chem. Biol. Drug Des., 2006, 67(1), 83-84.
[http://dx.doi.org/10.1111/j.1747-0285.2005.00327.x] [PMID: 16492153]
[51]
Maragliano, L.; Vanden-Eijnden, E. A temperature accelerated method for sampling free energy and determining reaction pathways in rare events simulations. Chem. Phys. Lett., 2006, 426(1-3), 168-175.
[http://dx.doi.org/10.1016/j.cplett.2006.05.062]
[52]
Schlitter, J.; Engels, M.; Krüger, P.; Jacoby, E.; Wollmer, A. Targeted molecular dynamics simulation of conformational change - application to the T ↔ R transition in insulin. Mol. Simul., 1993, 10(2-6), 291-308.
[http://dx.doi.org/10.1080/08927029308022170]
[53]
Grubmüller, H; Heymann, B; Tavan, P. Ligand binding: Molecular mechanics calculation of the streptavidin-biotin rupture force. Science(80-), 1996, 16271(5251), 997-999.
[54]
Izrailev, S.; Stepaniants, S.; Balsera, M.; Oono, Y.; Schulten, K. Molecular dynamics study of unbinding of the avidin-biotin complex. Biophys. J., 1997, 72(4), 1568-1581.http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1184352&tool=pmcentrez&rendertype=abstract [Internet].
[http://dx.doi.org/10.1016/S0006-3495(97)78804-0] [PMID: 9083662]
[55]
Izrailev, S.; Stepaniants, S.; Isralewitz, B.; Kosztin, D.; Lu, H.; Molnar, F. Steered molecular dynamics. Comput. Mol. Dyn. Challenges Methods Ideas, 1999, 4, 39-65.
[56]
Lüdemann, S.K.; Lounnas, V.; Wade, R.C. How do substrates enter and products exit the buried active site of cytochrome P450cam? 2. Steered molecular dynamics and adiabatic mapping of substrate pathways. J. Mol. Biol., 2000, 303(5), 813-830.http://www.ncbi.nlm.nih.gov/pubmed/11061977 [Internet].
[http://dx.doi.org/10.1006/jmbi.2000.4155 ] [PMID: 11061977]
[57]
Laio, A.; Parrinello, M. Escaping free-energy minima. PNAS, 2002, 99(20), 12562-12566.https://www.ncbi.nlm.nih.gov/pubmed/12271136
[http://dx.doi.org/10.1073/pnas.202427399]
[58]
Brooks, B.; Karplus, M. Normal modes for specific motions of macromolecules: Application to the hinge-bending mode of lysozyme. Proc. Natl. Acad. Sci. USA, 1985, 82(15), 4995-4999.http://www.ncbi.nlm.nih.gov/pubmed/3860838%5Cnhttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC390485 [Internet].
[http://dx.doi.org/10.1073/pnas.82.15.4995 ] [PMID: 3860838]
[59]
Levitt, M.; Sander, C.; Stern, P.S. Protein normal-mode dynamics: trypsin inhibitor, crambin, ribonuclease and lysozyme. J. Mol. Biol., 1985, 181(3), 423-447.
[http://dx.doi.org/10.1016/0022-2836(85)90230-X] [PMID: 2580101]
[60]
Ma, J. Usefulness and limitations of normal mode analysis in modeling dynamics of biomolecular complexes. Structure, 2005, 13(3), 373-380.
[http://dx.doi.org/10.1016/j.str.2005.02.002] [PMID: 15766538]
[61]
Bahar, I.; Lezon, T.R.; Bakan, A.; Shrivastava, I.H. Normal mode analysis of biomolecular structures: functional mechanisms of membrane proteins. Chem. Rev., 2010, 110(3), 1463-1497.
[http://dx.doi.org/10.1021/cr900095e] [PMID: 19785456]
[62]
Bahar, I.; Atilgan, A.R.; Erman, B. Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential. Fold. Des., 1997, 2(3), 173-181.
[http://dx.doi.org/10.1016/S1359-0278(97)00024-2] [PMID: 9218955]
[63]
Genheden, S.; Ryde, U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin. Drug Discov., 2015, 10(5), 449-461.http://www.tandfonline.com/doi/full/10.1517/17460441.2015.1032936 [Internet].
[http://dx.doi.org/10.1517/17460441.2015.1032936] [PMID: 25835573]
[64]
Torrie, G.M.; Valleau, J.P. Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling. J. Comput. Phys., 1977, 23(2), 187-199.http://www.sciencedirect.com/science/article/pii/0021999177901218 [Internet].
[http://dx.doi.org/10.1016/0021-9991(77)90121-8]
[65]
Miller, C. Genetic manipulation of ion channels: a new approach to structure and mechanism. Neuron, 1989, 2(3), 1195-1205.
[http://dx.doi.org/10.1016/0896-6273(89)90304-8] [PMID: 2483110]
[66]
Unwin, N. Nicotinic acetylcholine receptor at 9 A resolution. J. Mol. Biol., 1993, 229(4), 1101-1124.http://www.sciencedirect.com/science/article/pii/S0022283683711071
[http://dx.doi.org/10.1006/jmbi.1993.1107] [PMID: 8445638]
[67]
Unwin, N. Acetylcholine receptor channel imaged in the open state. Nature, 1995, 373(6509), 37-43.
[http://dx.doi.org/10.1038/373037a0] [PMID: 7800037]
[68]
Sansom, M.S.P.; Sankararamakrishnan, R.; Kerr, I.D. Modelling membrane proteins using structural restraints. Nat. Struct. Biol., 1995, 2(8), 624-631.
[http://dx.doi.org/10.1038/nsb0895-624] [PMID: 7552722]
[69]
Sankararamakrishnan, R.; Adcock, C.; Sansom, M.S. The pore domain of the nicotinic acetylcholine receptor: Molecular modeling, pore dimensions, and electrostatics. Biophys. J., 1996, 71(4), 1659-1671. [Internet].
[http://dx.doi.org/10.1016/S0006-3495(96)79370-0] [PMID: 8889144]
[70]
Smith, G.R.; Sansom, M.S.P. Molecular dynamics study of water and Na+ ions in models of the pore region of the nicotinic acetylcholine receptor. Biophys. J., 1997, 73(3), 1364-1381.
[http://dx.doi.org/10.1016/S0006-3495(97)78169-4] [PMID: 9284304]
[71]
Henchman, R.H.; Wang, H-L.; Sine, S.M.; Taylor, P.; McCammon, J.A. Asymmetric structural motions of the homomeric α7 nicotinic receptor ligand binding domain revealed by molecular dynamics simulation. Biophys. J., 2003, 85(5), 3007-3018.http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1303578&tool=pmcentrez&rendertype=abstract [Internet].
[http://dx.doi.org/10.1016/S0006-3495(03)74720-1] [PMID: 14581202]
[72]
Henchman, R.H.; Wang, H.L.; Sine, S.M.; Taylor, P.; McCammon, J.A. Ligand-induced conformational change in the α7 nicotinic receptor ligand binding domain. Biophys. J., 2005, 88(4), 2564-2576.http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15665135 [Internet].
[http://dx.doi.org/10.1529/biophysj.104.053934 ] [PMID: 15665135]
[73]
Galzi, J.L.; Bertrand, S.; Corringer, P.J.; Changeux, J.P.; Bertrand, D. Identification of calcium binding sites that regulate potentiation of a neuronal nicotinic acetylcholine receptor. EMBO J., 1996, 15(21), 5824-5832. [Internet].
[http://dx.doi.org/10.1002/j.1460-2075.1996.tb00969.x] [PMID: 8918460]
[74]
Yi, M.; Tjong, H.; Zhou, H.X. Spontaneous conformational change and toxin binding in α7 acetylcholine receptor: insight into channel activation and inhibition. Proc. Natl. Acad. Sci. USA Sci., 2008, 105(24), 8280-8285.
[http://dx.doi.org/10.1073/pnas.0710530105]
[75]
Taly, A.; Delarue, M.; Grutter, T.; Nilges, M.; Le Novère, N.; Corringer, P.J.; Changeux, J.P. Normal mode analysis suggests a quaternary twist model for the nicotinic receptor gating mechanism. Biophys. J., 2005, 88(6), 3954-3965.
[http://dx.doi.org/10.1529/biophysj.104.050229] [PMID: 15805177]
[76]
Lyford, L.K.; Sproul, A.D.; Eddins, D.; McLaughlin, J.T.; Rosenberg, R.L. Agonist-induced conformational changes in the extracellular domain of α 7 nicotinic acetylcholine receptors. Mol. Pharmacol., 2003, 64(3), 650-658.http://www.ncbi.nlm.nih.gov/pubmed/12920201 [Internet].
[http://dx.doi.org/10.1124/mol.64.3.650] [PMID: 12920201]
[77]
McLaughlin, J.T.; Fu, J.; Rosenberg, R.L. Agonist-Driven Conformational Changes in the Inner β-Sheet of α7 Nicotinic Receptors., 2007.http://molpharm.aspetjournals.org/content/71/5/1312
[http://dx.doi.org//10.1124/mol.106.033092]
[78]
Miyazawa, A.; Fujiyoshi, Y.; Unwin, N. Structure and gating mechanism of the acetylcholine receptor pore. Nature, 2003, 423(6943), 949-955.http://www.nature.com/doifinder/10.1038/nature01748 [Internet].
[http://dx.doi.org/10.1038/nature01748 ] [PMID: 12827192]
[79]
Amiri, S.; Tai, K.; Beckstein, O.; Biggin, P.C.; Sansom, M.S.P. The α7 nicotinic acetylcholine receptor: molecular modelling, electrostatics, and energetics. Mol. Membr. Biol., 2005, 22(3), 151-162.http://informahealthcare.com/doi/abs/10.1080/09687860500063340%5Cnhttp://www.ncbi.nlm.nih.gov/pubmed/16096259
[http://dx.doi.org/10.1080/09687860500063340] [PMID: 16096259]
[80]
Law, R.J.; Henchman, R.H.; McCammon, J.A. A gating mechanism proposed from a simulation of a human α7 nicotinic acetylcholine receptor. Proc. Natl. Acad. Sci. USA, 2005, 102(19), 6813-6818.http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1100735&tool=pmcentrez&rendertype=abstract [Internet].
[http://dx.doi.org/10.1073/pnas.0407739102 ] [PMID: 15857954]
[81]
Cheng, X.; Lu, B.; Grant, B.; Law, R.J.; McCammon, J.A. Channel opening motion of α7 nicotinic acetylcholine receptor as suggested by normal mode analysis. J. Mol. Biol., 2006, 355(2), 310-324.
[http://dx.doi.org/10.1016/j.jmb.2005.10.039] [PMID: 16307758]
[82]
Cheng, X.; Wang, H.; Grant, B.; Sine, S.M.; McCammon, J.A. Targeted molecular dynamics study of C-loop closure and channel gating in nicotinic receptors. PLOS Comput. Biol., 2006, 2(9)e134
[http://dx.doi.org/10.1371/journal.pcbi.0020134] [PMID: 17009865]
[83]
Celie, P.H.N.; van Rossum-Fikkert, S.E.; van Dijk, W.J.; Brejc, K.; Smit, A.B.; Sixma, T.K. Nicotine and carbamylcholine binding to nicotinic acetylcholine receptors as studied in AChBP crystal structures. Neuron, 2004, 41(6), 907-914.
[http://dx.doi.org/10.1016/S0896-6273(04)00115-1] [PMID: 15046723]
[84]
Cheng, X.; Ivanov, I.; Wang, H.; Sine, S.M.; McCammon, J.A. Nanosecond-timescale conformational dynamics of the human α7 nicotinic acetylcholine receptor. Biophys. J., 2007, 93(8), 2622-2634.
[http://dx.doi.org/10.1529/biophysj.107.109843] [PMID: 17573436]
[85]
Hibbs, R.E.; Gouaux, E. Principles of activation and permeation in an anion-selective Cys-loop receptor., 2011.http://www.nature.com/doifinder/10.1038/nature10139
[http://dx.doi.org/10.1038/nature10139]
[86]
Chiodo, L.; Malliavin, T.E.; Maragliano, L.; Cottone, G.; Ciccotti, G. A structural model of the human α7 nicotinic receptor in an open conformation. PLoS One, 2015, 10(7), e0133011
[http://dx.doi.org/10.1371/journal.pone.0133011] [PMID: 26208301]
[87]
Chiodo, L.; Malliavin, T.E.; Maragliano, L.; Cottone, G. A possible desensitized state conformation of the human α7 nicotinic receptor: A molecular dynamics study. Biophys. Chem., 2017, 229, 99-109.http://linkinghub.elsevier.com/retrieve/pii/S030146221730073X
[http://dx.doi.org/10.1016/j.bpc.2017.06.010] [PMID: 28697974]
[88]
Chiodo, L.; Malliavin, T.E.; Giuffrida, S.; Maragliano, L.; Cottone, G. Closed-locked and apo-resting state structures of the human α7 nicotinic receptor: A computational study. J. Chem. Inf. Model., 2018, 58(11), 2278-2293.
[http://dx.doi.org/10.1021/acs.jcim.8b00412] [PMID: 30359518]
[89]
Bisson, W.H.; Westera, G.; Schubiger, P.A.; Scapozza, L. Homology modeling and dynamics of the extracellular domain of rat and human neuronal nicotinic acetylcholine receptor subtypes α4β2 and α7. J. Mol. Model., 2008, 14(10), 891-899.http://www.ncbi.nlm.nih.gov/pubmed/18607650 [Internet].
[http://dx.doi.org/10.1007/s00894-008-0340-x] [PMID: 18607650]
[90]
Xiao, Y.; Hammond, P.S.; Mazurov, A.A.; Yohannes, D. Multiple interaction regions in the orthosteric ligand binding domain of the α7 neuronal nicotinic acetylcholine receptor. J. Chem. Inf. Model., 2012, 52(11), 3064-3073.
[http://dx.doi.org/10.1021/ci3001953] [PMID: 23092444]
[91]
Huang, X.; Zheng, F.; Chen, X.; Crooks, P.A.; Dwoskin, L.P.; Zhan, C.G. Modeling subtype-selective agonists binding with α4β2 and α7 nicotinic acetylcholine receptors: effects of local binding and long-range electrostatic interactions. J. Med. Chem., 2006, 49(26), 7661-7674.
[http://dx.doi.org/10.1021/jm0606701] [PMID: 17181149]
[92]
Huang, X.; Zheng, F.; Stokes, C.; Papke, R.L.; Zhan, C.G. Modeling binding modes of α7 nicotinic acetylcholine receptor with ligands: the roles of Gln117 and other residues of the receptor in agonist binding. J. Med. Chem., 2008, 51(20), 6293-6302.
[http://dx.doi.org/10.1021/jm800607u] [PMID: 18826295]
[93]
Cui, T.; Canlas, C.G.; Xu, Y.; Tang, P. Anesthetic effects on the structure and dynamics of the second transmembrane domains of nAChR α4β2. Biochim. Biophys. Acta, 2010, 1798(2), 161-166. [Internet]
[http://dx.doi.org/10.1016/j.bbamem.2009.08.009] [PMID: 19715664]
[94]
Mori, T; Zhao, XL; Zuo, Y; Aistrup, GL; Nishikawa, K; Marszalec, W Modulation of neuronal nicotinic acetylcholine receptors by halothane in rat cortical neurons., 2001.
[http://dx.doi.org/10.1124/mol.59.4.732]
[95]
Mowrey, D.; Haddadian, E.J.; Liu, L.T.; Willenbring, D.; Xu, Y.; Tang, P. Unresponsive correlated motion in α7 nAChR to halothane binding explains its functional insensitivity to volatile anesthetics. J. Phys. Chem. B, 2010, 114(22), 7649-7655.
[http://dx.doi.org/10.1021/jp1009675] [PMID: 20465243]
[96]
Arias, H.R.; López, J.J.; Feuerbach, D.; Fierro, A.; Ortells, M.O.; Pérez, E.G. Novel 2-(substituted benzyl)quinuclidines inhibit human α7 and α4β2 nicotinic receptors by different mechanisms. Int. J. Biochem. Cell Biol., 2013, 45(11), 2420-2430. [Internet].
[http://dx.doi.org/10.1016/j.biocel.2013.08.003] [PMID: 23954208]
[97]
Quick, M.W.; Lester, R.A.J. Desensitization of neuronal nicotinic receptors. J. Neurobiol., 2002, 53(4), 457-478.
[http://dx.doi.org/10.1002/neu.10109] [PMID: 12436413]
[98]
Lape, R.; Colquhoun, D.; Sivilotti, L.G. On the nature of partial agonism in the nicotinic receptor superfamily., 2008.https://www.ncbi.nlm.nih.gov/pubmed/18633353
[http://dx.doi.org/10.1038/nature07139]
[99]
Zhang, D.; Gullingsrud, J.; McCammon, J.A. Potentials of mean force for acetylcholine unbinding from the alpha7 nicotinic acetylcholine receptor ligand-binding domain. J. Am. Chem. Soc., 2006, 128(9), 3019-3026.
[http://dx.doi.org/10.1021/ja057292u] [PMID: 16506783]
[100]
Grosman, C.; Auerbach, A. The dissociation of acetylcholine from open nicotinic receptor channels. Proc. Natl. Acad. Sci. USA, 2001, 98(24), 14102-14107.
[http://dx.doi.org/10.1073/pnas.251402498] [PMID: 11717464]
[101]
Tabassum, N.; Ma, Q.; Wu, G.; Jiang, T.; Yu, R. Exploring the binding energy profiles of full agonists, partial agonists, and antagonists of the α7 nicotinic acetylcholine receptor. J. Mol. Model., 2017, 23(9), 251. [Internet].
[http://dx.doi.org/10.1007/s00894-017-3419-4] [PMID: 28770361]
[102]
Grazioso, G.; Cavalli, A.; De Amici, M.; Recanatini, M.; De Micheli, C. Alpha7 nicotinic acetylcholine receptor agonists: prediction of their binding affinity through a molecular mechanics Poisson-Boltzmann surface area approach. J. Comput. Chem., 2008, 29(15), 2593-2602.
[http://dx.doi.org/10.1002/jcc.21019] [PMID: 18478580]
[103]
Grazioso, G.; Pomè, D.Y.; Matera, C.; Frigerio, F.; Pucci, L.; Gotti, C.; Dallanoce, C.; De Amici, M. Design of novel α7-subtype-preferring nicotinic acetylcholine receptor agonists: application of docking and MM-PBSA computational approaches, synthetic and pharmacological studies. Bioorg. Med. Chem. Lett., 2009, 19(22), 6353-6357.
[http://dx.doi.org/10.1016/j.bmcl.2009.09.073] [PMID: 19804970]
[104]
Ferrari, A.M.; Degliesposti, G.; Sgobba, M.; Rastelli, G. Validation of an automated procedure for the prediction of relative free energies of binding on a set of aldose reductase inhibitors. Bioorg. Med. Chem., 2007, 15(24), 7865-7877.
[http://dx.doi.org/10.1016/j.bmc.2007.08.019] [PMID: 17870536]
[105]
Fragoso, T.M.; Bertoli, W.; Louzada, F. Bayesian Model Averaging: A Systematic Review and Conceptual Classification. Int. Stat. Rev., 2018, 86(1), 1-28.
[http://dx.doi.org/10.1111/insr.12243]
[106]
Kombo, D.C.; Bencherif, M. Comparative study on the use of docking and Bayesian categorization to predict ligand binding to nicotinic acetylcholine receptors (nAChRs) subtypes. J. Chem. Inf. Model., 2013, 53(12), 3212-3222.
[http://dx.doi.org/10.1021/ci400493a] [PMID: 24328365]
[107]
Akdemir, A.; Rucktooa, P.; Jongejan, A.; Elk, Rv.; Bertrand, S.; Sixma, T.K.; Bertrand, D.; Smit, A.B.; Leurs, R.; de Graaf, C.; de Esch, I.J. Acetylcholine binding protein (AChBP) as template for hierarchical in silico screening procedures to identify structurally novel ligands for the nicotinic receptors. Bioorg. Med. Chem., 2011, 19(20), 6107-6119.
[http://dx.doi.org/10.1016/j.bmc.2011.08.028] [PMID: 21920761]
[108]
Nasiripourdori, A.; Taly, V.; Grutter, T.; Taly, A. From toxins targeting ligand gated ion channels to therapeutic molecules. Toxins (Basel), 2011, 3(3), 260-293.
[http://dx.doi.org/10.3390/toxins3030260] [PMID: 22069709]
[109]
Lebbe, E.K.M.; Peigneur, S.; Wijesekara, I.; Tytgat, J. Conotoxins targeting nicotinic acetylcholine receptors: an overview. Mar. Drugs, 2014, 12(5), 2970-3004.
[http://dx.doi.org/10.3390/md12052970] [PMID: 24857959]
[110]
Liu, X.; Wang, X.; Luo, S.; Xiang, S-H.; Zhangsun, D.; Wu, Y. From crystal structure of α-conotoxin GIC in complex with Ac-AChBP to molecular determinants of its high selectivity for α3β2 nAChR. Sci. Rep., 2016, 6(1), 1-10.
[http://dx.doi.org/10.1038/srep22349] [PMID: 28442746]
[111]
Ulens, C.; Hogg, R.C.; Celie, P.H.; Bertrand, D.; Tsetlin, V.; Smit, A.B.; Sixma, T.K. Structural determinants of selective α-conotoxin binding to a nicotinic acetylcholine receptor homolog AChBP. Proc. Natl. Acad. Sci. USA, 2006, 103(10), 3615-3620.
[http://dx.doi.org/10.1073/pnas.0507889103] [PMID: 16505382]
[112]
Dutertre, S.; Ulens, C.; Büttner, R.; Fish, A.; van Elk, R.; Kendel, Y. AChBP-targeted α-conotoxin correlates distinct binding orientations with nAChR subtype selectivity. EMBO J., 2007, 26, 3858-3867.http://emboj.embopress.org/cgi/doi/10.1038/sj.emboj.7601785
[http://dx.doi.org/10.1038/sj.emboj.7601785]
[113]
Celie, P.H.N.; Kasheverov, I.E.; Mordvintsev, D.Y.; Hogg, R.C.; van Nierop, P.; van Elk, R.; van Rossum-Fikkert, S.E.; Zhmak, M.N.; Bertrand, D.; Tsetlin, V.; Sixma, T.K.; Smit, A.B. Crystal structure of nicotinic acetylcholine receptor homolog AChBP in complex with an alpha-conotoxin PnIA variant. Nat. Struct. Mol. Biol., 2005, 12(7), 582-588.
[http://dx.doi.org/10.1038/nsmb951] [PMID: 15951818]
[114]
Xu, M.; Zhu, X.; Yu, J.; Yu, J.; Luo, S.; Wang, X. The crystal structure of Ac-AChBP in complex with α-conotoxin LvIA reveals the mechanism of its selectivity towards different nAChR subtypes. Protein Cell, 2017, 8(9), 675-685.
[http://dx.doi.org/10.1007/s13238-017-0426-2] [PMID: 28585176]
[115]
Yu, R.; Craik, D.J.; Kaas, Q. Blockade of neuronal α7-nAChR by α-conotoxin ImI explained by computational scanning and energy calculations. PLOS Comput. Biol., 2011, 7(3), e1002011
[http://dx.doi.org/10.1371/journal.pcbi.1002011] [PMID: 21390272]
[116]
Yu, R.; Kaas, Q.; Craik, D.J. Delineation of the unbinding pathway of α-conotoxin ImI from the α7 nicotinic acetylcholine receptor. J. Phys. Chem. B, 2012, 116(21), 6097-6105.http://www.ncbi.nlm.nih.gov/pubmed/22571488
[http://dx.doi.org/10.1021/jp301352d] [PMID: 22571488]
[117]
Quiram, P.A.; Sine, S.M. Structural elements in α-conotoxin ImI essential for binding to neuronal α7 receptors. J. Biol. Chem., 1998, 273(18), 11007-11011.
[http://dx.doi.org/10.1074/jbc.273.18.11007] [PMID: 9556581]
[118]
Quiram, P.A.; McIntosh, J.M.; Sine, S.M. Pairwise interactions between neuronal α(7) acetylcholine receptors and α-conotoxin PnIB. J. Biol. Chem., 2000, 275(7), 4889-4896.http://www.scopus.com/inward/record.url?scp=0034681391&partnerID=8YFLogxK
[http://dx.doi.org/10.1074/jbc.275.7.4889] [PMID: 10671525]
[119]
Suresh, A.; Hung, A. Molecular simulation study of the unbinding of α-conotoxin [ϒ4E]GID at the α7 and α4β2 neuronal nicotinic acetylcholine receptors. J. Mol. Graph. Model., 2016, 70, 109-121. [Internet].
[http://dx.doi.org/10.1016/j.jmgm.2016.09.006] [PMID: 27721068]
[120]
Nicke, A.; Loughnan, M.L.; Millard, E.L.; Alewood, P.F.; Adams, D.J.; Daly, N.L.; Craik, D.J.; Lewis, R.J. Isolation, structure, and activity of GID, a novel α 4/7-conotoxin with an extended N-terminal sequence. J. Biol. Chem., 2003, 278(5), 3137-3144.
[http://dx.doi.org/10.1074/jbc.M210280200] [PMID: 12419800]
[121]
Grønlien, J.H.; Håkerud, M.; Ween, H.; Thorin-Hagene, K.; Briggs, C.A.; Gopalakrishnan, M.; Malysz, J. Distinct profiles of α7 nAChR positive allosteric modulation revealed by structurally diverse chemotypes. Mol. Pharmacol., 2007, 72(3), 715-724.http://molpharm.aspetjournals.org/content/72/3/715 [Internet].
[http://dx.doi.org/10.1124/mol.107.035410 ] [PMID: 17565004]
[122]
Collins, T.; Young, G.T.; Millar, N.S. Competitive binding at a nicotinic receptor transmembrane site of two α7-selective positive allosteric modulators with differing effects on agonist-evoked desensitization. Neuropharmacology, 2011, 61(8), 1306-1313.
[http://dx.doi.org/10.1016/j.neuropharm.2011.07.035] [PMID: 21820451]
[123]
Quadri, M.; Garai, S.; Thakur, G.A.; Stokes, C.; Gulsevin, A.; Horenstein, N.A.; Papke, R.L. Macroscopic and microscopic activation of α7 nicotinic acetylcholine receptors by the structurally unrelated allosteric agonist-positive allosteric modulators (ago-PAMs) B-973B and GAT107. Mol. Pharmacol., 2019, 95(1), 43-61.http://molpharm.aspetjournals.org/content/95/1/43
[http://dx.doi.org/10.1124/mol.118.113340] [PMID: 30348894]
[124]
Newcombe, J.; Chatzidaki, A.; Sheppard, T.D.; Topf, M.; Millar, N.S. Diversity of nicotinic acetylcholine receptor positive allosteric modulators revealed by mutagenesis and a revised structural model. Mol. Pharmacol., 2018, 93(2), 128-140.http://molpharm.aspetjournals.org/lookup/doi/10.1124/mol.117.110551 [Internet].
[http://dx.doi.org//10.1124/mol.117.110551 ] [PMID: 29196491]
[125]
Targowska-Duda, K.M.; Kaczor, A.A.; Jozwiak, K.; Arias, H.R. Molecular interactions of type I and type II positive allosteric modulators with the human α7 nicotinic acetylcholine receptor: An in silico study. J. Biomol. Struct. Dyn., 2018, 1102, 1-29.
[http://dx.doi.org/10.1080/07391102.2018.1427634] [PMID: 29363414]
[126]
Thakur, G.A.; Kulkarni, A.R.; Deschamps, J.R.; Papke, R.L. Expeditious synthesis, enantiomeric resolution, and enantiomer functional characterization of (4-(4-bromophenyl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline-8-sulfonamide (4BP-TQS): an allosteric agonist-positive allosteric modulator of α7 nicotinic acetylcholine receptors. J. Med. Chem., 2013, 56(21), 8943-8947.
[http://dx.doi.org/10.1021/jm401267t] [PMID: 24090443]
[127]
Post-Munson, D.J.; Pieschl, R.L.; Molski, T.F.; Graef, J.D.; Hendricson, A.W.; Knox, R.J.; McDonald, I.M.; Olson, R.E.; Macor, J.E.; Weed, M.R.; Bristow, L.J.; Kiss, L.; Ahlijanian, M.K.; Herrington, J. B-973, a novel piperazine positive allosteric modulator of the α7 nicotinic acetylcholine receptor. Eur. J. Pharmacol., 2017, 799, 16-25.
[http://dx.doi.org/10.1016/j.ejphar.2017.01.037] [PMID: 28132910]
[128]
Garai, S.; Raja, K.S.; Papke, R.L.; Deschamps, J.R.; Damaj, M.I.; Thakur, G.A. B-973, a novel α7 nAChR Ago-PAM: Racemic and asymmetric synthesis, electrophysiological studies, and in vivo evaluation. ACS Med. Chem. Lett., 2018, 9(11), 1144-1148.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00407] [PMID: 30429960]
[129]
Papke, R.L.; Horenstein, N.A.; Kulkarni, A.R.; Stokes, C.; Corrie, L.W.; Maeng, C.Y.; Thakur, G.A. The activity of GAT107, an allosteric activator and positive modulator of α7 nicotinic acetylcholine receptors (nAChR), is regulated by aromatic amino acids that span the subunit interface. J. Biol. Chem., 2014, 289(7), 4515-4531.
[http://dx.doi.org/10.1074/jbc.M113.524603] [PMID: 24362025]
[130]
Noetzel, M.J.; Rook, J.M.; Vinson, P.N.; Cho, H.P.; Days, E.; Zhou, Y.; Rodriguez, A.L.; Lavreysen, H.; Stauffer, S.R.; Niswender, C.M.; Xiang, Z.; Daniels, J.S.; Jones, C.K.; Lindsley, C.W.; Weaver, C.D.; Conn, P.J. Functional impact of allosteric agonist activity of selective positive allosteric modulators of metabotropic glutamate receptor subtype 5 in regulating central nervous system function. Mol. Pharmacol., 2012, 81(2), 120-133.http://molpharm.aspetjournals.org/content/81/2/120
[http://dx.doi.org/10.1124/mol.111.075184] [PMID: 22021324]
[131]
Grazioso, G.; Sgrignani, J.; Capelli, R.; Matera, C.; Dallanoce, C.; De Amici, M.; Cavalli, A. Allosteric modulation of alpha7 nicotinic receptors: Mechanistic insight through metadynamics and essential dynamics. J. Chem. Inf. Model., 2015, 55(12), 2528-2539.
[http://dx.doi.org/10.1021/acs.jcim.5b00459] [PMID: 26569022]
[132]
Arias, H.R.; Gu, R-X.; Feuerbach, D.; Guo, B-B.; Ye, Y.; Wei, D-Q. Novel positive allosteric modulators of the human α7 nicotinic acetylcholine receptor. Biochemistry, 2011, 50(23), 5263-5278.http://www.ncbi.nlm.nih.gov/pubmed/21510634
[http://dx.doi.org/10.1021/bi102001m] [PMID: 21510634]
[133]
Bertrand, D.; Bertrand, S.; Cassar, S.; Gubbins, E.; Li, J.; Gopalakrishnan, M. Positive allosteric modulation of the α7 nicotinic acetylcholine receptor: ligand interactions with distinct binding sites and evidence for a prominent role of the M2-M3 segment. Mol. Pharmacol., 2008, 74(5), 1407-1416.
[http://dx.doi.org/10.1124/mol.107.042820] [PMID: 18678621]
[134]
Iorga, B.; Herlem, D.; Barré, E.; Guillou, C. Acetylcholine nicotinic receptors: finding the putative binding site of allosteric modulators using the “blind docking” approach. J. Mol. Model., 2006, 12(3), 366-372.
[http://dx.doi.org/10.1007/s00894-005-0057-z] [PMID: 16372175]
[135]
Andersen, N.D.; Nielsen, B.E.; Corradi, J.; Tolosa, M.F.; Feuerbach, D.; Arias, H.R.; Bouzat, C. Exploring the positive allosteric modulation of human α7 nicotinic receptors from a single-channel perspective. Neuropharmacology, 2016, 107, 189-200.http://www.ncbi.nlm.nih.gov/pubmed/26926428 [Internet].
[http://dx.doi.org/10.1016/j.neuropharm.2016.02.032] [PMID: 26926428]
[136]
Hassaine, G.; Deluz, C.; Grasso, L.; Wyss, R.; Tol, M.B.; Hovius, R.; Graff, A.; Stahlberg, H.; Tomizaki, T.; Desmyter, A.; Moreau, C.; Li, X.D.; Poitevin, F.; Vogel, H.; Nury, H. X-ray structure of the mouse serotonin 5-HT3 receptor. Nature, 2014, 512(7514), 276-281.http://www.nature.com/doifinder/10.1038/nature13552 [Internet].
[http://dx.doi.org/10.1038/nature13552] [PMID: 25119048]
[137]
Arias, H.R.; Ravazzini, F.; Targowska-Duda, K.M.; Kaczor, A.A.; Feuerbach, D.; Boffi, J.C.; Draczkowski, P.; Montag, D.; Brown, B.M.; Elgoyhen, A.B.; Jozwiak, K.; Puia, G. Positive allosteric modulators of α7 nicotinic acetylcholine receptors affect neither the function of other ligand- and voltage-gated ion channels and acetylcholinesterase, nor β-amyloid content. Int. J. Biochem. Cell Biol., 2016, 76, 19-30.
[http://dx.doi.org/10.1016/j.biocel.2016.04.015] [PMID: 27129924]
[138]
Corringer, P.J.; Baaden, M.; Bocquet, N.; Delarue, M.; Dufresne, V.; Nury, H.; Prevost, M.; Van Renterghem, C. Atomic structure and dynamics of pentameric ligand-gated ion channels: new insight from bacterial homologues. J. Physiol., 2010, 588(Pt 4), 565-572.
[http://dx.doi.org/10.1113/jphysiol.2009.183160] [PMID: 19995852]
[139]
Mnatsakanyan, N.; Jansen, M. Experimental determination of the vertical alignment between the second and third transmembrane segments of muscle nicotinic acetylcholine receptors. J. Neurochem., 2013, 125(6), 843-854.
[http://dx.doi.org/10.1111/jnc.12260] [PMID: 23565737]
[140]
Unwin, N.; Fujiyoshi, Y. Gating movement of acetylcholine receptor caught by plunge-freezing. J. Mol. Biol., 2012, 422(5), 617-634.
[http://dx.doi.org/10.1016/j.jmb.2012.07.010] [PMID: 22841691]
[141]
Quadri, M.; Papke, R.L.; Horenstein, N.A. 2016.http://linkinghub.elsevier.com/retrieve/pii/S096808961530184X
[142]
Gill-Thind, J.K.K.; Dhankher, P.; D’Oyley, J.M.; Sheppard, T.D.; Millar, N.S. Structurally similar allosteric modulators of α7 nicotinic acetylcholine receptors exhibit five distinct pharmacological effects. J. Biol. Chem., 2015, 290(6), 3552-3562.http://www.jbc.org/content/290/6/3552%5Cnhttp://www.jbc.org/content/290/6/3552.full%5Cnhttp://www.jbc.org/content/290/6/3552.full.pdf%5Cnhttp://www.ncbi.nlm.nih.gov/pubmed/25516597
[http://dx.doi.org/10.1074/jbc.M114.619221] [PMID: 25516597]
[143]
Unwin, N. Nicotinic acetylcholine receptor and the structural basis of neuromuscular transmission: insights from Torpedo postsynaptic membranes. Q. Rev. Biophys., 2013, 46(4), 283-322.
[http://dx.doi.org/10.1017/S0033583513000061] [PMID: 24050525]
[144]
Purohit, P.; Auerbach, A. Acetylcholine receptor gating at extracellular transmembrane domain interface: the “pre-M1” linker. J. Gen. Physiol., 2007, 130(6), 559-568.http://www.jgp.org/lookup/doi/10.1085/jgp.200709857
[http://dx.doi.org/10.1085/jgp.200709857] [PMID: 18040058]
[145]
Wilson, G.; Karlin, A. Acetylcholine receptor channel structure in the resting, open, and desensitized states probed with the substituted-cysteine-accessibility method. Proc. Natl. Acad. Sci. USA, 2001, 98(3), 1241-1248.http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=14739&tool=pmcentrez&rendertype=abstract
[http://dx.doi.org/10.1073/pnas.98.3.1241] [PMID: 11158624]
[146]
Sine, S.M.; Engel, A.G. Recent advances in Cys-loop receptor structure and function. Nature, 2006, 440(7083), 448-455.
[http://dx.doi.org/10.1038/nature04708] [PMID: 16554804]
[147]
daCosta, C.J.B.; Free, C.R.; Sine, S.M. Stoichiometry for α-bungarotoxin block of α7 acetylcholine receptors. Nat. Commun., 2015, 6, 8057.
[http://dx.doi.org/10.1038/ncomms9057] [PMID: 26282895]
[148]
Gao, F.; Bren, N.; Burghardt, T.P.; Hansen, S.; Henchman, R.H.; Taylor, P.; McCammon, J.A.; Sine, S.M. Agonist-mediated conformational changes in acetylcholine-binding protein revealed by simulation and intrinsic tryptophan fluorescence. J. Biol. Chem., 2005, 280(9), 8443-8451.
[http://dx.doi.org/10.1074/jbc.M412389200] [PMID: 15591050]
[149]
Hibbs, R.E.; Sulzenbacher, G.; Shi, J.; Talley, T.T.; Conrod, S.; Kem, W.R.; Taylor, P.; Marchot, P.; Bourne, Y. Structural determinants for interaction of partial agonists with acetylcholine binding protein and neuronal α7 nicotinic acetylcholine receptor. EMBO J., 2009, 28(19), 3040-3051.http://emboj.embopress.org/cgi/doi/10.1038/emboj.2009.227 [Internet]
[http://dx.doi.org/10.1038/emboj.2009.227 ] [PMID: 19696737]
[150]
Brams, M.; Pandya, A.; Kuzmin, D.; van Elk, R.; Krijnen, L.; Yakel, J.L.; Tsetlin, V.; Smit, A.B.; Ulens, C. A structural and mutagenic blueprint for molecular recognition of strychnine and d-tubocurarine by different cys-loop receptors. PLoS Biol., 2011, 9(3), e1001034
[http://dx.doi.org/10.1371/journal.pbio.1001034] [PMID: 21468359]
[151]
Helekar, S.A.; Char, D.; Neff, S.; Patrick, J. Prolyl isomerase requirement for the expression of functional homo-oligomeric ligand-gated ion channels. Neuron, 1994, 12(1), 179-189.http://www.sciencedirect.com/science/article/pii/0896627394901627 [Internet].
[http://dx.doi.org/10.1016/0896-6273(94)90162-7 ] [PMID: 7507339]
[152]
Rakhilin, S.; Drisdel, R.C.; Sagher, D.; McGehee, D.S.; Vallejo, Y.; Green, W.N. 1999.http://jcb.rupress.org/content/146/1/203
[153]
Auerbach, A. Gating of acetylcholine receptor channels: Brownian motion across a broad transition state 2005, 102(5), 1408-1412.http://www.pnas.org/content/102/5/1408
[154]
Ma, Q.; Tae, H.S.; Wu, G.; Jiang, T.; Yu, R. Exploring the relationship between nicotinic acetylcholine receptor ligand size, efficiency, efficacy, and C-Loop opening. J. Chem. Inf. Model., 2017, 57(8), 1947-1956.
[http://dx.doi.org/10.1021/acs.jcim.7b00152] [PMID: 28718646]
[155]
Shahsavar, A.; Kastrup, J.S.; Nielsen, E.Ø.; Kristensen, J.L.; Gajhede, M.; Balle, T. Crystal structure of Lymnaea stagnalis AChBP complexed with the potent nAChR antagonist DHβE suggests a unique mode of antagonism. PLoS One, 2012, 7(8), e40757
[http://dx.doi.org/10.1371/journal.pone.0040757] [PMID: 22927902]
[156]
Mohammad Hosseini Naveh, Z.; Malliavin, T.E.; Maragliano, L.; Cottone, G.; Ciccotti, G. Conformational changes in acetylcholine binding protein investigated by temperature accelerated molecular dynamics. PLoS One, 2014, 9(2), e88555
[http://dx.doi.org/10.1371/journal.pone.0088555] [PMID: 24551117]
[157]
Basak, S.; Gicheru, Y.; Kapoor, A.; Mayer, M.L.; Filizola, M.; Chakrapani, S. Molecular mechanism of setron-mediated inhibition of full-length 5-HT3A receptor. Nat. Commun., 2019, 10(1), 3225.
[http://dx.doi.org/10.1038/s41467-019-11142-8] [PMID: 31324772]
[158]
Purohit, P.; Auerbach, A. Loop C and the mechanism of acetylcholine receptor-channel gating. J. Gen. Physiol., 2013, 141(4), 467-478.
[http://dx.doi.org/10.1085/jgp.201210946] [PMID: 23478996]
[159]
Bondarenko, V.; Mowrey, D.D.; Tillman, T.S.; Seyoum, E.; Xu, Y.; Tang, P. NMR structures of the human α7 nAChR transmembrane domain and associated anesthetic binding sites. Biochim. Biophys. Acta, 2014, 1838(5), 1389-1395.http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4003566/ [Internet].
[http://dx.doi.org/10.1016/j.bbamem.2013.12.018] [PMID: 24384062]
[160]
Turner, M.W.; Marquart, L.A.; Phillips, P.D.; McDougal, O.M. Mutagenesis of α-conotoxins for enhancing activity and selectivity for nicotinic acetylcholine receptors. Toxins (Basel), 2019, 11(2), 113.http://www.mdpi.com/2072-6651/11/2/113 [Internet].
[http://dx.doi.org/10.3390/toxins11020113] [PMID: 30781866]
[161]
Leffler, A.E.; Kuryatov, A.; Zebroski, H.A.; Powell, S.R.; Filipenko, P.; Hussein, A.K.; Gorson, J.; Heizmann, A.; Lyskov, S.; Tsien, R.W.; Poget, S.F.; Nicke, A.; Lindstrom, J.; Rudy, B.; Bonneau, R.; Holford, M. Discovery of peptide ligands through docking and virtual screening at nicotinic acetylcholine receptor homology models. Proc. Natl. Acad. Sci. USA, 2017, 114(38), E8100-E8109.http://www.pnas.org/lookup//doi/10.1073/pnas.1703952114.
[http://dx.doi.org/10.1073/pnas.1703952114] [PMID: 28874590]
[162]
Armishaw, C.J. Synthetic α-conotoxin mutants as probes for studying nicotinic acetylcholine receptors and in the development of novel drug leads. Toxins (Basel), 2010, 2(6), 1471-1499.
[http://dx.doi.org/10.3390/toxins2061471] [PMID: 22069647]
[163]
Hung, A.; Kuyucak, S.; Schroeder, C.I.; Kaas, Q. Modelling the interactions between animal venom peptides and membrane proteins. Neuropharmacology, 2017, 127, 20-31.
[http://dx.doi.org/10.1016/j.neuropharm.2017.07.036] [PMID: 28778835]
[164]
Kuang, G.; Wang, X.; Halldin, C.; Nordberg, A.; Långström, B.; Ågren, H.; Tu, Y. Theoretical study of the binding profile of an allosteric modulator NS-1738 with a chimera structure of the α7 nicotinic acetylcholine receptor. Phys. Chem. Chem. Phys., 2016, 18(40), 28003-28009.http://xlink.rsc.org/?DOI=C6CP02278B
[http://dx.doi.org/10.1039/C6CP02278B] [PMID: 27711412]
[165]
Leelananda, S.P.; Lindert, S. Iterative molecular dynamics-rosetta membrane protein structure refinement guided by Cryo-EM densities. J. Chem. Theory Comput., 2017, 13(10), 5131-5145.
[http://dx.doi.org/10.1021/acs.jctc.7b00464] [PMID: 28949136]
[166]
DiMaio, F.; Song, Y.; Li, X.; Brunner, M.J.; Xu, C.; Conticello, V.; Egelman, E.; Marlovits, T.; Cheng, Y.; Baker, D. Atomic-accuracy models from 4.5-Å cryo-electron microscopy data with density-guided iterative local refinement. Nat. Methods, 2015, 12(4), 361-365.
[http://dx.doi.org/10.1038/nmeth.3286] [PMID: 25707030]
[167]
DiMaio, F.; Echols, N.; Headd, J.J.; Terwilliger, T.C.; Adams, P.D.; Baker, D. Improved low-resolution crystallographic refinement with Phenix and Rosetta. Nat. Methods, 2013, 10(11), 1102-1104.
[http://dx.doi.org/10.1038/nmeth.2648] [PMID: 24076763]
[168]
Srivastava, A.; Nagai, T.; Srivastava, A.; Miyashita, O.; Tama, F. Role of computational methods in going beyond X-ray crystallography to explore protein structure and dynamics. Int. J. Mol. Sci., 2018, 19(11), 3401.
[http://dx.doi.org/10.3390/ijms19113401] [PMID: 30380757]
[169]
Xiu, X.; Puskar, N.L.; Shanata, J.A.P.; Lester, H.A.; Dougherty, D.A. Nicotine binding to brain receptors requires a strong cation-π interaction. Nature, 2009, 458(7237), 534-537.http://www.nature.com/doifinder/10.1038/nature07768
[http://dx.doi.org/10.1038/nature07768] [PMID: 19252481]
[170]
Puskar, N.L.; Xiu, X.; Lester, H.A.; Dougherty, D.A. Two neuronal nicotinic acetylcholine receptors, α4β4 and α7, show differential agonist binding modes. J. Biol. Chem., 2011, 286(16), 14618-14627.http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3077659/
[http://dx.doi.org/10.1074/jbc.M110.206565] [PMID: 21343288]
[171]
Stornaiuolo, M.; De Kloe, G.E.; Rucktooa, P.; Fish, A.; van Elk, R.; Edink, E.S.; Bertrand, D.; Smit, A.B.; de Esch, I.J.; Sixma, T.K. Assembly of a π-π stack of ligands in the binding site of an acetylcholine-binding protein. Nat. Commun., 2013, 4, 1875.
[http://dx.doi.org/10.1038/ncomms2900] [PMID: 23695669]
[172]
Rohde, L.A.H.; Ahring, P.K.; Jensen, M.L.; Nielsen, E.Ø.; Peters, D.; Helgstrand, C.; Krintel, C.; Harpsøe, K.; Gajhede, M.; Kastrup, J.S.; Balle, T. Intersubunit bridge formation governs agonist efficacy at nicotinic acetylcholine α4β2 receptors: unique role of halogen bonding revealed. J. Biol. Chem., 2012, 287(6), 4248-4259.
[http://dx.doi.org/10.1074/jbc.M111.292243] [PMID: 22170047]
[173]
Tantama, M.; Licht, S. Use of calculated cation-π binding energies to predict relative strengths of nicotinic acetylcholine receptor agonists. ACS Chem. Biol., 2008, 3(11), 693-702.
[http://dx.doi.org/10.1021/cb800189y] [PMID: 19032090]
[174]
Dapprich, S.; Komáromi, I.; Byun, K.S.; Morokuma, K.; Frisch, M.J. A new ONIOM implementation in Gaussian98., 1999.http://linkinghub.elsevier.com/retrieve/pii/S0166128098004758
[175]
Alamiddine, Z.; Selvam, B.; Cerón-Carrasco, J.P.; Mathé-Allainmat, M.; Lebreton, J.; Thany, S.H.; Laurent, A.D.; Graton, J.; Le Questel, J.Y. Molecular recognition of thiaclopride by Aplysia californica AChBP: new insights from a computational investigation. J. Comput. Aided Mol. Des., 2015, 29(12), 1151-1167.
[http://dx.doi.org/10.1007/s10822-015-9884-x] [PMID: 26589615]
[176]
Amiri, S.; Sansom, M.S.P.; Biggin, P.C. Molecular dynamics studies of AChBP with nicotine and carbamylcholine: the role of water in the binding pocket. Protein Eng. Des. Sel., 2007, 20(7), 353-359.
[http://dx.doi.org/10.1093/protein/gzm029] [PMID: 17595341]
[177]
Dallanoce, C.; Grazioso, G.; Pomè, D.Y.; Sciaccaluga, M.; Matera, C.; Gotti, C.; Fucile, S.; De Amici, M. Investigating the hydrogen-bond acceptor site of the nicotinic pharmacophore model: a computational and experimental study using epibatidine-related molecular probes. J. Comput. Aided Mol. Des., 2013, 27(11), 975-987.
[http://dx.doi.org/10.1007/s10822-013-9694-y] [PMID: 24276616]
[178]
Olsen, J.A.; Balle, T.; Gajhede, M.; Ahring, P.K.; Kastrup, J.S. Molecular recognition of the neurotransmitter acetylcholine by an acetylcholine binding protein reveals determinants of binding to nicotinic acetylcholine receptors. PLoS One, 2014, 9(3), e91232
[http://dx.doi.org/10.1371/journal.pone.0091232] [PMID: 24637639]
[179]
Rucktooa, P.; Haseler, C.A.; van Elk, R.; Smit, A.B.; Gallagher, T.; Sixma, T.K. Structural characterization of binding mode of smoking cessation drugs to nicotinic acetylcholine receptors through study of ligand complexes with acetylcholine-binding protein. J. Biol. Chem., 2012, 287(28), 23283-23293.
[http://dx.doi.org/10.1074/jbc.M112.360347] [PMID: 22553201]
[180]
Kaczanowska, K.; Harel, M.; Radić, Z.; Changeux, J-P.; Finn, M.G.; Taylor, P. Structural basis for cooperative interactions of substituted 2-aminopyrimidines with the acetylcholine binding protein. Proc. Natl. Acad. Sci. USA, 2014, 111(29), 10749-10754.http://www.pnas.org/cgi/doi/10.1073/pnas.1410992111
[http://dx.doi.org/10.1073/pnas.1410992111] [PMID: 25006260]
[181]
Bourne, Y.; Talley, T.T.; Hansen, S.B.; Taylor, P.; Marchot, P. Crystal structure of a Cbtx-AChBP complex reveals essential interactions between snake α-neurotoxins and nicotinic receptors. EMBO J., 2005, 24(8), 1512-1522.http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1142565/
[http://dx.doi.org/10.1038/sj.emboj.7600620] [PMID: 15791209]
[182]
Althoff, T.; Hibbs, R.E.; Banerjee, S.; Gouaux, E. X-ray structures of GluCl in apo states reveal a gating mechanism of Cys-loop receptors. Nature, 2014, 512(7514), 333-337.
[http://dx.doi.org/10.1038/nature13669] [PMID: 25143115]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy