Review Article

Does Pharmacodynamics of Drugs Change After Presenting them as Nanoparticles Like their Pharmacokinetics?

Author(s): Razieh Mohammad Jafari, Moein Ala, Navid Goodarzi and Ahmad Reza Dehpour*

Volume 21, Issue 8, 2020

Page: [807 - 818] Pages: 12

DOI: 10.2174/1389450121666200128113547

Price: $65

Abstract

Nowadays, the breakthrough in different medical branches makes it feasible to designate new methods of drug delivery to achieve the most cost-effective and the least unpleasant consequenceimposing solutions to overcome a wide range of diseases.

Nanoparticle (NP) drugs entered the therapeutic system, especially in cancer chemotherapy. These drugs are quite well-known for two traits of being long-acting and less toxic. For a long time, it has been investigated how NPs will change the kinetics of drugs. However, there are a few studies that inclined their attention to how NPs affect the dynamics of drugs. In this review, the latter point will mainly be discussed in an example-based manner. Besides, other particular features of NPs will be briefly noted.

NPs are capable of affecting the biologic system as much as a drug. Moreover, NPs could arise a wide variety of effects by triggering their own receptors. NPs are able to change a receptor function and manipulate its downstream signaling cascade.

Keywords: Nanoparticles, pharmacodynamics, post receptor effects, drug-receptor interaction, drug delivery, kinetics of drugs.

Graphical Abstract
[1]
Davis ME, Chen Z, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer Nanoscience And Technology: A Collection of Reviews from Nature Journals. World Scientific 2010; pp. 239-50.
[2]
Hans M, Lowman A. Biodegradable nanoparticles for drug delivery and targeting. Curr Opin Solid State Mater Sci 2002; 6: 319-27.
[http://dx.doi.org/10.1016/S1359-0286(02)00117-1]
[3]
Malam Y, Loizidou M, Seifalian AM. Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci 2009; 30(11): 592-9.
[http://dx.doi.org/10.1016/j.tips.2009.08.004] [PMID: 19837467]
[4]
Ge H, Hu Y, Jiang X, et al. Preparation, characterization, and drug release behaviors of drug nimodipine-loaded poly(ε-caprolactone)-poly(ethylene oxide)-poly(ε-caprolactone) amphiphilic triblock copolymer micelles. J Pharm Sci 2002; 91(6): 1463-73.
[http://dx.doi.org/10.1002/jps.10143] [PMID: 12115846]
[5]
Singh R, Lillard JW Jr. Nanoparticle-based targeted drug delivery. Exp Mol Pathol 2009; 86(3): 215-23.
[http://dx.doi.org/10.1016/j.yexmp.2008.12.004] [PMID: 19186176]
[6]
Kreuter J. Nanoparticles--a historical perspective. Int J Pharm 2007; 331(1): 1-10.
[http://dx.doi.org/10.1016/j.ijpharm.2006.10.021] [PMID: 17110063]
[7]
Panyam J, Sahoo SK, Prabha S, Bargar T, Labhasetwar V. Fluorescence and electron microscopy probes for cellular and tissue uptake of poly(D,L-lactide-co-glycolide) nanoparticles. Int J Pharm 2003; 262(1-2): 1-11.
[http://dx.doi.org/10.1016/S0378-5173(03)00295-3] [PMID: 12927382]
[8]
Yamamoto H, Kuno Y, Sugimoto S, Takeuchi H, Kawashima Y. Surface-modified PLGA nanosphere with chitosan improved pulmonary delivery of calcitonin by mucoadhesion and opening of the intercellular tight junctions. J Control Release 2005; 102(2): 373-81.
[http://dx.doi.org/10.1016/j.jconrel.2004.10.010] [PMID: 15653158]
[9]
Müller RH, Maassen S, Weyhers H, Mehnert W. Phagocytic uptake and cytotoxicity of solid lipid nanoparticles (SLN) sterically stabilized with poloxamine 908 and poloxamer 407. J Drug Target 1996; 4(3): 161-70.
[http://dx.doi.org/10.3109/10611869609015973] [PMID: 8959488]
[10]
Grislain L, Couvreur P, Lenaerts V, et al. Pharmacokinetics and distribution of a biodegradable drug-carrier. Int J Pharm 1983; 15: 335-45.
[http://dx.doi.org/10.1016/0378-5173(83)90166-7]
[11]
Olivier J-C. Drug transport to brain with targeted nanoparticles. NeuroRx 2005; 2(1): 108-19.
[http://dx.doi.org/10.1602/neurorx.2.1.108] [PMID: 15717062]
[12]
Fontana G, Licciardi M, Mansueto S, Schillaci D, Giammona G. Amoxicillin-loaded polyethylcyanoacrylate nanoparticles: influence of PEG coating on the particle size, drug release rate and phagocytic uptake. Biomaterials 2001; 22(21): 2857-65.
[http://dx.doi.org/10.1016/S0142-9612(01)00030-8] [PMID: 11561891]
[13]
Wong HL, Bendayan R, Rauth AM, Xue HY, Babakhanian K, Wu XY. A mechanistic study of enhanced doxorubicin uptake and retention in multidrug resistant breast cancer cells using a polymer-lipid hybrid nanoparticle system. J Pharmacol Exp Ther 2006; 317(3): 1372-81.
[http://dx.doi.org/10.1124/jpet.106.101154] [PMID: 16547167]
[14]
Li Y, Guo M, Lin Z, et al. Polyethylenimine-functionalized silver nanoparticle-based co-delivery of paclitaxel to induce HepG2 cell apoptosis. Int J Nanomedicine 2016; 11: 6693-702.
[http://dx.doi.org/10.2147/IJN.S122666] [PMID: 27994465]
[15]
Alvandifar F, Ghaffari B, Goodarzi N, et al. Dual drug delivery system of PLGA nanoparticles to reverse drug resistance by altering BAX/Bcl-2. J Drug Deliv Sci Technol 2018; 47: 291-8.
[http://dx.doi.org/10.1016/j.jddst.2018.07.019]
[16]
Sun C, Lee JS, Zhang M. Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 2008; 60(11): 1252-65.
[http://dx.doi.org/10.1016/j.addr.2008.03.018] [PMID: 18558452]
[17]
Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 1986; 46(12 Pt 1): 6387-92.
[PMID: 2946403]
[18]
Harris JM, Martin NE, Modi M. Pegylation: a novel process for modifying pharmacokinetics. Clin Pharmacokinet 2001; 40(7): 539-51.
[http://dx.doi.org/10.2165/00003088-200140070-00005] [PMID: 11510630]
[19]
Deckert PM. Current constructs and targets in clinical development for antibody-based cancer therapy. Curr Drug Targets 2009; 10(2): 158-75.
[http://dx.doi.org/10.2174/138945009787354502] [PMID: 19199912]
[20]
Canal F, Vicent MJ, Pasut G, Schiavon O. Relevance of folic acid/polymer ratio in targeted PEG-epirubicin conjugates. J Control Release 2010; 146(3): 388-99.
[http://dx.doi.org/10.1016/j.jconrel.2010.05.027] [PMID: 20621587]
[21]
Béduneau A, Saulnier P, Hindré F, Clavreul A, Leroux JC, Benoit JP. Design of targeted lipid nanocapsules by conjugation of whole antibodies and antibody Fab’ fragments. Biomaterials 2007; 28(33): 4978-90.
[http://dx.doi.org/10.1016/j.biomaterials.2007.05.014] [PMID: 17716725]
[22]
Pirollo KF, Chang EH. Does a targeting ligand influence nanoparticle tumor localization or uptake? Trends Biotechnol 2008; 26(10): 552-8.
[http://dx.doi.org/10.1016/j.tibtech.2008.06.007] [PMID: 18722682]
[23]
Kirpotin DB, Drummond DC, Shao Y, et al. Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res 2006; 66(13): 6732-40.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-4199] [PMID: 16818648]
[24]
Na K, Park K-H, Kim SW, Bae YH. Self-assembled hydrogel nanoparticles from curdlan derivatives: characterization, anti-cancer drug release and interaction with a hepatoma cell line (HepG2). J Control Release 2000; 69(2): 225-36.
[http://dx.doi.org/10.1016/S0168-3659(00)00256-X] [PMID: 11064130]
[25]
Dixit V, Van den Bossche J, Sherman DM, Thompson DH, Andres RP. Synthesis and grafting of thioctic acid-PEG-folate conjugates onto Au nanoparticles for selective targeting of folate receptor-positive tumor cells. Bioconjug Chem 2006; 17(3): 603-9.
[http://dx.doi.org/10.1021/bc050335b] [PMID: 16704197]
[26]
Esmaeili F, Ghahremani MH, Ostad SN, et al. Folate-receptor-targeted delivery of docetaxel nanoparticles prepared by PLGA-PEG-folate conjugate. J Drug Target 2008; 16(5): 415-23.
[http://dx.doi.org/10.1080/10611860802088630] [PMID: 18569286]
[27]
Yang P-H, Sun X, Chiu J-F, Sun H, He Q-Y. Transferrin-mediated gold nanoparticle cellular uptake. Bioconjug Chem 2005; 16(3): 494-6.
[http://dx.doi.org/10.1021/bc049775d] [PMID: 15898713]
[28]
Bombelli FB, Webster CA, Moncrieff M, Sherwood V. The scope of nanoparticle therapies for future metastatic melanoma treatment. Lancet Oncol 2014; 15(1): e22-32.
[http://dx.doi.org/10.1016/S1470-2045(13)70333-4] [PMID: 24384491]
[29]
Zhai J, Scoble JA, Li N, et al. Epidermal growth factor receptor-targeted lipid nanoparticles retain self-assembled nanostructures and provide high specificity. Nanoscale 2015; 7(7): 2905-13.
[http://dx.doi.org/10.1039/C4NR05200E] [PMID: 25516406]
[30]
Huwyler J, Wu D, Pardridge WM. Brain drug delivery of small molecules using immunoliposomes. Proc Natl Acad Sci USA 1996; 93(24): 14164-9.
[http://dx.doi.org/10.1073/pnas.93.24.14164] [PMID: 8943078]
[31]
Zhang Y, Schlachetzki F, Pardridge WM. Global non-viral gene transfer to the primate brain following intravenous administration. Mol Ther 2003; 7(1): 11-8.
[http://dx.doi.org/10.1016/S1525-0016(02)00018-7] [PMID: 12573613]
[32]
Yuan Q, Lee E, Yeudall WA, Yang H. Dendrimer-triglycine-EGF nanoparticles for tumor imaging and targeted nucleic acid and drug delivery. Oral Oncol 2010; 46(9): 698-704.
[http://dx.doi.org/10.1016/j.oraloncology.2010.07.001] [PMID: 20729136]
[33]
Jakus J, Yeudall WA. Growth inhibitory concentrations of EGF induce p21 (WAF1/Cip1) and alter cell cycle control in squamous carcinoma cells. Oncogene 1996; 12(11): 2369-76.
[PMID: 8649777]
[34]
Kathawala MH, Khoo SP, Sudhaharan T, et al. Fluorescence techniques used to measure interactions between hydroxyapatite nanoparticles and epidermal growth factor receptors. Biotechnol J 2015; 10(1): 171-9.
[http://dx.doi.org/10.1002/biot.201400404] [PMID: 25367700]
[35]
Bharde AA, Palankar R, Fritsch C, et al. Magnetic nanoparticles as mediators of ligand-free activation of EGFR signaling. PLoS One 2013; 8(7)e68879
[http://dx.doi.org/10.1371/journal.pone.0068879] [PMID: 23894364]
[36]
Comfort KK, Maurer EI, Braydich-Stolle LK, Hussain SM. Interference of silver, gold, and iron oxide nanoparticles on epidermal growth factor signal transduction in epithelial cells. ACS Nano 2011; 5(12): 10000-8.
[http://dx.doi.org/10.1021/nn203785a] [PMID: 22070748]
[37]
Chung T-H, Hsiao J-K, Hsu S-C, et al. Iron oxide nanoparticle-induced epidermal growth factor receptor expression in human stem cells for tumor therapy. ACS Nano 2011; 5(12): 9807-16.
[http://dx.doi.org/10.1021/nn2033902] [PMID: 22053840]
[38]
Yang H, Fung S-Y, Xu S, et al. Amino acid-dependent attenuation of toll-like receptor signaling by peptide-gold nanoparticle hybrids. ACS Nano 2015; 9(7): 6774-84.
[http://dx.doi.org/10.1021/nn505634h] [PMID: 26083966]
[39]
Koide H, Yoshimatsu K, Hoshino Y, et al. A polymer nanoparticle with engineered affinity for a vascular endothelial growth factor (VEGF165). Nat Chem 2017; 9(7): 715-22.
[http://dx.doi.org/10.1038/nchem.2749] [PMID: 28644480]
[40]
Qiao Y, Zhu B, Tian A, Li Z. PEG-coated gold nanoparticles attenuate β-adrenergic receptor-mediated cardiac hypertrophy. Int J Nanomedicine 2017; 12: 4709-19.
[http://dx.doi.org/10.2147/IJN.S130951] [PMID: 28740379]
[41]
Alsaleh NB, Persaud I, Brown JM. Silver nanoparticle-directed mast cell degranulation is mediated through calcium and PI3K signaling independent of the high affinity IgE receptor. PLoS One 2016; 11(12)e0167366
[http://dx.doi.org/10.1371/journal.pone.0167366] [PMID: 27907088]
[42]
Braydich-Stolle LK, Lucas B, Schrand A, et al. Silver nanoparticles disrupt GDNF/Fyn kinase signaling in spermatogonial stem cells. Toxicol Sci 2010; 116(2): 577-89.
[http://dx.doi.org/10.1093/toxsci/kfq148] [PMID: 20488942]
[43]
Roy R, Singh SK, Das M, Tripathi A, Dwivedi PD. Toll-like receptor 6 mediated inflammatory and functional responses of zinc oxide nanoparticles primed macrophages. Immunology 2014; 142(3): 453-64.
[http://dx.doi.org/10.1111/imm.12276] [PMID: 24593842]
[44]
Unfried K, Sydlik U, Bierhals K, Weissenberg A, Abel J. Carbon nanoparticle-induced lung epithelial cell proliferation is mediated by receptor-dependent Akt activation. Am J Physiol Lung Cell Mol Physiol 2008; 294(2): L358-67.
[http://dx.doi.org/10.1152/ajplung.00323.2007] [PMID: 18083769]
[45]
Arvizo RR, Rana S, Miranda OR, Bhattacharya R, Rotello VM, Mukherjee P. Mechanism of anti-angiogenic property of gold nanoparticles: role of nanoparticle size and surface charge. Nanomedicine (Lond) 2011; 7(5): 580-7.
[http://dx.doi.org/10.1016/j.nano.2011.01.011] [PMID: 21333757]
[46]
Rauch J, Kolch W, Mahmoudi M. Cell type-specific activation of AKT and ERK signaling pathways by small negatively-charged magnetic nanoparticles. Sci Rep 2012; 2: 868.
[http://dx.doi.org/10.1038/srep00868] [PMID: 23162692]
[47]
Ramírez-Lee MA, Rosas-Hernández H, Salazar-García S, et al. Silver nanoparticles induce anti-proliferative effects on airway smooth muscle cells. Role of nitric oxide and muscarinic receptor signaling pathway. Toxicol Lett 2014; 224(2): 246-56.
[http://dx.doi.org/10.1016/j.toxlet.2013.10.027] [PMID: 24188929]
[48]
Tamayo I, Irache JM, Mansilla C, Ochoa-Repáraz J, Lasarte JJ, Gamazo C. Poly(anhydride) nanoparticles act as active Th1 adjuvants through Toll-like receptor exploitation. Clin Vaccine Immunol 2010; 17(9): 1356-62.
[http://dx.doi.org/10.1128/CVI.00164-10] [PMID: 20631332]
[49]
Uto T, Akagi T, Yoshinaga K, Toyama M, Akashi M, Baba M. The induction of innate and adaptive immunity by biodegradable poly(γ-glutamic acid) nanoparticles via a TLR4 and MyD88 signaling pathway. Biomaterials 2011; 32(22): 5206-12.
[http://dx.doi.org/10.1016/j.biomaterials.2011.03.052] [PMID: 21492934]
[50]
Sniadecki NJ. A tiny touch: activation of cell signaling pathways with magnetic nanoparticles. Endocrinology 2010; 151(2): 451-7.
[http://dx.doi.org/10.1210/en.2009-0932] [PMID: 20016028]
[51]
D’Addario M, Arora PD, Ellen RP, McCulloch CA. Interaction of p38 and Sp1 in a mechanical force-induced, beta 1 integrin-mediated transcriptional circuit that regulates the actin-binding protein filamin-A. J Biol Chem 2002; 277(49): 47541-50.
[http://dx.doi.org/10.1074/jbc.M207681200] [PMID: 12324467]
[52]
Wang J, Fan J, Laschinger C, et al. Smooth muscle actin determines mechanical force-induced p38 activation. J Biol Chem 2005; 280(8): 7273-84.
[http://dx.doi.org/10.1074/jbc.M410819200] [PMID: 15591055]
[53]
Zhao X-H, Laschinger C, Arora P, Szászi K, Kapus A, McCulloch CA. Force activates smooth muscle α-actin promoter activity through the Rho signaling pathway. J Cell Sci 2007; 120(Pt 10): 1801-9.
[http://dx.doi.org/10.1242/jcs.001586] [PMID: 17456553]
[54]
Petersen LK, York AW, Lewis DR, et al. Amphiphilic nanoparticles repress macrophage atherogenesis: novel core/shell designs for scavenger receptor targeting and down-regulation. Mol Pharm 2014; 11(8): 2815-24.
[http://dx.doi.org/10.1021/mp500188g] [PMID: 24972372]
[55]
Jang S, Park JW, Cha HR, et al. Silver nanoparticles modify VEGF signaling pathway and mucus hypersecretion in allergic airway inflammation. Int J Nanomedicine 2012; 7: 1329-43.
[PMID: 22457593]
[56]
Guo C, Smith R, Gant TW, Leonard MO. Cerium dioxide nanoparticles protect against oxidative stress induced injury through modulation of TGF-β signalling. Toxicol Res 2015; 4: 464-75.
[http://dx.doi.org/10.1039/C4TX00210E]
[57]
Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 2001; 53(2): 283-318.
[PMID: 11356986]
[58]
Samarajeewa S, Shrestha R, Li Y, Wooley KL. Degradability of poly(lactic acid)-containing nanoparticles: enzymatic access through a cross-linked shell barrier. J Am Chem Soc 2012; 134(2): 1235-42.
[http://dx.doi.org/10.1021/ja2095602] [PMID: 22257265]
[59]
Slowing II, Vivero-Escoto JL, Wu C-W, Lin VS-Y. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev 2008; 60(11): 1278-88.
[http://dx.doi.org/10.1016/j.addr.2008.03.012] [PMID: 18514969]
[60]
Huang G, Gao J, Hu Z, St John JV, Ponder BC, Moro D. Controlled drug release from hydrogel nanoparticle networks. J Control Release 2004; 94(2-3): 303-11.
[http://dx.doi.org/10.1016/j.jconrel.2003.10.007] [PMID: 14744482]
[61]
Jenning V, Gysler A, Schäfer-Korting M, Gohla SH. Vitamin A loaded solid lipid nanoparticles for topical use: occlusive properties and drug targeting to the upper skin. Eur J Pharm Biopharm 2000; 49(3): 211-8.
[http://dx.doi.org/10.1016/S0939-6411(99)00075-2] [PMID: 10799811]
[62]
zur Mühlen A, Schwarz C, Mehnert W. Solid lipid nanoparticles (SLN) for controlled drug delivery--drug release and release mechanism. Eur J Pharm Biopharm 1998; 45(2): 149-55.
[http://dx.doi.org/10.1016/S0939-6411(97)00150-1] [PMID: 9704911]
[63]
Mu L, Feng SS. A novel controlled release formulation for the anticancer drug paclitaxel (Taxol): PLGA nanoparticles containing vitamin E TPGS. J Control Release 2003; 86(1): 33-48.
[http://dx.doi.org/10.1016/S0168-3659(02)00320-6] [PMID: 12490371]
[64]
Jain RK. Delivery of molecular and cellular medicine to solid tumors. J Control Release 1998; 53(1-3): 49-67.
[http://dx.doi.org/10.1016/S0168-3659(97)00237-X] [PMID: 9741913]
[65]
Jang SH, Wientjes MG, Lu D, Au JL-S. Drug delivery and transport to solid tumors. Pharm Res 2003; 20(9): 1337-50.
[http://dx.doi.org/10.1023/A:1025785505977] [PMID: 14567626]
[66]
Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul 2001; 41: 189-207.
[http://dx.doi.org/10.1016/S0065-2571(00)00013-3] [PMID: 11384745]
[67]
Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 2000; 65(1-2): 271-84.
[http://dx.doi.org/10.1016/S0168-3659(99)00248-5] [PMID: 10699287]
[68]
Bareford LM, Swaan PW. Endocytic mechanisms for targeted drug delivery. Adv Drug Deliv Rev 2007; 59(8): 748-58.
[http://dx.doi.org/10.1016/j.addr.2007.06.008] [PMID: 17659804]
[69]
Lu Y, Low PS. Folate-mediated delivery of macromolecular anticancer therapeutic agents. Adv Drug Deliv Rev 2012; 64: 342-52.
[http://dx.doi.org/10.1016/j.addr.2012.09.020] [PMID: 12204598]
[70]
Verma A, Stellacci F. Effect of surface properties on nanoparticle-cell interactions. Small 2010; 6(1): 12-21.
[http://dx.doi.org/10.1002/smll.200901158] [PMID: 19844908]
[71]
Eichman JD, Bielinska AU, Kukowska-Latallo JF, Baker JR Jr. The use of PAMAM dendrimers in the efficient transfer of genetic material into cells Pharm sci & tech today 2000; 3:: 232--45..
[http://dx.doi.org/10.1016/S1461-5347(00)00273-X]
[72]
Lu W, Zhang Y, Tan Y-Z, Hu KL, Jiang XG, Fu SK. Cationic albumin-conjugated pegylated nanoparticles as novel drug carrier for brain delivery. J Control Release 2005; 107(3): 428-48.
[http://dx.doi.org/10.1016/j.jconrel.2005.03.027] [PMID: 16176844]
[73]
Liu L, Xu K, Wang H, et al. Self-assembled cationic peptide nanoparticles as an efficient antimicrobial agent. Nat Nanotechnol 2009; 4(7): 457-63.
[http://dx.doi.org/10.1038/nnano.2009.153] [PMID: 19581900]
[74]
Chertok B, Moffat BA, David AE, et al. Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Biomaterials 2008; 29(4): 487-96.
[http://dx.doi.org/10.1016/j.biomaterials.2007.08.050] [PMID: 17964647]
[75]
Dobson J. Magnetic nanoparticles for drug delivery. Drug Dev Res 2006; 67: 55-60.
[http://dx.doi.org/10.1002/ddr.20067]
[76]
Alexiou C, Schmid RJ, Jurgons R, et al. Targeting cancer cells: magnetic nanoparticles as drug carriers. Eur Biophys J 2006; 35(5): 446-50.
[http://dx.doi.org/10.1007/s00249-006-0042-1] [PMID: 16447039]
[77]
Kreuter J. Nanoparticulate systems for brain delivery of drugs. Adv Drug Deliv Rev 2001; 47(1): 65-81.
[http://dx.doi.org/10.1016/S0169-409X(00)00122-8] [PMID: 11251246]
[78]
Kreuter J. Influence of the surface properties on nanoparticle-mediated transport of drugs to the brain. J Nanosci Nanotechnol 2004; 4(5): 484-8.
[http://dx.doi.org/10.1166/jnn.2003.077] [PMID: 15503433]
[79]
Lockman PR, Koziara JM, Mumper RJ, Allen DD. Nanoparticle surface charges alter blood-brain barrier integrity and permeability. J Drug Target 2004; 12(9-10): 635-41.
[http://dx.doi.org/10.1080/10611860400015936] [PMID: 15621689]
[80]
Ren T, Xu N, Cao C, et al. Preparation and therapeutic efficacy of polysorbate-80-coated amphotericin B/PLA-b-PEG nanoparticles. J Biomater Sci Polym Ed 2009; 20(10): 1369-80.
[http://dx.doi.org/10.1163/092050609X12457418779185] [PMID: 19622277]
[81]
Gulyaev AE, Gelperina SE, Skidan IN, Antropov AS, Kivman GY, Kreuter J. Significant transport of doxorubicin into the brain with polysorbate 80-coated nanoparticles. Pharm Res 1999; 16(10): 1564-9.
[http://dx.doi.org/10.1023/A:1018983904537] [PMID: 10554098]
[82]
Olivier J-C, Fenart L, Chauvet R, Pariat C, Cecchelli R, Couet W. Indirect evidence that drug brain targeting using polysorbate 80-coated polybutylcyanoacrylate nanoparticles is related to toxicity. Pharm Res 1999; 16(12): 1836-42.
[http://dx.doi.org/10.1023/A:1018947208597] [PMID: 10644071]
[83]
Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC. Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther 2008; 83(5): 761-9.
[http://dx.doi.org/10.1038/sj.clpt.6100400] [PMID: 17957183]
[84]
Dreaden EC, Mwakwari SC, Sodji QH, Oyelere AK, El-Sayed MA. Tamoxifen-poly(ethylene glycol)-thiol gold nanoparticle conjugates: enhanced potency and selective delivery for breast cancer treatment. Bioconjug Chem 2009; 20(12): 2247-53.
[http://dx.doi.org/10.1021/bc9002212] [PMID: 19919059]
[85]
Von Hoff DD, Layard MW, Basa P, et al. Risk factors for doxorubicin-induced congestive heart failure. Ann Intern Med 1979; 91(5): 710-7.
[http://dx.doi.org/10.7326/0003-4819-91-5-710] [PMID: 496103]
[86]
Park J, Fong PM, Lu J, et al. PEGylated PLGA nanoparticles for the improved delivery of doxorubicin. Nanomedicine (Lond) 2009; 5(4): 410-8.
[http://dx.doi.org/10.1016/j.nano.2009.02.002] [PMID: 19341815]
[87]
Kanter PM, Bullard GA, Ginsberg RA, et al. Comparison of the cardiotoxic effects of liposomal doxorubicin (TLC D-99) versus free doxorubicin in beagle dogs. In Vivo 1993; 7(1): 17-26.
[PMID: 8504204]
[88]
Gill PS, Wernz J, Scadden DT, et al. Randomized phase III trial of liposomal daunorubicin versus doxorubicin, bleomycin, and vincristine in AIDS-related Kaposi’s sarcoma. J Clin Oncol 1996; 14(8): 2353-64.
[http://dx.doi.org/10.1200/JCO.1996.14.8.2353] [PMID: 8708728]
[89]
Gradishar WJ, Tjulandin S, Davidson N, et al. NOT PRINTABLE. J Clin Oncol 2005; 23: 7794-803.
[http://dx.doi.org/10.1200/JCO.2005.04.937] [PMID: 16172456]
[90]
Micha JP, Goldstein BH, Birk CL, Rettenmaier MA, Brown JV III. Abraxane in the treatment of ovarian cancer: the absence of hypersensitivity reactions. Gynecol Oncol 2006; 100(2): 437-8.
[http://dx.doi.org/10.1016/j.ygyno.2005.09.012] [PMID: 16226797]
[91]
Rychahou P, Bae Y, Reichel D, et al. Colorectal cancer lung metastasis treatment with polymer-drug nanoparticles. J Control Release 2018; 275: 85-91.
[http://dx.doi.org/10.1016/j.jconrel.2018.02.008] [PMID: 29421609]
[92]
Misra R, Mohanty S. Sustained release of methotrexate through liquid-crystalline folate nanoparticles. J Mater Sci Mater Med 2014; 25(9): 2095-109.
[http://dx.doi.org/10.1007/s10856-014-5257-6] [PMID: 24952639]
[93]
Treon SP, Chabner BA. Concepts in use of high-dose methotrexate therapy. Clin Chem 1996; 42(8 Pt 2): 1322-9.
[http://dx.doi.org/10.1093/clinchem/42.8.1322] [PMID: 8697606]
[94]
Kamen B. Folate and antifolate pharmacology 1997.
[95]
Isoardi KZ, Harris K, Carmichael KE, Dimeski G, Chan BSH, Page CB. Acute bone marrow suppression and gastrointestinal toxicity following acute oral methotrexate overdose. Clin Toxicol (Phila) 2018; 56(12): 1204-6.
[http://dx.doi.org/10.1080/15563650.2018.1484128] [PMID: 29973099]
[96]
Guo T, Zhang Y, Zhao J, Zhu C, Feng N. Nanostructured lipid carriers for percutaneous administration of alkaloids isolated from Aconitum sinomontanum. J Nanobiotechnology 2015; 13: 47.
[http://dx.doi.org/10.1186/s12951-015-0107-3] [PMID: 26156035]
[97]
Andrade LM, de Fátima Reis C, Maione-Silva L, et al. Impact of lipid dynamic behavior on physical stability, in vitro release and skin permeation of genistein-loaded lipid nanoparticles. Eur J Pharm Biopharm 2014; 88(1): 40-7.
[http://dx.doi.org/10.1016/j.ejpb.2014.04.015] [PMID: 24816130]
[98]
Tiwari R, Pathak K. Nanostructured lipid carrier versus solid lipid nanoparticles of simvastatin: comparative analysis of characteristics, pharmacokinetics and tissue uptake. Int J Pharm 2011; 415(1-2): 232-43.
[http://dx.doi.org/10.1016/j.ijpharm.2011.05.044] [PMID: 21640809]
[99]
Shah RM, Bryant G, Taylor M, et al. Structure of solid lipid nanoparticles produced by a microwave-assisted microemulsion technique. RSC Advances 2016; 6: 36803-10.
[http://dx.doi.org/10.1039/C6RA02020H]
[100]
Nahak P, Karmakar G, Chettri P, et al. Influence of lipid core material on physicochemical characteristics of an ursolic acid-loaded nanostructured lipid carrier: An attempt to enhance anticancer activity. Langmuir 2016; 32(38): 9816-25.
[http://dx.doi.org/10.1021/acs.langmuir.6b02402] [PMID: 27588340]
[101]
Müller RH, Mäder K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. Eur J Pharm Biopharm 2000; 50(1): 161-77.
[http://dx.doi.org/10.1016/S0939-6411(00)00087-4] [PMID: 10840199]
[102]
Deshpande A, Mohamed M, Daftardar SB, et al. Solid Lipid Nanoparticles in Drug Delivery: Opportunities and Challenges Emerging Nanotechnologies for Diagnostics, Drug Delivery and Medical Devices. Elsevier 2017; pp. 291-330.
[http://dx.doi.org/10.1016/B978-0-323-42978-8.00012-7]
[103]
Gordillo-Galeano A, Mora-Huertas CE. Solid lipid nanoparticles and nanostructured lipid carriers: A review emphasizing on particle structure and drug release. Eur J Pharm Biopharm 2018; 133: 285-308.
[http://dx.doi.org/10.1016/j.ejpb.2018.10.017] [PMID: 30463794]
[104]
Calvo P, Remuñan-López C, Vila-Jato JL, Alonso MJ. Chitosan and chitosan/ethylene oxide-propylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccines. Pharm Res 1997; 14(10): 1431-6.
[http://dx.doi.org/10.1023/A:1012128907225] [PMID: 9358557]
[105]
Mora-Huertas CE, Fessi H, Elaissari A. Polymer-based nanocapsules for drug delivery. Int J Pharm 2010; 385(1-2): 113-42.
[http://dx.doi.org/10.1016/j.ijpharm.2009.10.018] [PMID: 19825408]
[106]
Hua X, Yang Q, Dong Z, et al. Magnetically triggered drug release from nanoparticles and its applications in anti-tumor treatment. Drug Deliv 2017; 24(1): 511-8.
[http://dx.doi.org/10.1080/10717544.2016.1256001] [PMID: 28181827]
[107]
Álvarez-Bautista A, Duarte C, Mendizábal E, Katime I. Controlled delivery of drugs through smart pH-sensitive nanohydrogels for anti-cancer therapies: synthesis, drug release and cellular studies. Des Monomers Polym 2016; 19: 319-29.
[http://dx.doi.org/10.1080/15685551.2016.1152542]
[108]
Wang D, Wu S. Red-light-responsive supramolecular valves for photocontrolled drug release from mesoporous nanoparticles. Langmuir 2016; 32(2): 632-6.
[http://dx.doi.org/10.1021/acs.langmuir.5b04399] [PMID: 26700509]
[109]
He S, Krippes K, Ritz S, et al. Ultralow-intensity near-infrared light induces drug delivery by upconverting nanoparticles. Chem Commun (Camb) 2015; 51(2): 431-4.
[http://dx.doi.org/10.1039/C4CC07489K] [PMID: 25407146]
[110]
Chen WH, Liao WC, Sohn YS, et al. Stimuli‐Responsive Nucleic Acid‐Based Polyacrylamide Hydrogel‐Coated Metal–Organic Framework Nanoparticles for Controlled Drug Release. Adv Funct Mater 2018; 281705137
[http://dx.doi.org/10.1002/adfm.201705137]
[111]
Chang J-S, Chang KLB, Hwang D-F, Kong Z-L. In vitro cytotoxicitiy of silica nanoparticles at high concentrations strongly depends on the metabolic activity type of the cell line Environ Sci and tech 2007; 41:: 2064--8..
[http://dx.doi.org/10.1021/es062347t]
[112]
Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 2005; 19(7): 975-83.
[http://dx.doi.org/10.1016/j.tiv.2005.06.034] [PMID: 16125895]
[113]
Kone BC, Kaleta M, Gullans SR. Silver ion (Ag+)-induced increases in cell membrane K+ and Na+ permeability in the renal proximal tubule: reversal by thiol reagents. J Membr Biol 1988; 102(1): 11-9.
[http://dx.doi.org/10.1007/BF01875349] [PMID: 2456393]
[114]
McAuliffe ME, Perry MJ. Are nanoparticles potential male reproductive toxicants? A literature review. Nanotoxicology 2007; 1: 204-10.
[http://dx.doi.org/10.1080/17435390701675914]
[115]
Kim YS, Song MY, Park JD, et al. Subchronic oral toxicity of silver nanoparticles. Part Fibre Toxicol 2010; 7: 20.
[http://dx.doi.org/10.1186/1743-8977-7-20] [PMID: 20691052]
[116]
Yamashita K, Yoshioka Y, Higashisaka K, et al. Silica and titanium dioxide nanoparticles cause pregnancy complications in mice. Nat Nanotechnol 2011; 6(5): 321-8.
[http://dx.doi.org/10.1038/nnano.2011.41] [PMID: 21460826]
[117]
Maysinger D, Behrendt M, Lalancette-Hébert M, Kriz J. Real-time imaging of astrocyte response to quantum dots: in vivo screening model system for biocompatibility of nanoparticles. Nano Lett 2007; 7(8): 2513-20.
[http://dx.doi.org/10.1021/nl071611t] [PMID: 17638392]
[118]
Jakubek LM, Marangoudakis S, Raingo J, Liu X, Lipscombe D, Hurt RH. The inhibition of neuronal calcium ion channels by trace levels of yttrium released from carbon nanotubes. Biomaterials 2009; 30(31): 6351-7.
[http://dx.doi.org/10.1016/j.biomaterials.2009.08.009] [PMID: 19698989]
[119]
Yan G, Huang Y, Bu Q, et al. et al. Zinc oxide nanoparticles cause nephrotoxicity and kidney metabolism alterations in rats. J Environ Sci Health A Tox Hazard Subst Environ Eng 2012;; 47( (4):): 577--88..
[http://dx.doi.org/10.1080/10934529.2012.650576] [PMID: 22375541]
[120]
Bouallegui Y, Ben Younes R, Turki F, Mezni A, Oueslati R. Effect of exposure time, particle size and uptake pathways in immune cell lysosomal cytotoxicity of mussels exposed to silver nanoparticles. Drug Chem Toxicol 2018; 41(2): 169-74.
[http://dx.doi.org/10.1080/01480545.2017.1329317] [PMID: 28583008]
[121]
Brkić Ahmed L, Milić M, Pongrac IM, et al. Impact of surface functionalization on the uptake mechanism and toxicity effects of silver nanoparticles in HepG2 cells. Food Chem Toxicol 2017;; 107( (Pt A):): 349--61..
[http://dx.doi.org/10.1016/j.fct.2017.07.016] [PMID: 28694083]
[122]
Yusuf A, Casey A. Surface modification of silver nanoparticle (AgNP) by liposomal encapsulation mitigates AgNP-induced inflammation. Toxicol In Vitro 2019; 61104641
[http://dx.doi.org/10.1016/j.tiv.2019.104641] [PMID: 31493545]
[123]
Gliga AR, Skoglund S, Wallinder IO, Fadeel B, Karlsson HL. Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Part Fibre Toxicol 2014; 11: 11.
[http://dx.doi.org/10.1186/1743-8977-11-11] [PMID: 24529161]
[124]
Chen S-F, Zhang H. Aggregation kinetics of nanosilver in different water conditions. J Nanosci Nanotechnol 2012; •••3035006
[125]
Carlson C, Hussain SM, Schrand AM, et al. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B 2008; 112(43): 13608-19.
[http://dx.doi.org/10.1021/jp712087m] [PMID: 18831567]
[126]
Sharma VK. Aggregation and toxicity of titanium dioxide nanoparticles in aquatic environment--a review. J Environ Sci Health A Tox Hazard Subst Environ Eng 2009;; 44((14):): 1485--95..
[http://dx.doi.org/10.1080/10934520903263231] [PMID: 20183505]
[127]
Kaur J, Tikoo K. Evaluating cell specific cytotoxicity of differentially charged silver nanoparticles. Food Chem Toxicol 2013; 51: 1-14.
[http://dx.doi.org/10.1016/j.fct.2012.08.044] [PMID: 22975145]
[128]
Lim D-H, Jang J, Kim S, Kang T, Lee K, Choi IH. The effects of sub-lethal concentrations of silver nanoparticles on inflammatory and stress genes in human macrophages using cDNA microarray analysis. Biomaterials 2012; 33(18): 4690-9.
[http://dx.doi.org/10.1016/j.biomaterials.2012.03.006] [PMID: 22459196]
[129]
Kante B, Couvreur P, Dubois-Krack G, et al. Toxicity of polyalkylcyanoacrylate nanoparticles I: Free nanoparticles. J Pharm Sci 1982; 71(7): 786-90.
[http://dx.doi.org/10.1002/jps.2600710716] [PMID: 7120063]
[130]
Vlasova MA, Tarasova OS, Riikonen J, et al. Injected nanoparticles: the combination of experimental systems to assess cardiovascular adverse effects. Eur J Pharm Biopharm 2014; 87(1): 64-72.
[http://dx.doi.org/10.1016/j.ejpb.2014.02.001] [PMID: 24530427]
[131]
Kennedy D, Gies V, Jezierski A, Yang L. Effects of human serum on the stability and cytotoxicity of silver nanoparticles. SN Applied Sciences 2019; 1: 1510.
[http://dx.doi.org/10.1007/s42452-019-1480-6]
[132]
Walkey CD, Chan WC. Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem Soc Rev 2012; 41(7): 2780-99.
[http://dx.doi.org/10.1039/C1CS15233E] [PMID: 22086677]
[133]
Anderson NL, Anderson NG. The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 2002; 1(11): 845-67.
[http://dx.doi.org/10.1074/mcp.R200007-MCP200] [PMID: 12488461]
[134]
Lesniak A, Salvati A, Santos-Martinez MJ, Radomski MW, Dawson KA, Åberg C. Nanoparticle adhesion to the cell membrane and its effect on nanoparticle uptake efficiency. J Am Chem Soc 2013; 135(4): 1438-44.
[http://dx.doi.org/10.1021/ja309812z] [PMID: 23301582]
[135]
Lesniak A, Fenaroli F, Monopoli MP, Åberg C, Dawson KA, Salvati A. Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells. ACS Nano 2012; 6(7): 5845-57.
[http://dx.doi.org/10.1021/nn300223w] [PMID: 22721453]
[136]
Ritz S, Schöttler S, Kotman N, et al. Protein corona of nanoparticles: distinct proteins regulate the cellular uptake. Biomacromolecules 2015; 16(4): 1311-21.
[http://dx.doi.org/10.1021/acs.biomac.5b00108] [PMID: 25794196]
[137]
Salvati A, Pitek AS, Monopoli MP, et al. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat Nanotechnol 2013; 8(2): 137-43.
[http://dx.doi.org/10.1038/nnano.2012.237] [PMID: 23334168]
[138]
Deng ZJ, Liang M, Monteiro M, Toth I, Minchin RF. Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation. Nat Nanotechnol 2011; 6(1): 39-44.
[http://dx.doi.org/10.1038/nnano.2010.250] [PMID: 21170037]
[139]
Varnamkhasti BS, Hosseinzadeh H, Azhdarzadeh M, et al. Protein corona hampers targeting potential of MUC1 aptamer functionalized SN-38 core-shell nanoparticles. Int J Pharm 2015; 494(1): 430-44.
[http://dx.doi.org/10.1016/j.ijpharm.2015.08.060] [PMID: 26315125]
[140]
Mahmoudi M, Sheibani S, Milani AS, et al. Crucial role of the protein corona for the specific targeting of nanoparticles. Nanomedicine (Lond) 2015; 10(2): 215-26.
[http://dx.doi.org/10.2217/nnm.14.69] [PMID: 25600967]
[141]
Obst K, Yealland G, Balzus B, et al. Protein corona formation on colloidal polymeric nanoparticles and polymeric Nanogels: impact on cellular uptake, toxicity, immunogenicity, and drug release properties. Biomacromolecules 2017; 18(6): 1762-71.
[http://dx.doi.org/10.1021/acs.biomac.7b00158] [PMID: 28511014]
[142]
Borgognoni CF, Mormann M, Qu Y, et al. Reaction of human macrophages on protein corona covered TiO2 nanoparticles. Nanomedicine (Lond) 2015; 11(2): 275-82.
[http://dx.doi.org/10.1016/j.nano.2014.10.001] [PMID: 25461290]
[143]
Saptarshi SR. Nanoparticle-protein corona formation and immunotoxicity of zinc oxide nanoparticles 2015.
[144]
Fornaguera C, Calderó G, Mitjans M, Vinardell MP, Solans C, Vauthier C. Interactions of PLGA nanoparticles with blood components: protein adsorption, coagulation, activation of the complement system and hemolysis studies. Nanoscale 2015; 7(14): 6045-58.
[http://dx.doi.org/10.1039/C5NR00733J] [PMID: 25766431]
[145]
Escamilla-Rivera V, Uribe-Ramírez M, González-Pozos Set al. Protein corona acts as a protective shield against Fe3O4-PEG inflammation and ROS-induced toxicity in human macrophages. Toxicol Lett 2016; 240: 172-84.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy