Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Synthesis of Non-Toxic Fe2(WO4)3 Photocatalyst with Efficient Performance

Author(s): Imran Aslam*, Muhammad Saqib, Muhammad W. Iqbal, Rajender Boddula, Tariq Mahmood and Usman Ghani

Volume 17, Issue 5, 2021

Published on: 23 January, 2020

Page: [628 - 639] Pages: 12

DOI: 10.2174/1573411016666200123142641

Price: $65

Abstract

Background: Environmental pollution has become a worldwide problem. In this regard, decontamination of wastewater and removal of organic pollutants from environment by photocatalysis has emerged as one of the most promising techniques from the last few decades.

Objective: In order to degrade the harmful pollutants from wastewater, highly efficient non-toxic Fe2(WO4)3 photocatalyst was synthesized via co precipitation method. The photocatalytic activity of the as-synthesized material was examined by degrading methylene blue (MB) under various conditions.

Methods: For this purpose, different experimental parameters such as catalyst load, model compound concentration, H2O2 percentage and pH value were adjusted for excellent degradation of MB, and response surface methodology (RSM) along with central composite design (CCD) as adequate model was employed for optimization process.

Results: The experimental results revealed that 1.2 g/L of catalyst load, 10 g/L for dye concentration, 0.5% of H2O2 and pH 7 were found to be the optimized values for the aforesaid parameters. The optimized values led to 93% degradation of MB under UV light exposure. In addition, toxicological studies were analysed using various bioassays for both, untreated and treated samples and a conspicuous reduction (69.12%) in the toxicity level was observed.

Conclusion: The study signifies that this method is useful for reclamation of water, making it useful for industry and irrigation.

Keywords: Degradation, iron tungstate, methylene blue, nontoxic, photocatalyst, photocatalytic activity.

Graphical Abstract
[1]
Aslam, I.; Cao, C.; Tanveer, M.; Farooq, M.H.; Tahir, M.; Khalid, S.; Khan, W.S.; Idrees, F.; Rizwan, M.; Butt, F.K. A facile one-step fabrication of novel WO3/Fe2(WO4)3.7H2O porous microplates with remarkable photocatalytic activities. CrystEngComm, 2015, 17, 4809-4817.
[http://dx.doi.org/10.1039/C5CE00712G]
[2]
Alaton, I.A.; Gursoy, B.H.; Schmidt, J.E. Advanced oxidation of acid and reactive dyes: Effect of Fenton treatment on aerobic, anoxic and anaerobic processes. Dyes Pigments, 2008, 78, 117-130.
[http://dx.doi.org/10.1016/j.dyepig.2007.11.001]
[3]
Alaton, I.A.; Ferry, J.L. Application of polyoxotungstates as environmental catalysts: Wet air oxidation of acid dye Orange II. Dyes Pigments, 2002, 54, 25-36.
[http://dx.doi.org/10.1016/S0143-7208(02)00031-1]
[4]
Abu, N.E.; Mba, K.C. Mutagenecity testing of pharmaceutical effluents on Allium ceparoot tip meristems. J. Toxicol. Environ. Health Sci., 2011, 3, 44-51.
[5]
Andreozzi, R.; Caprio, V.; Insola, A.; Marotta, R. Advanced oxidation processes (AOPs) for water purification and recovery. Catal. Today, 1999, 53, 51-59.
[http://dx.doi.org/10.1016/S0920-5861(99)00102-9]
[6]
Aleboyeh, A.; Aleboyeh, H.; Moussa, Y. Decolorisation of acid blue 74 by ultraviolet/H2O2. Environ. Chem. Lett., 2005, 1, 161-164.
[http://dx.doi.org/10.1007/s10311-003-0039-2]
[7]
Bae, E.; Choi, W. Highly enhanced photoreductive degradation of perchlorinated compounds on dye-sensitized metal/TiO2 under visible light. Environ. Sci. Technol., 2003, 37(1), 147-152.
[http://dx.doi.org/10.1021/es025617q] [PMID: 12542303]
[8]
Barakat, M.A.; Tseng, J.M.; Huang, C.P. Hydrogen peroxide-assisted photocatalytic oxidation of phenolic compounds. Appl. Catal. B, 2005, 59, 99-104.
[http://dx.doi.org/10.1016/j.apcatb.2005.01.004]
[9]
Perez, U.M.G.; Cruz, A.M.; Peral, J. Transition metal tungstates synthesized by co-precipitation method: Basic photocatalytic properties. Electrochim. Acta, 2012, 81, 227-232.
[http://dx.doi.org/10.1016/j.electacta.2012.07.045]
[10]
Montini, T.; Gombac, V.; Hameed, A.; Felisari, L.; Adami, G.; Fornasiero, P. Synthesis, characterization and photocatalytic performance of transition metal tungstates. Chem. Phys. Lett., 2010, 498, 113-119.
[http://dx.doi.org/10.1016/j.cplett.2010.08.026]
[11]
Pourmortazavi, S.M.; Nasrabadi, M.R.; Shalamzari, M.K.; Zahedic, M.M.; Hajimirsadeghi, S.S.; Omrani, I. Synthesis, structure characterization and catalytic activity of nickel tungstate nanoparticles. Appl. Surf. Sci., 2012, 263, 745-752.
[http://dx.doi.org/10.1016/j.apsusc.2012.09.153]
[12]
Srivastava, V.S. Photocatalytic degradation of methylene blue dye and chromium metal from wastewater using nanocrystalline TiO2 semiconductor. Arch. Appl. Sci. Res., 2012, 4, 1244-1254.
[13]
Pang, Y.L.; Abdullah, A.Z. Fe3+ doped TiO2 nanotubes for combined adsorption sonocatalytic degradation of real textile wastewater. Appl. Catal. B, 2013, 129, 473-481.
[http://dx.doi.org/10.1016/j.apcatb.2012.09.051]
[14]
Linsebigler, A.L.; Lu, G.; Yates, J.T. Photocatalysis on TiO2 Surfaces: Principles, mechanisms, and selected results. Chem. Rev., 1995, 95(3), 735-758.
[http://dx.doi.org/10.1021/cr00035a013]
[15]
Chen, X.; Mao, S.S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev., 2007, 107(7), 2891-2959.
[http://dx.doi.org/10.1021/cr0500535] [PMID: 17590053]
[16]
Liao, J.; Qiu, B.; Wen, H.; Chen, J.; You, W.; Liu, L. Synthesis process and luminescence properties of Tm3+ in AWO4 (A = Ca, Sr, Ba) blue phosphors. J. Alloys Compd., 2009, 487, 758-762.
[http://dx.doi.org/10.1016/j.jallcom.2009.08.068]
[17]
Sczancoski, J.C.; Bomio, M.D.R.; Cavalcante, L.S.; Joya, M.R.; Pizani, P.S.; Varela, J.A.; Longo, E.; Li, M.S.; Andrés, J.A. Morphology and blue photoluminescence emission of pbmoo4 processed in conventional hydrothermal. J. Phys. Chem. C, 2009, 113, 5812-5822.
[http://dx.doi.org/10.1021/jp810294q]
[18]
Agranovskaya, A.I. Physical-chemical investigation of the formation of complex ferroelectrics with the perovskite structure. Bull. Acad. Sci. U.S.S.R., Phys. Ser., 1960, 24, 1271-1277.
[19]
Ryu, J.H.; Yoon, J.W.; Lim, C.S.; Oh, W.C.; Shim, K.B. Microwave-assisted synthesis of CaMoO4 nano-powders by a citrate complex method and its photoluminescence property. J. Alloys Compd., 2005, 390, 245-249.
[http://dx.doi.org/10.1016/j.jallcom.2004.07.064]
[20]
Wang, N.; Li, J.; Zhu, L.; Dong, Y.; Tang, H. Highly photocatalytic activity of metallic hydroxide/titanium dioxide nanoparticles prepared via a modified wet precipitation process. J. Photochem. Photobiol. Chem., 2008, 198(2-3), 282-287.
[http://dx.doi.org/10.1016/j.jphotochem.2008.03.021]
[21]
Qureshi, K.; Ahmad, M.Z.; Bhatti, I.A.; Iqbal, M.; Khan, A. Cytotoxicity reduction of wastewater treated by advanced oxidation process. Chem. Int., 2015, 1(1), 53-59.
[22]
Ananthashankar, R. Treatment of textile effluent containing reactive red 120 dye using advanced oxidation. MSc Thesis, Department of Process Engineering and Applied Science, Dalhousie Univ.: Halifax, Nova Scotia,. 2012.
[23]
Blanco, J.; Torrades, F.; Varga, M.D.; Montaño, J.G. Fenton and biological-Fenton coupled processes for textile wastewater treatment and reuse. Desalination, 2012, 286, 394-399.
[http://dx.doi.org/10.1016/j.desal.2011.11.055]
[24]
Guimarães, J.R.; Maniero, M.G.; Nogueira de Araújo, R. A comparative study on the degradation of RB-19 dye in an aqueous medium by advanced oxidation processes. J. Environ. Manage., 2012, 110, 33-39.
[http://dx.doi.org/10.1016/j.jenvman.2012.05.020] [PMID: 22705858]
[25]
Gaya, U.I.; Abdullah, A.H. Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. J. Photochem. Photobiol., 2008, 9, 1-12.
[http://dx.doi.org/10.1016/j.jphotochemrev.2007.12.003]
[26]
Ameta, A.; Ameta, R.; Ahuja, M. Photocatalytic degradation of methylene blue over ferric tungstate. Sci. Revs. Chem. Commun., 2013, 3(3), 172-180.
[27]
Yu, S.H.; Liu, B.; Mo, M.S.; Huang, J.H.; Liu, X.M.; Qian, Y.T. General synthesis of single-crystal tungstate nanorods/nanowires: A facile, low-temperature solution approach. Adv. Funct. Mater., 2003, 13(8), 639-647.
[http://dx.doi.org/10.1002/adfm.200304373]
[28]
Kumra, K.M.; Mandal, B.K.; Naidu, E.A.; Sinha, M.; Kumar, K.S.; Reddy, P.S. Synthesis and characterization of flower shaped zinc oxide nanostructures and its antimicrobial activity, Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 2013, 104, 171-174.
[http://dx.doi.org/10.1016/j.saa.2012.11.025]
[29]
Sriraman, A.K.; Tyagi, A.K. A new method of Fe2(WO4)3 preparation and its thermal stability. Thermochim. Acta, 2003, 406, 29-33.
[http://dx.doi.org/10.1016/S0040-6031(03)00201-6]
[30]
Yu, J.G.; Zhang, J.; Liu, S. Ion-Exchange synthesis and enhanced visible-light photoactivity of CuS/ZnS nanocomposite hollow spheres. J. Phys. Chem., 2010, 114, 13642-13649.
[31]
Tian, S.H.; Tu, Y.T.; Chen, D.S.; Chen, X.; Xiong, X. Degradation of acid orange II at neutral pH using Fe2(MoO4)3 as a heterogeneous Fenton-like catalyst. Chem. Eng. J., 2011, 169, 31-37.
[http://dx.doi.org/10.1016/j.cej.2011.02.045]
[32]
Iqbal, M. Vicia faba bioassay for environmental toxicity monitoring: A review. Chemosphere, 2016, 144, 785-802.
[http://dx.doi.org/10.1016/j.chemosphere.2015.09.048] [PMID: 26414739]
[33]
Venkatadri, R.; Peters, R.W. Chemical oxidation technologies: Ultraviolet light/hydrogen peroxide, fenton’s reagent, and titanium dioxide-assisted photocatalysis. J. Hazard. Waste Hazard. Mat., 2009, 10, 107-149.
[http://dx.doi.org/10.1089/hwm.1993.10.107]
[34]
Baruah, S.; Pal, S.K.; Dutta, J. Nanostructured Zinc Oxide for Water Treatment. Nanosci. Nanotechnol. Asia, 2012, 2(2), 90-92.
[35]
Rizzo, L.; Meric, S.; Kassinos, D.; Guida, M.; Russo, F.; Belgiorno, V. Degradation of diclofenac by TiO(2) photocatalysis: UV absorbance kinetics and process evaluation through a set of toxicity bioassays. Water Res., 2009, 43(4), 979-988.
[http://dx.doi.org/10.1016/j.watres.2008.11.040] [PMID: 19081596]
[36]
Iqbal, M.; Bhatti, I.A. Gamma radiation/H2O2 treatment of a nonylphenol ethoxylates: Degradation, cytotoxicity, and mutagenicity evaluation. J. Hazard. Mater., 2015, 299, 351-360.
[http://dx.doi.org/10.1016/j.jhazmat.2015.06.045] [PMID: 26143198]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy