Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Mini-Review Article

Mini Review; Differentiation of Human Pluripotent Stem Cells into Oocytes

Author(s): Gaifang Wang* and Maryam Farzaneh*

Volume 15, Issue 4, 2020

Page: [301 - 307] Pages: 7

DOI: 10.2174/1574888X15666200116100121

Price: $65

Abstract

Primary Ovarian Insufficiency (POI) is one of the main diseases causing female infertility that occurs in about 1% of women between 30-40 years of age. There are few effective methods for the treatment of women with POI. In the past few years, stem cell-based therapy as one of the most highly investigated new therapies has emerged as a promising strategy for the treatment of POI. Human pluripotent stem cells (hPSCs) can self-renew indefinitely and differentiate into any type of cell. Human Embryonic Stem Cells (hESCs) as a type of pluripotent stem cells are the most powerful candidate for the treatment of POI. Human-induced Pluripotent Stem Cells (hiPSCs) are derived from adult somatic cells by the treatment with exogenous defined factors to create an embryonic-like pluripotent state. Both hiPSCs and hESCs can proliferate and give rise to ectodermal, mesodermal, endodermal, and germ cell lineages. After ovarian stimulation, the number of available oocytes is limited and the yield of total oocytes with high quality is low. Therefore, a robust and reproducible in-vitro culture system that supports the differentiation of human oocytes from PSCs is necessary. Very few studies have focused on the derivation of oocyte-like cells from hiPSCs and the details of hPSCs differentiation into oocytes have not been fully investigated. Therefore, in this review, we focus on the differentiation potential of hPSCs into human oocyte-like cells.

Keywords: Human pluripotent stem cells, human embryonic stem cells, human induced pluripotent stem cells, human oocyte-like cells, differentiation, primary ovarian insufficiency.

Next »
[1]
Torrealday S, Kodaman P, Pal L. Premature Ovarian Insufficiency - an update on recent advances in understanding and management. F1000 Res 2017; 6: 2069-9.
[http://dx.doi.org/10.12688/f1000research.11948.1] [PMID: 29225794]
[2]
Sadeghi MR. New hopes for the treatment of primary ovarian insufficiency/premature ovarian failure. J Reprod Infertil 2013; 14(1): 1-2.
[PMID: 23926553]
[3]
Hewlett M, Mahalingaiah S. Update on primary ovarian insufficiency. Curr Opin Endocrinol Diabetes Obes 2015; 22(6): 483-9.
[http://dx.doi.org/10.1097/MED.0000000000000206] [PMID: 26512773]
[4]
Chen M, Han H, Chuai Y, Hao M, Shu M, Shang W. Effects of oral contraceptives on ovulation induction in in vitro fertilization patients with premature ovarian insufficiency. Climacteric 2018; 21(3): 276-9.
[http://dx.doi.org/10.1080/13697137.2018.1439912] [PMID: 29488818]
[5]
Dawood AS, El-Sharawy MA, Nada DW, El-Sheikh MF. Premature ovarian failure of autoimmune etiology in 46XX patients: is there a hope? J Complement Integr Med 2018; 15(4): 15.
[http://dx.doi.org/10.1515/jcim-2017-0072] [PMID: 29794258]
[6]
Sullivan SD, Sarrel PM, Nelson LM. Hormone replacement therapy in young women with primary ovarian insufficiency and early menopause. Fertil Steril 2016; 106(7): 1588-99.
[http://dx.doi.org/10.1016/j.fertnstert.2016.09.046] [PMID: 27912889]
[7]
Luisi S, Orlandini C, Biliotti G, et al. Hormone replacement therapy in menopause and in premature ovarian insufficiency. Minerva Ginecol 2013; 65(6): 607-20.
[PMID: 24346249]
[8]
Gell JJ, Clark AT. Restoring fertility with human induced pluripotent stem cells: Are we there yet? Cell Stem Cell 2018; 23(6): 777-9.
[http://dx.doi.org/10.1016/j.stem.2018.11.003] [PMID: 30526878]
[9]
Niederberger C, Pellicer A, Cohen J, et al. Forty years of IVF Fertility and sterility 2018; 110: 185-324., e185
[http://dx.doi.org/10.1016/j.fertnstert.2018.06.005]
[10]
Yamashiro C, Sasaki K, Yabuta Y, et al. Generation of human oogonia from induced pluripotent stem cells in vitro. Science 2018; 362(6412): 356-60.
[http://dx.doi.org/10.1126/science.aat1674] [PMID: 30237246]
[11]
Zhu Z, Huangfu D. Human pluripotent stem cells: an emerging model in developmental biology. Development 2013; 140(4): 705-17.
[http://dx.doi.org/10.1242/dev.086165] [PMID: 23362344]
[12]
Biehl JK, Russell B. Introduction to stem cell therapy. J Cardiovasc Nurs 2009; 24(2): 98-103.
[http://dx.doi.org/10.1097/JCN.0b013e318197a6a5] [PMID: 19242274]
[13]
Farzaneh M, Derakhshan Z, Hallajzadeh J, Sarani NH, Nejabatdoust A, Khoshnam SE. Suppression of TGF-β and ERK signaling pathways as a new strategy to provide rodent and non-rodent pluripotent stem cells. Curr Stem Cell Res Ther 2019; 14(6): 466-73.
[http://dx.doi.org/10.2174/1871527318666190314110529] [PMID: 30868962]
[14]
Kolagar TA, Farzaneh M, Nikkar N, Anbiyaiee A, Heydari E, Khoshnam SE. Human Pluripotent Stem Cells in Neurodegenerative Diseases: Potentials, Advances and Limitations. Curr Stem Cell Res Ther 2020; 15(2): 102-10.
[http://dx.doi.org/10.2174/1574888X14666190823142911] [PMID: 31441732]
[15]
Plusa B, Hadjantonakis A-K. Embryonic stem cell identity grounded in the embryo. Nat Cell Biol 2014; 16(6): 502-4.
[http://dx.doi.org/10.1038/ncb2984] [PMID: 24875737]
[16]
Farzaneh M, Attari F, Khoshnam SE. Concise review: LIN28/let-7 signaling, a critical double-negative feedback loop during pluripotency, reprogramming, and Tumorigenicity. Cell Reprogram 2017; 19(5): 289-93.
[http://dx.doi.org/10.1089/cell.2017.0015] [PMID: 28846452]
[17]
Farzaneh M, Alishahi M, Derakhshan Z, Sarani NH, Attari F, Khoshnam SE. The Expression and Functional Roles of miRNAs in Embryonic and Lineage-Specific Stem Cells. Curr Stem Cell Res Ther 2019; 14(3): 278-89.
[http://dx.doi.org/10.2174/1574888X14666190123162402] [PMID: 30674265]
[18]
Nishihara K, Shiga T, Nakamura E, et al. Induced pluripotent stem cells reprogrammed with three inhibitors show accelerated differentiation potentials with high levels of 2-cell stage marker expression. Stem Cell Reports 2019; 12(2): 305-18.
[http://dx.doi.org/10.1016/j.stemcr.2018.12.018] [PMID: 30713040]
[19]
Nicholas CR, Chavez SL, Baker VL, Reijo Pera RA. Instructing an embryonic stem cell-derived oocyte fate: lessons from endogenous oogenesis. Endocr Rev 2009; 30(3): 264-83.
[http://dx.doi.org/10.1210/er.2008-0034] [PMID: 19366753]
[20]
Chang E-A, Jin S-W, Nam M-H, Kim S-D. Human Induced Pluripotent Stem Cells : Clinical Significance and Applications in Neurologic Diseases. J Korean Neurosurg Soc 2019; 62(5): 493-501.
[http://dx.doi.org/10.3340/jkns.2018.0222] [PMID: 31392877]
[21]
Forouzesh M, Hosseini M, Farzaneh M, Azarshab M, Anbiyaiee A, Khoshnam SE. Human Pluripotent Stem Cells for Spinal Cord Injury. Curr Stem Cell Res Ther 2020. Epub ahead of print
[http://dx.doi.org/10.2174/1574362414666191018121658] [PMID: 31656156]
[22]
Yamanaka S. Induced pluripotent stem cells: past, present, and future. Cell Stem Cell 2012; 10(6): 678-84.
[http://dx.doi.org/10.1016/j.stem.2012.05.005] [PMID: 22704507]
[23]
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors cell 2006; 126: 663-76.
[24]
Doss MX, Sachinidis A. Current Challenges of iPSC-Based Disease Modeling and Therapeutic Implications. Cells 2019; 8(5): 403.
[http://dx.doi.org/10.3390/cells8050403] [PMID: 31052294]
[25]
Li M, Suzuki K, Kim NY, Liu G-H, Izpisua Belmonte JC. A cut above the rest: targeted genome editing technologies in human pluripotent stem cells. J Biol Chem 2014; 289(8): 4594-9.
[http://dx.doi.org/10.1074/jbc.R113.488247] [PMID: 24362028]
[26]
Brubaker CJ. Stem cells: An overview of therapeutic approaches. Boston University 2017.
[27]
Honorato T, Hoek A, Henningsen A-K, et al. OMEGA project group. Low oocyte yield during IVF treatment and the risk of a trisomic pregnancy. Reprod Biomed Online 2017; 35(6): 685-92.
[http://dx.doi.org/10.1016/j.rbmo.2017.08.022] [PMID: 28942116]
[28]
Sighinolfi G, Sunkara SK, La Marca A. New strategies of ovarian stimulation based on the concept of ovarian follicular waves: From conventional to random and double stimulation. Reprod Biomed Online 2018; 37(4): 489-97.
[http://dx.doi.org/10.1016/j.rbmo.2018.07.006] [PMID: 30170909]
[29]
Mukherjee GG, Chatterjee S. Mild Ovarian Stimulation: Recent Status in Assisted Reproductive Technology. Practical Guide in Assisted Reproductive Technology 2018; p. 1.
[30]
Clark AT, Bodnar MS, Fox M, et al. Spontaneous differentiation of germ cells from human embryonic stem cells in vitro. Hum Mol Genet 2004; 13(7): 727-39.
[http://dx.doi.org/10.1093/hmg/ddh088] [PMID: 14962983]
[31]
Yilmaz A, Peretz M, Sagi I, Benvenisty N. Haploid human embryonic stem cells: half the genome, double the value. Cell Stem Cell 2016; 19(5): 569-72.
[http://dx.doi.org/10.1016/j.stem.2016.10.009] [PMID: 27814478]
[32]
Sagi I, Chia G, Golan-Lev T, et al. Derivation and differentiation of haploid human embryonic stem cells. Nature 2016; 532(7597): 107-11.
[http://dx.doi.org/10.1038/nature17408] [PMID: 26982723]
[33]
Zhou Q, Wang M, Yuan Y, et al. Complete meiosis from embryonic stem cell-derived germ cells in vitro. Cell Stem Cell 2016; 18(3): 330-40.
[http://dx.doi.org/10.1016/j.stem.2016.01.017] [PMID: 26923202]
[34]
Amini Mahabadi J, Sabzalipoor H, Kehtari M, Enderami SE, Soleimani M, Nikzad H. Derivation of male germ cells from induced pluripotent stem cells by inducers: A review. Cytotherapy 2018; 20(3): 279-90.
[http://dx.doi.org/10.1016/j.jcyt.2018.01.002] [PMID: 29397308]
[35]
Parrotta EI, Scalise S, Taverna D, et al. Comprehensive proteogenomic analysis of human embryonic and induced pluripotent stem cells. J Cell Mol Med 2019; 23(8): 5440-53.
[http://dx.doi.org/10.1111/jcmm.14426] [PMID: 31237115]
[36]
Toyooka Y, Tsunekawa N, Akasu R, Noce T. Embryonic stem cells can form germ cells in vitro. Proc Natl Acad Sci USA 2003; 100(20): 11457-62.
[http://dx.doi.org/10.1073/pnas.1932826100] [PMID: 14504407]
[37]
Geijsen N, Horoschak M, Kim K, Gribnau J, Eggan K, Daley GQ. Derivation of embryonic germ cells and male gametes from embryonic stem cells. Nature 2004; 427(6970): 148-54.
[http://dx.doi.org/10.1038/nature02247] [PMID: 14668819]
[38]
Nayernia K, Nolte J, Michelmann HW, et al. In vitro-differentiated embryonic stem cells give rise to male gametes that can generate offspring mice. Dev Cell 2006; 11(1): 125-32.
[http://dx.doi.org/10.1016/j.devcel.2006.05.010] [PMID: 16824959]
[39]
Easley CA IV, Phillips BT, McGuire MM, et al. Direct differentiation of human pluripotent stem cells into haploid spermatogenic cells. Cell Rep 2012; 2(3): 440-6.
[http://dx.doi.org/10.1016/j.celrep.2012.07.015] [PMID: 22921399]
[40]
Rombaut C, Mertes H, Heindryckx B, Goossens E. Human in vitro spermatogenesis from pluripotent stem cells: in need of a stepwise differentiation protocol? MHR: Basic science of reproductive medicine 2017; 24: 47-54.
[41]
Abdyyev VK, Dashinimayev EB, Neklyudova IV, Vorotelyak EA, Vasiliev AV. Modern technologies deriving human primordial germ cells in vitro. Biochemistry (Mosc) 2019; 84(3): 220-31.
[http://dx.doi.org/10.1134/S0006297919030040] [PMID: 31221060]
[42]
Hayashi M, Kawaguchi T, Durcova-Hills G, Imai H. Generation of germ cells from pluripotent stem cells in mammals. Reprod Med Biol 2017; 17(2): 107-14.
[http://dx.doi.org/10.1002/rmb2.12077] [PMID: 29692667]
[43]
Hayashi K, Ogushi S, Kurimoto K, Shimamoto S, Ohta H, Saitou M. Offspring from oocytes derived from in vitro primordial germ cell-like cells in mice. Science 2012; 338(6109): 971-5.
[http://dx.doi.org/10.1126/science.1226889] [PMID: 23042295]
[44]
Ge W, Chen C, De Felici M, Shen W. In vitro differentiation of germ cells from stem cells: a comparison between primordial germ cells and in vitro derived primordial germ cell-like cells. Cell Death 2015; 6(10): e1906
[http://dx.doi.org/10.1038/cddis.2015.265] [PMID: 26469955]
[45]
Saitou M, Miyauchi H. Gametogenesis from pluripotent stem cells. Cell Stem Cell 2016; 18(6): 721-35.
[http://dx.doi.org/10.1016/j.stem.2016.05.001] [PMID: 27257761]
[46]
Nikolic A, Volarevic V, Armstrong L, Lako M, Stojkovic M. Primordial germ cells: Current knowledge and perspectives. Stem Cells international 2016; 2016: 1741072
[http://dx.doi.org/10.1155/2016/1741072]
[47]
Wang J-J, Ge W, Liu J-C, et al. Complete in vitro oogenesis: retrospects and prospects. Cell Death Differ 2017; 24(11): 1845-52.
[http://dx.doi.org/10.1038/cdd.2017.134] [PMID: 28841213]
[48]
Findlay JK, Hutt KJ, Hickey M, Anderson RA. How is the number of primordial follicles in the ovarian reserve established? Biol Reprod 2015; 93(5): 111-7.
[http://dx.doi.org/10.1095/biolreprod.115.133652] [PMID: 26423124]
[49]
Pan B, Li J. The art of oocyte meiotic arrest regulation. Reprod Biol Endocrinol 2019; 17(1): 8.
[http://dx.doi.org/10.1186/s12958-018-0445-8] [PMID: 30611263]
[50]
Gardner DK, Sakkas D, Seli E, Wells D. Human gametes and preimplantation embryos. Springer 2016.
[51]
Sharma A, Tiwari M, Gupta A, Pandey AN, Yadav PK, Chaube SK. Journey of oocyte from metaphase-I to metaphase-II stage in mammals. J Cell Physiol 2018; 233(8): 5530-6.
[http://dx.doi.org/10.1002/jcp.26467] [PMID: 29331044]
[52]
Gershon E, Dekel N. Polar Body Extrusion and Ovulation. Biomed Sci 2018.
[http://dx.doi.org/10.1016/B978-0-12-801238-3.64452-5]
[53]
Madgwick S, Jones KT. How eggs arrest at metaphase II: MPF stabilisation plus APC/C inhibition equals Cytostatic Factor. Cell Div 2007; 2: 4.
[http://dx.doi.org/10.1186/1747-1028-2-4] [PMID: 17257429]
[54]
Von Stetina JR, Orr-Weaver TL. Developmental control of oocyte maturation and egg activation in metazoan models. Cold Spring Harb Perspect Biol 2011; 3(10): a005553
[http://dx.doi.org/10.1101/cshperspect.a005553] [PMID: 21709181]
[55]
Gu L, Liu H, Gu X, Boots C, Moley KH, Wang Q. Metabolic control of oocyte development: linking maternal nutrition and reproductive outcomes. Cell Mol Life Sci 2015; 72(2): 251-71.
[http://dx.doi.org/10.1007/s00018-014-1739-4] [PMID: 25280482]
[56]
Stein KK, Primakoff P, Myles D. Sperm-egg fusion: events at the plasma membrane. J Cell Sci 2004; 117(Pt 26): 6269-74.
[http://dx.doi.org/10.1242/jcs.01598] [PMID: 15591242]
[57]
Georgadaki K, Khoury N, Spandidos DA, Zoumpourlis V. The molecular basis of fertilization (Review). Int J Mol Med 2016; 38(4): 979-86. [Review]
[http://dx.doi.org/10.3892/ijmm.2016.2723] [PMID: 27599669]
[58]
Mohler WA. Cell-Cell Fusion: Transient Channels Leading to Plasma Membrane Merger. In Madame Curie Bioscience Database. [Internet]. Landes Bioscience 2013.
[59]
Melcher K. Structural biology: When sperm meets egg. Nature 2016; 534(7608): 484-5.
[http://dx.doi.org/10.1038/nature18448] [PMID: 27309810]
[60]
Alberts B, Johnson A, Lewis J, et al. Molecular Biology of the Cell. 4th edition. New York: Garland Science; 2002.Eggs. Available from:. https://www.ncbi.nlm.nih.gov/books/NBK26842/
[61]
Sharma P, Rao KA. The Human Sperm and Egg: Key Players of Fertilization. The Infertility Manual 2018; p. 9.
[62]
Evans JP. The molecular basis of sperm-oocyte membrane interactions during mammalian fertilization. Hum Reprod Update 2002; 8(4): 297-311.
[http://dx.doi.org/10.1093/humupd/8.4.297] [PMID: 12206465]
[63]
Salustri A, Yanagishita M, Underhill CB, Laurent TC, Hascall VC. Localization and synthesis of hyaluronic acid in the cumulus cells and mural granulosa cells of the preovulatory follicle. Dev Biol 1992; 151(2): 541-51.
[http://dx.doi.org/10.1016/0012-1606(92)90192-J] [PMID: 1601185]
[64]
Takahashi N, Tarumi W, Ishizuka B. Involvement of hyaluronan synthesis in ovarian follicle growth in rats. Reproduction 2013; 147(2): 189-97.
[http://dx.doi.org/10.1530/REP-13-0464] [PMID: 24218629]
[65]
Salustri A, Camaioni A, Di Giacomo M, Fulop C, Hascall VC. Hyaluronan and proteoglycans in ovarian follicles. Hum Reprod Update 1999; 5(4): 293-301.
[http://dx.doi.org/10.1093/humupd/5.4.293] [PMID: 10465521]
[66]
Aagaard JE, Vacquier VD, MacCoss MJ, Swanson WJ. ZP domain proteins in the abalone egg coat include a paralog of VERL under positive selection that binds lysin and 18-kDa sperm proteins. Mol Biol Evol 2010; 27(1): 193-203.
[http://dx.doi.org/10.1093/molbev/msp221] [PMID: 19767347]
[67]
Klinovska K, Sebkova N, Dvorakova-Hortova K. Sperm-egg fusion: a molecular enigma of mammalian reproduction. Int J Mol Sci 2014; 15(6): 10652-68.
[http://dx.doi.org/10.3390/ijms150610652] [PMID: 24933635]
[68]
Nishimura H, L’Hernault SW. Gamete interactions require transmembranous immunoglobulin-like proteins with conserved roles during evolutionWorm. Taylor & Francis 2016; pp. 3225-31.
[http://dx.doi.org/10.1080/21624054.2016.1197485]
[69]
Sun TT, Chung CM, Chan HC. Acrosome reaction in the cumulus oophorus revisited: involvement of a novel sperm-released factor NYD-SP8. Protein Cell 2011; 2(2): 92-8.
[http://dx.doi.org/10.1007/s13238-011-1022-5] [PMID: 21380641]
[70]
Tokuhiro K, Ikawa M, Benham AM, Okabe M. Protein disulfide isomerase homolog PDILT is required for quality control of sperm membrane protein ADAM3 and male fertility [corrected]. Proc Natl Acad Sci USA 2012; 109(10): 3850-5. [corrected].
[http://dx.doi.org/10.1073/pnas.1117963109] [PMID: 22357757]
[71]
Jung D, Xiong J, Ye M, et al. In vitro differentiation of human embryonic stem cells into ovarian follicle-like cells. Nat Commun 2017; 8: 15680.
[http://dx.doi.org/10.1038/ncomms15680] [PMID: 28604658]
[72]
Hübner K, Fuhrmann G, Christenson LK, et al. Derivation of oocytes from mouse embryonic stem cells. Science 2003; 300(5623): 1251-6.
[http://dx.doi.org/10.1126/science.1083452] [PMID: 12730498]
[73]
Chen H-F, Kuo H-C, Chien C-L, et al. Derivation, characterization and differentiation of human embryonic stem cells: comparing serum-containing versus serum-free media and evidence of germ cell differentiation. Hum Reprod 2007; 22(2): 567-77.
[http://dx.doi.org/10.1093/humrep/del412] [PMID: 17071820]
[74]
Park TS, Galic Z, Conway AE, et al. Derivation of primordial germ cells from human embryonic and induced pluripotent stem cells is significantly improved by coculture with human fetal gonadal cells. Stem Cells 2009; 27(4): 783-95.
[http://dx.doi.org/10.1002/stem.13] [PMID: 19350678]
[75]
West FD, Roche-Rios MI, Abraham S, et al. KIT ligand and bone morphogenetic protein signaling enhances human embryonic stem cell to germ-like cell differentiation. Hum Reprod 2010; 25(1): 168-78.
[http://dx.doi.org/10.1093/humrep/dep338] [PMID: 19840987]
[76]
Kee K, Gonsalves JM, Clark AT, Pera RAR. Bone morphogenetic proteins induce germ cell differentiation from human embryonic stem cells. Stem Cells Dev 2006; 15(6): 831-7.
[http://dx.doi.org/10.1089/scd.2006.15.831] [PMID: 17253946]
[77]
Andrews PD. Discovering small molecules to control stem cell fate. Future Med Chem 2011; 3(12): 1539-49.
[http://dx.doi.org/10.4155/fmc.11.98] [PMID: 21882946]
[78]
Farzaneh M, Zare M, Hassani SN, Baharvand H. Effects of various culture conditions on pluripotent stem cell derivation from chick embryos. J Cell Biochem 2018; 119(8): 6325-36.
[http://dx.doi.org/10.1002/jcb.26761] [PMID: 29393549]
[79]
De D, Halder D, Shin I, Kim KK. Small molecule-induced cellular conversion. Chem Soc Rev 2017; 46(20): 6241-54.
[http://dx.doi.org/10.1039/C7CS00330G] [PMID: 28829063]
[80]
Leng L, Tan Y, Gong F, et al. Differentiation of primordial germ cells from induced pluripotent stem cells of primary ovarian insufficiency. Hum Reprod 2015; 30(3): 737-48.
[http://dx.doi.org/10.1093/humrep/deu358] [PMID: 25586786]
[81]
Yang S, Ding S, He S, et al. Differentiation of primordial germ cells from premature ovarian insufficiency-derived induced pluripotent stem cells. Stem Cell Res Ther 2019; 10(1): 156.
[http://dx.doi.org/10.1186/s13287-019-1261-6] [PMID: 31151408]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy