Generic placeholder image

Current Physical Chemistry

Editor-in-Chief

ISSN (Print): 1877-9468
ISSN (Online): 1877-9476

Research Article

Synthesis and Characterization of Chemical Structures, Thermal Decomposition and Biological Properties of Novel Copper (II) Bio- Based Surfactants

Author(s): Asha Meena*, Rashmi Sharma and Vandana Sukhadia

Volume 10, Issue 3, 2020

Page: [213 - 228] Pages: 16

DOI: 10.2174/1877946810666200116091321

Abstract

Background: Thermal degradation has attracted the attention of scientific community throughout the world due to its multiple applications in environment, energy, waste water treatment, pollution control, green chemistry, etc.

Objective: The present work deals with the study of synthesis and characterization of thermal and biological properties of novel copper complex.

Methods: Chemical structures of copper (II) sesame 2-amino-6-ethoxy benzothiazole complex were confirmed by IR, NMR, and ESR techniques. Thermal and biological properties were analysed by Thermogravimetry (TGA) and antimicrobial activity determination against Staphylococcus aureus.

Results: The TGA study reveals that copper (II) sesame 2-amino-6-ethoxy benzothiazole complex undergoes stepwise thermal degradation of ligand-soap bond of complex and unsaturated and saturated fatty acid components of edible oils. The complex exhibit significant antimicrobial activities against Staphylococcus aureus.

Conclusion: This study provides relevant basic information on the thermal and antimicrobial properties of new copper (II) bio-based surfactants, as well as an explicit relationship structure-biological activity for their potential use as safe and green chemicals.

Keywords: Antimicrobial activities, copper surfactants, edible oils, kinetic parameters, thermodynamic parameters, thermogravimetric analysis.

Graphical Abstract
[1]
Sharma, A.K.; Sharma, R.; Gangwal, A. Antifungal activities and characterization of some new environmentally safe Cu (II) surfactants substituted 2-amino-6-methyl benzothiazole. Open Pharm. Sci. J., 2018, 5, 1-11.
[http://dx.doi.org/10.2174/1874844901805010001]
[2]
Akhtar, Y. Volumetric and viscometric behaviour of amino acids in aqueous metal electrolytes solutions at 308K. Fluid Phase Equilib., 2007, 258(2), 125-130.
[http://dx.doi.org/10.1016/j.fluid.2007.01.043]
[3]
Bhati, S.K.; Kumar, A. Synthesis of new substituted azetidinoyl and thiazolidinoyl-1,3,4-thiadiazino (6,5-b) indoles as promising anti-inflammatory agents. Eur. J. Med. Chem., 2008, 43(11), 2323-2330.
[http://dx.doi.org/10.1016/j.ejmech.2007.10.012 PMID: 18063224] [PMID: 18063224]
[4]
Sharma, R.; Sharma, A.K. Natural edible oils: Comparative health aspects of sesame, coconut, mustard (rape seed) and groundnut (peanut): A biomedical approach. Biomed. J. Sci. Tech. Res., 2017, 1(5), 1375-1377.BJSTR.MS.ID.000441
[5]
Sharma, A.K.; Sharma, R.; Gangwal, A. Biomedical and fungicidal applications of copper surfactants derived from pure fatty acid. Org. Med. Chem. Int. J., 2018, 5(5), 1-4.
[6]
Garg, B.S.; Kumar, D.N.; Singh, R.V. Spectral studies of complexes of nickel (II) with tetradentate schiff bases having N2O2 donor groups. Spectrochim. Acta., 2003, 59A, 229-234.
[http://dx.doi.org/10.1016/S1386-1425(02)00142-7]
[7]
Sharma, A.K.; Saxena, M.; Sharma, R. Synthesis, spectroscopic and fungicidal studies of Cu (II) soaps derived from groundnut and sesame oils and their urea complexes. Bull. Pure Appl. Sci., 2017, 36(2), 26-37.
[http://dx.doi.org/10.5958/2320-320X.2017.00004.8]
[8]
Khan, S.; Sharma, R.; Sharma, A.K. Acoustic studies and other acoustic parameters of Cu(II) soap derived from non-edible neem oil (Azadirecta indica) in nonaqueous media at 298.15. Acta Acust. united Ac., 2018, 104, 277-83.
[9]
Tank, P.; Sharma, R.; Sharma, A.K. A pharmaceutical approach antifungal activities of copper soaps with their N & S donor complexes derived from mustard and soyabean oils. Glob. J. Pharmaceut. Sci., 2017, 3(4), 1-6.
[10]
Bhutra, R.; Sharma, R.; Sharma, A.K. Synthesis, characterization and fungicidal activities of Cu (II) surfactants derived from groundnut and mustard oils treated at high temperatures. J. Inst. Chemists (India), 2018, 90(3), 66-80.
[11]
Kumawat, P.; Sharma, P.; Sharma, N. Synthesis and analysis of copper neem (Azadirechta indica) soap-nitro and ethoxy benzothiazole complexes for anti-bacterial activity related with skin diseases. J. Advan. Pharmaceut. Sci. Tech., 2018, 1(4), 34-46.
[http://dx.doi.org/10.14302/issn.2328-0182.japst-18-2522]
[12]
Sharma, A.K.; Sharma, R.; Saxena, M. Biomedical and antifungal application of Cu(II) soaps and its urea complexes derived from various oils. Open Acc. J. Trans. Med. Res., 2018, 2(2), 40-43.
[13]
Sharma, A.K.; Saxena, M.; Sharma, R. Ultrasonic studies of Cu (II) soaps derived from groundnut and sesame oils. Tenside. Surf. Det., 2018, 55(2), 127-134.
[http://dx.doi.org/10.3139/113.110544]
[14]
Ribeiro, A.O.; Nicacio, A.E. Improvements in the quality of sesame oil obtained by a green extraction method using enzymes. Food Sci. Technol. (Campinas), 2016, 65, 464.
[http://dx.doi.org/10.1016/j.lwt.2015.08.053]
[15]
Tank, P.; Sharma, R.; Sharma, A. Micellar features and various interactions of copper soap complex derived from edible mustard oil in benzene at 303.15 K. Curr. Phys. Chem., 2018, 8(1), 46-57.
[http://dx.doi.org/10.2174/1877946808666180102152443]
[16]
Mehrotra, K.N.; Mehta, V.P.; Nagar, T.N. Studies on surface tension and parachor of copper soap solutions in non-aqueous solvents. J. Am. Oil Chem. Soc., 1970, 47, 329-332.
[http://dx.doi.org/10.1007/BF02638995]
[17]
Bhutra, R.; Sharma, R.; Sharma, A.K. Volumetric studies of copper soap derived from treated and untreated oils in benzene at 298.15 K. Bull. Pure and Appl. Sci. Sect. C- Chem., 2018, 37(2), 33-44.
[http://dx.doi.org/10.5958/2320-320X.2018.00028.6]
[18]
Sharma, S.; Sharma, R.; Sharma, A.K. Synthesis, characterization, and thermal degradation of Cu (II) surfactants for sustainable green chem. Asian J. Green Chem., 2017, 2(2), 129-140.
[http://dx.doi.org/10.22631/ajgc.2017.95559.1015]
[19]
Joram, A.; Sharma, R.; Sharma, A.K. Thermal degradation of complexes derived from Cu (II) groundnut soap (Arachishypogaea) and Cu (II) sesame soap (Sesamumindicum). Z. Phys. Chem., 2018, 232(4), 459-470.
[http://dx.doi.org/10.1515/zpch-2017-1073]
[20]
Joram, A.; Sharma, R.; Sharma, A.K. Synthesis, spectral and thermo-gravimetric analysis of novel macromolecular organo-copper surfactants., 2018, 5(1)
[http://dx.doi.org/10.2174/1874842201805010145]
[21]
Tank, P.; Sharma, A.K.; Sharma, R. Thermal behaviour and kinetics of copper (II) soaps and complexes derived from mustard and soyabean oil. J. Anal. Pharm. Res, 2017, 4(2), 1-5.https://doi.org/10.15406/japlr.2017.04.00102
[22]
Sharma, A.K.; Saxena, M.; Sharma, R. Fungicidal activities and characterization of novel biodegradable Cu (II) surfactants derived from lauric acid. Open Chem. J., 2018, 5, 89-105.
[23]
Heda, L.C.; Sharma, R.; Tank, P.; Sherwani, M. Thermogravimetric analysis of copper (II) soaps derived from edible oils. J. Lipid Sci. Tech., 2008, 40(1), 6-10.
[24]
Ofem, M.I.; Muhammed, M.; Umar, M. Thermal properties of chitin whiskers reinforced poly(acrylic acid). Int. J. Scient. Technol. Res., 2015, 4(5), 281-288.
[25]
Othman, M.B.; Akil, H. Md.; Rasib, S.Z.M.; Khan, A.; Ahmad Z. Thermal properties and kinetic investigation of chitosan-PMAA based dual-responsive hydrogels. Ind. Crops Prod., 2015, 66, 178-187.
[http://dx.doi.org/10.1016/j.indcrop.2014.12.057]
[26]
Reddick, J.R.; Bunger, W.B. Organic Solvents: Physical Properties and Methods of Purification; Wiley Interscience: New York, 1970, pp. 73-730.
[27]
Dubey, R.K.; Singh, A.; Mehrotra, R.C. Chloride and alkoxide alkoxometallates and termetallic isopropoxides of copper(II). J. Organomet. Chem., 1988, 341(1-3), 569-574.
[http://dx.doi.org/10.1016/0022-328X(88)89110-1]
[28]
Mehta, V.P.; Hasan, M.; Heda, L.C. Solid-state kinetics and infrared spectra of cadmium soaps. J. Macromol. Sci. Chem., 1982, A17(3), 513-521.
[http://dx.doi.org/10.1080/00222338208056488]
[29]
Mathur, N.; Jain, N.; Sharma, A.K. Synthesis, characterization and biological analysis of some novel complexes of phenyl thiourea derivatives with copper. Open Chem. J., 2018, 5, 3-12.
[http://dx.doi.org/10.2174/1874842201805010182]
[30]
Coats, A.W.; Redfern, J.P. Kinetic parameters from thermogravimetric data. Nature, 1964, 201, 68-69.
[http://dx.doi.org/10.1038/201068a0]
[31]
Broido, A. A simple, sensitive graphical method of treating thermogravimetric analysis data. J. Polymer Sci., Part B-2, 1969, 7(10), 1761-1773.
[http://dx.doi.org/10.1002/pol.1969.160071012]
[32]
Horowitz, H.H.; Metzger, A. New analysis of thermogravimetric traces. G. Anal. Chem., 1963, 35(10), 1464-1468.
[http://dx.doi.org/10.1021/ac60203a013]
[33]
Piloyan, G.O.; Pyabchikov, I.D.; Novikova, I.S. Determination of activation energies of chemical reactions by differential thermal analysis. Nature, 1966, 212, 1229.
[http://dx.doi.org/10.1038/2121229a0]
[34]
Urbanovici, E.; Popescu, C.; Segal, E. Improved iterative version of the coats-redfern method to evaluate non-isothermal kinetic parameters. J. Therm. Anal. Calorim., 1999, 58, 683-700.
[http://dx.doi.org/10.1023/A:1010125132669]
[35]
Gabbour, L.H. Thermal spectroscopy and kinetic studies of PEO/PVDF loaded by carbon nanotubes. J. Mater., 2015, 2015, 1-8.
[http://dx.doi.org/10.1155/2015/824859]
[36]
Salama, N.N.; Mohammad, M.A.; Fattah, T.A. Thermal behavior study and decomposition kinetics of amisulpride under non-isothermal and isothermal conditions. J. Therm. Anal. Calorim., 2015, 120, 953.
[http://dx.doi.org/10.1007/s10973-015-4419-1]
[37]
Karapmar, E.; Gubbuk, I.H.; Taner, B.; Deveci, P.; Ozcan, E. Thermal degradation behaviour of Ni(II) complex of 3,4-Methylenedioxaphenylaminoglyoxime. J. Chem., 2013.pp. 548067.
[http://dx.doi.org/10.1155/2013/548067]
[38]
Kumawat, P.; Sharma, R.; Sharma, A.K. Spectral, antimicrobial, TGA and photocatalytic degradation studies of copper neem-urea complex using synthetic, nano and doped ZnO. Int. J. Environ. Anal. Chem., 2019, 99, 1-28.
[http://dx.doi.org/10.1080/03067319.2019.1651302]
[39]
Mishra, A.P.; Jain, R.K. Conventional and microwave synthesis, spectral, thermal and antimicrobial studies of some transition metal complexes containing 2-amino-5-methylthiazole moiety. J. Saudi Chem. Soc., 2014, 18, 814-824.
[http://dx.doi.org/10.1016/j.jscs.2011.09.013]
[40]
Arslan, H. Cobalt, Nickel and copper complexes of benzylamino-p-chlorophenylglyoxime. thermal and thermodynamic data. J. Therm. Ana. Cal., 2001, 66, 399-407.
[http://dx.doi.org/10.1023/A:1013178431244]
[41]
Bhutra, R.; Sharma, R.; Sharma, A.K. Antimicrobial studies and characterization of copper surfactants derived from various oils treated at high temperatures by P.D.A. technique. Open Pharm. Sci. J., 2018, 5, 36.
[http://dx.doi.org/10.2174/1874844901805010036]
[42]
Sharma, A.K.; Sharma, R.; Saxena, M. Biomedical and antifungal application of Cu (II) soaps and its urea complexes derived from various oils. Open access J. Trans. Med. Res., 2018, 2(2), 39-42.
[43]
Mathur, N.; Jain, N.; Sharma, A.K. Biocidal activities of substituted benzothiazole of copper surfactants over Candida albicans & Trichoderma harziamunon on muller hinton agar. Open Pharm. Sci. J.,, 2018, 5, 24-35.
[http://dx.doi.org/10.2174/1874844901805010024]

© 2024 Bentham Science Publishers | Privacy Policy