Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Research Article

SO3H-functionalized Zeolite-Y as an Efficient Nanocatalyst for the Synthesis of Nbenzimidazole- 2-aryl-4-thiazolidinones and tri-substituted Imidazoles

Author(s): Mehdi Kalhor*, Zohre Zarnegar, Zahra Seyedzade and Soodabeh Banibairami

Volume 17, Issue 2, 2020

Page: [117 - 130] Pages: 14

DOI: 10.2174/1570179417666200115170019

Price: $65

Abstract

Background: SO3H-functionalized zeolite-Y was prepared and used as a catalyst for the synthesis of 2-aryl-N-benzimidazole-4-thiazolidinones and tri-substituted imidazoles at ambient conditions.

Objective: The goals of this catalytic method include excellent yields and high purity, inexpensive procedure and ease of product isolation, the use of nontoxic and heterogeneous acid catalyst, shorter reaction times and milder conditions.

Materials and Methods: NMR spectra were recorded on Brucker spectrophotometer using Me4Si as internal standard. Mass spectra were recorded on an Agilent Technology 5975C VL MSD with tripe-axis detector. FTIR spectra were obtained with KBr disc on a galaxy series FT-IR 5000 spectrometer. The surface morphology of nanostructures was analyzed by FE-SEM (EVO LS 10, Zeiss, Carl Zeiss, Germany). BET analysis were measured at 196 °C by a Japan Belsorb II system after the samples were vacuum dried at 150°C overnight.

Results: The NSZ was characterized by FT-IR, FESEM, EDX, XRF, and BET. The catalytic activity of NSZ was investigated for synthesis of 1,3-tiazolidin-4-ones in H2O/Acetone at room temperature. Moreover, NSZ was used for synthesis of tri-substituted imidazoles at 60 °C via solvent-free condensation. Different kinds of aromatic aldehydes were converted to the corresponding of products with good to excellent yields.

Conclusion: Sulfonated zeolite-Y was as an efficient catalyst for the preparation of N-benzimidazole-2-aryl-1,3- thiazolidin-4-ones and 2,4,5-triaryl-1H-imidazoles. High reaction rates, elimination toxic solvent, simple experimental procedure and reusability of the catalyst are the important features of this protocol.

Keywords: Sulfonated zeolite, solid acid, heterogeneous nanocatalyst, 1, 3-thiazolidin-4-one, imidazole, aromatic aldehydes.

Graphical Abstract
[1]
(a) Wu, S. Wang, W.; Fang, Y.; Kong, X.; Liu, J. Efficient Friedel–Crafts acylation of anisole over silicotungstic acid modified ZIF-8. React. Kinet. Mech. Catal., 2017, 122(1), 357-367. Available at
[http://dx.doi.org/10.1007/s11144-017-1208-9]
(b) Kong, X.; Wu, S.; Liu, L.; Li, S.; Liu, J. Continuous synthesis of ethyl levulinate over Cerium exchanged phosphotungstic acid anchored on commercially silica gel pellets catalyst. Mol. Catal, 2017, 439, 180-185. Available at
[http://dx.doi.org/10.1016/j.mcat.2017.07.005]
(c) Kong, X.; Zhang, X.; Han, C.; Li, C.; Yu, L.; Liu, J. Ethanolysis of biomass based furfuryl alcohol to ethyl levulinate over Fe modified USY catalyst. Mol. Catal, 2017, 443, 186-192. Available at
[http://dx.doi.org/10.1016/j.mcat.2017.10.011]
(d) Kong, X.; Wu, S.; Li, X.; Liu, J. Efficient conversion of levulinic acid to ethyl levulinate over a silicotungstic-acid-modified commercially silica-gel sphere catalyst. Eng. Fuel, 2016, 30(8), 6500-6504. Available at
[http://dx.doi.org/10.1021/acs.energyfuels.6b01207]
[2]
(a) Zolfigol, M.A. Silica sulfuric acid/NaNO2 as a novel heterogeneous system for production of thionitrites and disulfides under mild conditions. Tetrahedron, 2001, 57(46), 9509-9511. Available at
[http://dx.doi.org/10.1016/S0040-4020(01)00960-7]
(b) Baghernejad, B. Silica sulfuric acid (SSA): An efficient and heterogeneous catalyst for organic transformations. Mini Rev. Org. Chem., 2011, 8(1), 91-102. Available at
[http://dx.doi.org/10.2174/157019311793979963]
(c) Zolfigol, M.A. Madrakian, E.; Ghaemi, E. Silica sulfuric acid/ NaNO2 as a novel heterogeneous system for the nitration of phenols under mild conditions. Molecules, 2002, 7(10), 734-742. Available at
[http://dx.doi.org/10.3390/71000734]
(d) Nakajima, K.; Hara, M. Amorphous carbon with SO3H groups as a solid Brønsted acid catalyst. ACS Catal., 2012, 2(7), 1296-1304. Available at
[http://dx.doi.org/10.1021/cs300103k]
[3]
Safari, J.; Zarnegar, Z. A magnetic nanoparticle-supported sulfuric acid as a highly efficient and reusable catalyst for rapid synthesis of amidoalkyl naphthols. J. Mol. Catal. Chem., 2013, 379, 269-276. Available at
[http://dx.doi.org/10.1016/j.molcata.2013.08.028]
[4]
Safari, J.J.; Zarnegar, Z.; Sadeghi, M.; Azizi, F. Chitosan-SO3H: An efficient and biodegradable catalyst for the green syntheses of 1,4-dihydropyridines. Curr. Org. Chem., 2016, 20(27), 2926-2932. Available at
[http://dx.doi.org/10.2174/1385272820666160805112208]
[5]
Subba Reddy, B.V.; Venkateswarlu, A.; Niranjan Reddy, G.; Rami Reddy, Y.V. Chitosan-SO3H: An efficient, biodegradable, and recyclable solid acid for the synthesis of quinoline derivatives via Friedländer annulation. Tetrahedron Lett., 2013, 54(43), 5767-5770. Available at
[http://dx.doi.org/10.1016/j.tetlet.2013.07.165]
[6]
Li, W.L.; Tian, S.B.; Zhu, F. Sulfonic acid functionalized nano-γ-Al2O3: A new, efficient, and reusable catalyst for synthesis of 3-substituted-2H-1,4-benzothiazines. Sci. World J., 2013, 2013, 838374 Available at
[http://dx.doi.org/10.1155/2013/838374] [PMID: 23935435]
[7]
Mofakham, H.; Hezarkhani, Z.; Shaabani, A. Cellulose-SO3H as a biodegradable solid acid catalyzed one-pot three-component Ugi reaction: Synthesis of α-amino amide, 3,4-dihydroquinoxalin-2-amine, 4H-benzo[b][1,4]thiazin-2-amine and 1,6-dihydropyrazine-2,3-dicarbonitrile derivatives. J. Mol. Catal. Chem., 2012, 360, 26-34. Available at
[http://dx.doi.org/10.1016/j.molcata.2012.04.002]
[8]
Mohammadpoor-Baltork, I.; Mirkhani, V.; Moghadam, M.; Tangestaninejad, S.; Zolfigol, M.A.; Abdollahi-Alibeik, M.; Khosropour, A.R.; Kargar, H.; Hojati, S.F. Silica sulfuric acid: A versatile and reusable heterogeneous catalyst for the synthesis of oxazolines and imidazolines under various reaction conditions. Catal. Commun., 2008, 9(5), 894-901. Available at
[http://dx.doi.org/10.1016/j.catcom.2007.09.017]
[9]
Salehi, P.; Dabiri, M.; Zolfigol, M.A.; Bodaghi Fard, M.A. Silica sulfuric acid: an efficient and reusable catalyst for the one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones. Tetrahedron Lett., 2003, 44(14), 2889-2891. Available at
[http://dx.doi.org/10.1016/S0040-4039(03)00436-2]
[10]
(a) Khazaei, A.; Zolfigol, M.A.; Mokhlesi, M.; Rostamian, R. Nano-sphere silica sulfuric acid: Novel and efficient catalyst in the one-pot multi-component synthesis. J. Iran. Chem. Soc, 2013, 10(6), 1297-1301. Available at
[http://dx.doi.org/10.1007/s13738-013-0272-y]
(b) Dabiri, M.; Zolfigol, M.A.; Derakhshan-Panah, F.; Shiri, M.; Kruger, H.G. Synthesis of tetrahydropyridines by one-pot multicomponent reaction using nano-sphere silica sulfuric acid. J. Iran. Chem. Soc, 2015, 12(5), 855-861. Available at
[http://dx.doi.org/10.1007/s13738-014-0548-x]
[11]
Bamoniri, A.; Mirjalili, B.B.F.; Yaghmaeiyan-Mahabadi, N. An environmentally friendly approach to the synthesis of azo dyes based on 2-naphthol using kaolin-SO3H nanoparticles. Iran. J. Catal, 2018, 8(2), 81-88.
[12]
Shirini, F.; Mamaghani, M.; Atghia, S.V. A mild and efficient method for the chemoselective trimethylsilylation of alcohols and phenols and deprotection of silyl ethers using sulfonic acid-functionalized ordered nanoporous Na+-montmorillonite. Appl. Clay Sci., 2012, 58, 67-72. Available at
[http://dx.doi.org/10.1016/j.clay.2012.01.014]
[13]
Safari, J.; Aftabi, P.; Ahmadzadeh, M.; Sadeghi, M.; Zarnegar, Z. Sulfonated starch nanoparticles: An effective, heterogeneous and bio-based catalyst for synthesis of 14-aryl-14-H-dibenzo[a,j]xanthenes. J. Mol. Struct., 2017, 1142, 33-339. Available at
[http://dx.doi.org/10.1016/j.molstruc.2017.02.095]
[14]
(a) Kong, X. Wu. S.; Li, X.; Liu, J. Microwave-assisted liquefaction of ulva prolifera over Fe2O3-modified HY catalyst. J. Energy Eng., 2018, 144(1)04017071 Available at
[http://dx.doi.org/10.1061/(ASCE)EY.1943-7897.0000508]
(b) Kong, X.; Li, X.; Wu, S.; Zhang, X.; Liu, J. Efficient conversion of cotton stalks over a Fe modified HZSM-5 catalyst under microwave irradiation. RSC Advances, 2016, 6(34), 28532-28537. Available at
[http://dx.doi.org/10.1039/C5RA26918K]
(c) Kong, X.; Chen, L. Hydrogenation of aromatic aldehydes to aromatic hydrocarbons over Cu-HZSM-5 catalyst. Catal. Commun., 2014, 57, 45-49. Available at
[http://dx.doi.org/10.1016/j.catcom.2014.07.038]
(d) Du, X.; Kong, X.; Chen, L. Influence of binder on catalytic performance of Ni/HZSM-5 for hydrodeoxygenation of cyclohexanone. Catal. Commun., 2014, 45, 109-113. [Available at ].
[http://dx.doi.org/10.1016/j.catcom.2013.10.042]
(e) Kong, X.; Lai, W.; Tian, J.; Li, Y.; Yan, X.; Chen, L. Efficient hydrodeoxygenation of aliphatic ketones over an alkali‐treated Ni/HZSM‐5 catalyst. ChemCatChem, 2013, 5(7), 2009-2014. [Available at ].
[http://dx.doi.org/10.1002/cctc.201200824]
(f) Kong, X.; Liu, J. Influence of alumina binder content on catalytic performance of Ni/HZSM-5 for hydrodeoxygenation of cyclohexanone. PLoS One, 2014, 9(7)e101744 Available at
[http://dx.doi.org/10.1371/journal.pone.0101744] [PMID: 25009974]
[15]
(a) Kalhor, M.; Banibairami, S.; Mirshokraie, S.A. Ni@zeolite-Y nanoporous; a valuable and efficient nanocatalyst for the synthesis of N-benzimidazole-1,3-thiazolidinones. Green Chem. Lett. Rev., 2018, 11(3), 334-344. Available at
[http://dx.doi.org/10.1080/17518253.2018.1499968]
(b) Perot, G.; Guisnet, M. Advantages and disadvantages of zeolites as catalysts in organic chemistry. J. Mol. Catal., 1990, 61(2), 173-196. Available at
[http://dx.doi.org/10.1016/0304-5102(90)85154-A]
[16]
Estevez, R.; Iglesias, I.; Luna, D.; Bautista, F.M. Sulfonic acid functionalization of different zeolites and their use as catalysts in the microwave-assisted etherification of glycerol with tert-butyl alcohol. Molecules, 2017, 22(12), 2206-2218. Available at
[http://dx.doi.org/10.3390/molecules22122206] [PMID: 29231861]
[17]
Nur, H.; Kee, G.L.; Hamdan, H.; Mahlia, T.M.I.; Efendi, J.; Metselaar, H.S.C. Organosulfonic acid functionalized zeolite ZSM-5 as temperature tolerant proton conducting material. Int. J. Hydrogen Energy, 2012, 37(12), 12513-12521. Available at
[http://dx.doi.org/10.1016/j.ijhydene.2012.06.050]
[18]
Krathumkhet, N.; Vongjitpimol, K.; Chuesutham, T.; Changkhamchom, S.; Phasuksom, K.; Sirivat, A.; Wattanakul, K. Preparation of sulfonated zeolite ZSM-5/sulfonated polysulfone composite membranes as PEM for direct methanol fuel cell application. Solid State Ion., 2018, 319, 278-284. Available at
[http://dx.doi.org/10.1016/j.ssi.2018.02.019]
[19]
Kalbasi, R.J.; Massah, A.R.; Shafiei, A. Synthesis and characterization of BEA-SO3H as an efficient and chemoselective acid catalyst. J. Mol. Catal. Chem., 2011, 335, 51-59. Available at
[http://dx.doi.org/10.1016/j.molcata.2010.11.013]
[20]
(a) Cunico, W.; Gomes, C.R.B.; Vellasco, W.T. Junior Chemistry and biological activities of 1,3-thiazolidin-4-ones. Mini Rev. Org. Chem., 2008, 5(4), 336-344. Available at
[http://dx.doi.org/10.2174/157019308786242232]
(b) Jain, A.K.; Vaidya, A.; Ravichandran, V.; Kashaw, S.K.; Agrawal, R.K. Recent developments and biological activities of thiazolidinone derivatives: A review. Bioorg. Med. Chem., 2012, 20(11), 3378-3395. Available at
[http://dx.doi.org/10.1016/j.bmc.2012.03.069] [PMID: 22546204]
[21]
(a) Cantello, B.C.C.; Cawthorne, M.A.; Haigh, D.; Hindley, R.M.; Smith, S.A.; Thurlby, P.L. The synthesis of BRL 49653 -a novel and potent antihyperglycaemic agent. Bioorg. Med. Chem. Lett., 1994, 4(10), 1181-1184. Available at
[http://dx.doi.org/10.1016/S0960-894X(01)80325-5]
(b) Kaur Manjal, S.; Kaur, R.; Bhatia, R.; Kumar, K.; Singh, V.; Shankar, R.; Kaur, R.; Rawal, R.K. Synthetic and medicinal perspective of thiazolidinones: A review. Bioorg. Chem., 2017, 75, 406-423. Available at
[http://dx.doi.org/10.1016/j.bioorg.2017.10.014] [PMID: 29102723]
(c) Mobinikhaledi, A.; Foroughifar, N.; Kalhor, M.; Mirabolfathy, M. Synthesis and antifungal activity of novel 2‐benzimidazoly-limino‐5‐arylidene‐4‐thiazolidinones. J. Heterocycl. Chem., 2010, 47(1), 77-80.
[22]
(a) Kapoor, V.K.; Dubey, S.; Mahindroo, N. Preparation, antiprotozoal and antibacterial evaluation and mutagenicity of some metronidazole derivatives. Indian J. Chem., 2000, 39B, 27-30.
(b) Dahiya, R. Synthesis, characterization and antimicrobial studies on some newer imidazole analogs. Sci. Pharm., 2008, 76(2), 217-239. Available at
[http://dx.doi.org/10.3797/scipharm.0803-04]
[23]
(a) Breslin, H.J.; Cai, C.; Miskowski, T.A.; Coutinho, S.V.; Zhang, S.P.; Hornby, P.; He, W. Identification of potent phenyl imidazoles as opioid receptor agonists. Bioorg. Med. Chem. Lett., 2006, 16(9), 2505-2508. Available at
[http://dx.doi.org/10.1016/j.bmcl.2006.01.082] [PMID: 16483774]
(b) Yadav, M.R.; Puntambekar, D.S.; Sarathy, K.P.; Vengurlekar, S.; Giridhar, R. Quantitative structure activity relationship studies of diarylimidazoles as selective COX-2 inhibitors. Indian J. Chem., 2006, 45, 475-782. Available at
[http://dx.doi.org/10.1002/ddr.10432]
(c) Khabnadideh, S.; Rezaei, Z.; Khalafi-Nezhad, A.; Bahrinajafi, R.; Mohamadi, R.; Farrokhroz, A.A. Synthesis of N-alkylated derivatives of imidazole as antibacterial agents. Bioorg. Med. Chem. Lett., 2003, 13(17), 2863-2865. Available at
[http://dx.doi.org/10.1016/S0960-894X(03)00591-2] [PMID: 14611845]
[24]
(a) Neuenfeldt, P.D.; Drawanz, B.B.; Siqueira, G.M.; Gomes, C.R.B.; Wardell, S.; Flores, A.F.C.; Cunico, W. Efficient solvent-free synthesis of thiazolidin-4-ones from phenylhydrazine and 2,4-dinitrophenylhydrazine. Tetrahedron Lett., 2010, 51(23), 3106-3108. Available at
[http://dx.doi.org/10.1016/j.tetlet.2010.04.026]
(b) Solankee, A.N.; Patel, K.P.; Patel, R.B. A facile synthesis and studies of some new 4-thiazolidinones and 5-arylidenes. Adv. Appl. Sci. Res, 2012, 3(1), 117-122.
[25]
Harale, R.R.; Shitre, P.V.; Sathe, B.R.; Shingare, M.S. Pd nanoparticles: An efficient catalyst for the solvent-free, synthesis of 2,3-disubstituted-4-thiazolidinones. Res. Chem. Intermed., 2016, 42(8), 6695-6703. Available at
[http://dx.doi.org/10.1007/s11164-016-2490-2]
[26]
Srivastava, T.; Haq, W.; Katti, S.B. Carbodiimide mediated synthesis of 4-thiazolidinones by one-pot three-component condensation. Tetrahedron, 2002, 58(38), 7619-7624. Available at
[http://dx.doi.org/10.1016/S0040-4020(02)00866-9]
[27]
Thakare, M.P.; Shaikh, R.; Tayade, D. Catalyst-free and environment friendly synthesis of 2-aryl-3-substituted-4-thiazolidinones in water. RSC Advances, 2016, 6(34), 28619-28623. Available at
[http://dx.doi.org/10.1039/C6RA02064J]
[28]
Pang, H.X.; Hui, Y.H.; Fan, K.; Xing, X.J.; Wu, Y.; Yang, J.H.; Shi, W.; Xie, Z.F. A catalysis study of mesoporous MCM-41 supported Schiff base and CuSO4.5H2O in a highly regioselective synthesis of 4-thiazolidinone derivatives from cyclocondensation of mercaptoacetic acid. Chin. Chem. Lett., 2016, 27(3), 335-339. Available at
[http://dx.doi.org/10.1016/j.cclet.2015.10.029]
[29]
Sadeghzadeh, S.M.; Malekzadeh, M. Synthesis of 1,3-thiazolidinone using ionic liquid immobilized onto Fe3O4/SiO2/Salen/Mn. J. Mol. Liq., 2015, 202, 46-51. Available at
[http://dx.doi.org/10.1016/j.molliq.2014.12.011]
[30]
Foroughifar, N.; Ebrahimi, S. One-pot synthesis of 1,3-tiazolidin-4-one using Bi(SCH2COOH)3 as catalyst. Chin. Chem. Lett., 2013, 24(5), 389-391. Available at
[http://dx.doi.org/10.1016/j.cclet.2013.03.019]
[31]
Thakare, M.P.; Kumar, P.; Kumar, N.; Pandey, S.K. Silica gel promoted environment-friendly synthesis of 2,3-disubstituted 4-thiazolidinones. Tetrahedron Lett., 2014, 55(15), 2463-2466. Available at
[http://dx.doi.org/10.1016/j.tetlet.2014.03.007]
[32]
Jadhav, S.A.; Shioorkar, M.G.; Chavan, O.S.; Jadhav, S.; Shioorkar, M.; Chavan, O.S.; Shinde, D.B.; Pardeshi, R.K. An alum catalyzed solvent free one-pot multicomponent synthesis of 4-thiazolidinone derivatives. Heterocyclic Lett, 2015, 5(7), 375-382.
[33]
Kumar, D.; Sonawane, M.; Pujala, B.; Jain, V.K.; Bhagat, S.; Chakraborti, A.K. Supported protic acid-catalyzed synthesis of 2,3-disubstituted thiazolidin-4-ones: Enhancement of the catalytic potential of protic acid by adsorption on solid supports. Green Chem., 2013, 15(10), 2872-2884. Available at
[http://dx.doi.org/10.1039/c3gc41218k]
[34]
Chate, A.V.; Tathe, A.G.; Nagtilak, P.J.; Sangle, S.M.; Gill, C.H. Efficient approach to thiazolidinones via a one-pot three-component reaction involving 2-amino-1-phenylethanone hydrochloride, aldehyde and mercaptoacetic acid. Chinese Chem. Catal, 2016, 37(11), 1997-2002. Available at
[http://dx.doi.org/10.1016/S1872-2067(16)62536-6]
[35]
Safaei-Ghomi, J.; Navvab, M.; Shahbazi-Alavi, H. CoFe2O4@SiO2/PrNH2 nanoparticles as highly efficient and magnetically recoverable catalyst for the synthesis of 1,3-thiazolidin-4-ones. J. Sulfur Chem., 2016, 37(6), 601-612. Available at
[http://dx.doi.org/10.1080/17415993.2016.1169533]
[36]
Kalhor, M.; Banibairami, S.; Mirshokraie, S.A. One-pot multi-component reaction for the facile synthesis of some novel 2-aryl thiazolidinones bearing benzimidazole moiety using La(NO3)3·6H2O as an efficient catalyst. Res. Chem. Intermed., 2017, 43(11), 5985-5994. Available at
[http://dx.doi.org/10.1007/s11164-017-2974-8]
[37]
Ebrahimi, S. One-pot synthesis of 1,3-thiazolidin-4-one using ammonium persulfate as catalyst. J. Sulfur Chem., 2016, 37(6), 587-592. Available at
[http://dx.doi.org/10.1080/17415993.2016.1223298]
[38]
Debus, H. Ueber die einwirkung des ammoniaks auf glyoxal. Annalen der Chemie und Pharmacie, 1858, 107(2), 199-208. Available at
[http://dx.doi.org/10.1002/jlac.18581070209]
[39]
Safari, J.; Zarnegar, Z. A highly efficient magnetic solid acid catalyst for synthesis of 2,4,5-trisubstituted imidazoles under ultrasound irradiation. Ultrason. Sonochem., 2013, 20(2), 740-746. Available at
[http://dx.doi.org/10.1016/j.ultsonch.2012.10.004] [PMID: 23137656]
[40]
Ziarani, G.M.; Badiei, A.; Lashgari, N.; Farahani, Z. Efficient one-pot synthesis of 2,4,5-trisubstituted and 1,2,4,5-tetrasubstituted imidazoles using SBA-Pr-SO3H as a green nano catalyst. J. Saudi Chem. Soc., 2016, 20(4), 419-427. Available at
[http://dx.doi.org/10.1016/j.jscs.2013.01.005]
[41]
Reddy, M.V.; Jeong, Y.T. Indium trifluoride: A highly efficient catalyst for the synthesis of fluorine-containing 2,4,5-trisubstituted imidazoles under solvent-free conditions. J. Fluor. Chem., 2012, 142, 45-51. Available at
[http://dx.doi.org/10.1016/j.jfluchem.2012.06.013]
[42]
Das Sharma, S.; Hazarika, P.; Konwar, D. An efficient and one-pot synthesis of 2,4,5-trisubstituted and 1,2,4,5-tetrasubstituted imidazoles catalyzed by InCl3·3H2O. Tetrahedron Lett., 2008, 49(14), 2216-2220. Available at
[http://dx.doi.org/10.1016/j.tetlet.2008.02.053]
[43]
Zolfagharinia, S.; Kolvari, E.; Koukabi, N.; Hosseini, M.M. Core-shell zirconia-coated magnetic nanoparticles offering a strong option to prepare a novel and magnetized heteropolyacid based heterogeneous nanocatalyst for three- and four-component reactions Arab J. Chem., In press, corrected proof, 2017.
[44]
Gharib, A.; Hashemipour Khorasani, B.R.; Jahangir, M.; Roshani, M.; Bakhtiari, L.; Mohadeszadeh, S. Synthesis of 2,4,5-trisubstituted and 1,2,4,5-tetrasubstituted-1H-imidazole derivatives and or 2,4,5-triaryloxazoles using of silica-supported preyssler nanoparticles. Izv. Him., 2014, 46(1), 165-174.
[45]
Banothu, J.; Gali, R.; Velpula, R.; Bavantula, R. Brønsted acidic ionic liquid catalyzed an efficient and eco-friendly protocol for the synthesis of 2,4,5-trisubstituted-1H-imidazoles under solvent-free conditions. Arab. J. Chem., 2017, 10, s2754-s2761. Available at
[http://dx.doi.org/10.1016/j.arabjc.2013.10.022]
[46]
Shaterian, H.R.; Ranjbar, M. An environmental friendly approach for the synthesis of highly substituted imidazoles using Brønsted acidic ionic liquid, N-methyl-2-pyrrolidonium hydrogen sulfate, as reusable catalyst. J. Mol. Liq., 2011, 160(1), 40-49. Available at
[http://dx.doi.org/10.1016/j.molliq.2011.02.012]
[47]
Kalhor, M.; Zarnegar, Z. Fe3O4/SO3H@zeolite-Y as a novel multi-functional and magnetic nanocatalyst for clean and soft synthesis of imidazole and perimidine derivatives. RSC Advances, 2019, 9, 19333-19346. Available at
[http://dx.doi.org/10.1039/C9RA02910A]
[48]
Rouquerol, F.; Rouquerol, J.; Sing, K.S.W. Adsorption by Powder and Porous Solids; Academic press: San Diego, 1999, pp. 1-25.
[49]
Safari, J.; Khalili, S.D.; Banitaba, S.H. Three-component, one-pot synthesis of 2,4,5-trisubstituted imidazoles catalyzed by TiCl4-SiO2 under conventional heating conditions or microwave irradiation. Synth. Commun., 2011, 41(16), 2359-2373. Available at
[http://dx.doi.org/10.1080/00397911.2010.502994]
[50]
Zarnegar, Z.; Safari, J. Fe3O4@chitosan nanoparticles: A valuable heterogeneous nanocatalyst for the synthesis of 2,4,5-trisubstituted imidazoles. RSC Advances, 2014, 4(40), 20932-20939. Available at
[http://dx.doi.org/10.1039/C4RA03176H]
[51]
Nikoofar, K.; Haghighi, M.; Lashanizadegan, M.; Ahmadvand, Z. ZnO nanorods: Efficient and reusable catalysts for the synthesis of substituted imidazoles in water. J. Taibah Univ Sci, 2015, 9(4), 570-578. Available at
[http://dx.doi.org/10.1016/j.jtusci.2014.12.007]
[52]
Safari, J.; Khalili, S.D.; Banitaba, S.H. A novel and an efficient catalyst for one-pot synthesis of 2,4,5- trisubstituted imidazoles by using microwave irradiation under solvent-free conditions. J. Chem. Sci., 2010, 122(3), 437-441. Available at
[http://dx.doi.org/10.1007/s12039-010-0051-6]
[53]
Hamada, T.; Le, T.; Voegtle, M.J.; Doyle, B.; Rimby, J.; Isovitsch, R. Synthesis, photophysical and computational studies of two lophine derivatives with electron-rich substituents in the 2-position. J. Mol. Struct., 2017, 1130, 284-290. Available at
[http://dx.doi.org/10.1016/j.molstruc.2016.10.050]
[54]
Siddiqui, S.A.; Narkhede, U.C.; Palimkar, S.S.; Daniel, T.; Lahoti, R.J.; Srinivasan, K.V. Room temperature ionic liquid promoted improved and rapid synthesis of 2,4,5-triaryl imidazoles from aryl aldehydes and 1,2-diketones or a-hydroxyketone. Tetrahedron, 2005, 61(14), 3539-3546. Available at
[http://dx.doi.org/10.1016/j.tet.2005.01.116]
[55]
Naeimi, H.; Aghaseyedkarimi, D. Ionophore silica-coated magnetite nanoparticles as a recyclable heterogeneous catalyst for one-pot green synthesis of 2,4,5-trisubstituted imidazoles. Dalton Trans., 2016, 45(3), 1243-1253. Available at
[http://dx.doi.org/10.1039/C5DT03488D] [PMID: 26671724]
[56]
Ahooie, T.S.; Azizi, N.; Yavari, I.; Hashemi, M.M. Magnetically separable and recyclable g-C3N4 nanocomposite catalyzed one-pot synthesis of substituted imidazoles. J. Iran. Chem. Soc, 2018, 15(4), 855-862. Available at
[http://dx.doi.org/10.1007/s13738-017-1284-9]
[57]
Parthiban, D.; Joel Karunakaran, R. Benzethonium chloride catalyzed one pot synthesis of 2,4,5-trisubstituted imidazoles and 1,2,4,5-tetrasubstituted imidazoles in aqueous ethanol as a green solvent. Orient. J. Chem., 2018, 34(6), 3004-3015. Available at
[http://dx.doi.org/10.13005/ojc/340642]
[58]
Bansal, R.; Soni, P.K.; Halve, A.K. Green synthesis of 1,2,4,5-tetrasubstituted and 2,4,5-trisubstituted imid-azole derivatives involving one-pot multicomponent reaction. J. Heterocycl. Chem., 2018, 55(6), 1308-1312. Available at
[http://dx.doi.org/10.1002/jhet.3160]
[59]
Naeimi, H.; Aghaseyedkarimi, D. Fe3O4@SiO2.HM.SO3H as a recyclable heterogeneous nanocatalyst for microwave-promoted synthesis of 2,4,5-trisubstituted imidazoles under solvent free condition. New J. Chem., 2015, 39(12), 9415-9421. Available at
[http://dx.doi.org/10.1039/C5NJ01273B]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy