Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

Lipid-based Nanoplatforms in Cancer Therapy: Recent Advances and Applications

Author(s): Kuldeep Rajpoot*

Volume 20, Issue 4, 2020

Page: [271 - 287] Pages: 17

DOI: 10.2174/1568009620666200115160805

Price: $65

Abstract

Though modern available cancer therapies are effective, they possess major adverse effects, causing non-compliance to patients. Furthermore, the majority of the polymeric-based medication platforms are certainly not universally acceptable, due to their several restrictions. With this juxtaposition, lipid-based medication delivery systems have appeared as promising drug nanocarriers to replace the majority of the polymer-based products because they are in a position to reverse polymer as well as, drug-associated restrictions. Furthermore, the amalgamation of the basic principle of nanotechnology in designing lipid nanocarriers, which are the latest form of lipid carriers, has tremendous chemotherapeutic possibilities as tumor-targeted drug-delivery pertaining to tumor therapy. Apart from this, it is reported that nearly 40% of the modern medication entities are lipophilic. Moreover, research continues to be efficient in attaining a significant understanding of the absorption and bioavailability of the developed lipids systems.

Keywords: Cancer, nanocarriers, liposomes, solid lipid nanoparticles, targeted delivery, lipids systems.

Graphical Abstract
[1]
Yoon, G.; Park, J.W.; Yoon, I-S. Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs): Recent advances in drug delivery. J. Pharm. Investig., 2013, 43(5), 353-362.
[http://dx.doi.org/10.1007/s40005-013-0087-y]
[2]
Fu, S.; Xia, J.; Wu, J. Functional chitosan nanoparticles in cancer treatment. J. Biomed. Nanotechnol., 2016, 12(8), 1585-1603.
[http://dx.doi.org/10.1166/jbn.2016.2228] [PMID: 29341581]
[3]
Cecco, S.; Aliberti, M.; Baldo, P.; Giacomin, E.; Leone, R. Safety and efficacy evaluation of albumin-bound paclitaxel. Expert Opin. Drug Saf., 2014, 13(4), 511-520.
[http://dx.doi.org/10.1517/14740338.2014.893293] [PMID: 24559090]
[4]
Eliaz, R.E.; Nir, S.; Marty, C.; Szoka, F.C., Jr Determination and modeling of kinetics of cancer cell killing by doxorubicin and doxorubicin encapsulated in targeted liposomes. Cancer Res., 2004, 64(2), 711-718.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-0654] [PMID: 14744789]
[5]
Fonseca, A.C.; Serra, A.C.; Coelho, J.F. Bioabsorbable polymers in cancer therapy: latest developments. EPMA J., 2015, 6, 22.
[http://dx.doi.org/10.1186/s13167-015-0045-z] [PMID: 26605001]
[6]
Kamalini, A.; Muthusamy, S.; Ramapriya, R.; Muthusamy, B.; Pugazhendhi, A. Optimization of sugar recovery efficiency using microwave assisted alkaline pretreatment of cassava stem using response surface methodology and its structural characterization. J. Mol. Liq., 2018, 254, 55-63.
[http://dx.doi.org/10.1016/j.molliq.2018.01.091]
[7]
Chakraborty, S.; Shukla, D.; Mishra, B.; Singh, S. Lipid--an emerging platform for oral delivery of drugs with poor bioavailability. Eur. J. Pharm. Biopharm., 2009, 73(1), 1-15.
[http://dx.doi.org/10.1016/j.ejpb.2009.06.001] [PMID: 19505572]
[8]
Muller, R.H.; Keck, C.M. Challenges and solutions for the delivery of biotech drugs--a review of drug nanocrystal technology and lipid nanoparticles. J. Biotechnol., 2004, 113(1-3), 151-170.
[http://dx.doi.org/10.1016/j.jbiotec.2004.06.007] [PMID: 15380654]
[9]
Narvekar, M.; Xue, H.Y.; Eoh, J.Y.; Wong, H.L. Nanocarrier for poorly water-soluble anticancer drugs--barriers of translation and solutions. AAPS PharmSciTech, 2014, 15(4), 822-833.
[http://dx.doi.org/10.1208/s12249-014-0107-x] [PMID: 24687241]
[10]
Liu, D.; Liu, C.; Zou, W.; Zhang, N. Enhanced gastrointestinal absorption of N3-O-toluyl-fluorouracil by cationic solid lipid nanoparticles. J. Nanopart. Res., 2010, 12(3), 975-984.
[http://dx.doi.org/10.1007/s11051-009-9648-4]
[11]
Rajpoot, K.; Tekade, R.K. Microemulsion as drug and gene delivery vehicle: an inside story.Drug Delivery Systems; Tekade, R.K., Ed.; Academic Press, 2019, pp. 455-520.
[http://dx.doi.org/10.1016/B978-0-12-814487-9.00010-7]
[12]
Rajpoot, K.; Tekade, M.; Pandey, V.; Nagaraja, S.; Youngren-Ortiz, S.R.; Tekade, R.K. Self-microemulsifying drug-delivery system: Ongoing challenges and future ahead.Drug Delivery Systems; Tekade, R.K., Ed.; Academic Press, 2020, pp. 393-454.
[http://dx.doi.org/10.1016/B978-0-12-814487-9.00009-0]
[13]
Rajpoot, K. Acyclovir-loaded sorbitan esters-based organogel: development and rheological characterization. Artif. Cells Nanomed. Biotechnol., 2017, 45(3), 551-559.
[http://dx.doi.org/10.3109/21691401.2016.1161639] [PMID: 27019055]
[14]
Bharali, D.J.; Mousa, S.A. Emerging nanomedicines for early cancer detection and improved treatment: current perspective and future promise. Pharmacol. Ther., 2010, 128(2), 324-335.
[http://dx.doi.org/10.1016/j.pharmthera.2010.07.007] [PMID: 20705093]
[15]
Miller, A.D. Lipid-based nanoparticles in cancer diagnosis and therapy. J. Drug Deliv., 2013, 2013165981
[http://dx.doi.org/10.1155/2013/165981] [PMID: 23936655]
[16]
Patrey, N.K.; Rajpoot, K.; Jain, A.K.; Jain, S.K. Diltiazem loaded floating microspheres of ethylcellulose and eudragit for gastric delivery: In vitro evaluation. Asian J. Biomater. Res., 2016, 2(2), 71-77.
[17]
Jain, S.K.; Prajapati, N.; Rajpoot, K.; Kumar, A. A novel sustained release drug-resin complex-based microbeads of ciprofloxacin HCl. Artif. Cells Nanomed. Biotechnol., 2016, 44(8), 1891-1900.
[http://dx.doi.org/10.3109/21691401.2015.1111233] [PMID: 26698089]
[18]
Jain, S.K.; Kumar, A.; Kumar, A.; Pandey, A.N.; Rajpoot, K. Development and in vitro characterization of a multiparticulate delivery system for acyclovir-resinate complex. Artif. Cells Nanomed. Biotechnol., 2016, 44(5), 1266-1275.
[PMID: 25813568]
[19]
Jain, S.K.; Patel, K.; Rajpoot, K.; Jain, A. Development of a berberine loaded multifunctional design for the treatment of Helicobacter pylori induced gastric ulcer. Drug Deliv. Lett., 2019, 9(1), 50-57.
[http://dx.doi.org/10.2174/2210303108666181120110756]
[20]
Attama, A.A.; Momoh, M.A.; Builders, P.F. Lipid nanoparticulate drug delivery systems: A revolution in dosage form design and development.Recent Advances in Novel Drug Carrier Systems; Sezer, A.D., Ed.; InTech: Rijeka, 2012, pp. 1-34.
[21]
Makwana, V.; Jain, R.; Patel, K.; Nivsarkar, M.; Joshi, A. Solid lipid nanoparticles (SLN) of Efavirenz as lymph targeting drug delivery system: Elucidation of mechanism of uptake using chylomicron flow blocking approach. Int. J. Pharm., 2015, 495(1), 439-446.
[http://dx.doi.org/10.1016/j.ijpharm.2015.09.014] [PMID: 26367780]
[22]
Qian, C.; Decker, E.A.; Xiao, H.; McClements, D.J. Impact of lipid nanoparticle physical state on particle aggregation and β-carotene degradation: Potential limitations of solid lipid nanoparticles. Food Res. Int., 2013, 52(1), 342-349.
[http://dx.doi.org/10.1016/j.foodres.2013.03.035]
[23]
Dave, V.; Tak, K.; Sohgaura, A.; Gupta, A.; Sadhu, V.; Reddy, K.R. Lipid-polymer hybrid nanoparticles: Synthesis strategies and biomedical applications. J. Microbiol. Methods, 2019, 160, 130-142.
[http://dx.doi.org/10.1016/j.mimet.2019.03.017] [PMID: 30898602]
[24]
Date, T.; Paul, K.; Singh, N.; Jain, S. Drug-Lipid Conjugates for Enhanced Oral Drug Delivery. AAPS PharmSciTech, 2019, 20(2), 41.
[http://dx.doi.org/10.1208/s12249-018-1272-0] [PMID: 30610658]
[25]
Lauterbach, A.; Müller-Goymann, C.C. Applications and limitations of lipid nanoparticles in dermal and transdermal drug delivery via the follicular route. Eur. J. Pharm. Biopharm., 2015, 97(Pt A), 152-163.
[http://dx.doi.org/10.1016/j.ejpb.2015.06.020] [PMID: 26144664]
[26]
Zhang, Z.; Chen, J.; Ding, L.; Jin, H.; Lovell, J.F.; Corbin, I.R.; Cao, W.; Lo, P.C.; Yang, M.; Tsao, M.S.; Luo, Q.; Zheng, G. HDL-mimicking peptide-lipid nanoparticles with improved tumor targeting. Small, 2010, 6(3), 430-437.
[http://dx.doi.org/10.1002/smll.200901515] [PMID: 19957284]
[27]
Zuo, H. iRGD: A promising peptide for cancer imaging and a potential therapeutic agent for various cancers. J. Oncol., 2019, 20199367845
[http://dx.doi.org/10.1155/2019/9367845] [PMID: 31346334]
[28]
Zhang, Y.; Li, Z.; Zhang, K.; Yang, G.; Wang, Z.; Zhao, J.; Hu, R.; Feng, N. Ethyl oleate-containing nanostructured lipid carriers improve oral bioavailability of trans-ferulic acid ascompared with conventional solid lipid nanoparticles. Int. J. Pharm., 2016, 511(1), 57-64.
[http://dx.doi.org/10.1016/j.ijpharm.2016.06.131] [PMID: 27374194]
[29]
Rao, S.; Prestidge, C.A. Polymer-lipid hybrid systems: merging the benefits of polymeric and lipid-based nanocarriers to improve oral drug delivery. Expert Opin. Drug Deliv., 2016, 13(5), 691-707.
[http://dx.doi.org/10.1517/17425247.2016.1151872] [PMID: 26866382]
[30]
Pandita, D.; Kumar, S.; Poonia, N.; Lather, V. Solid lipid nanoparticles enhance oral bioavailability of resveratrol, a natural polyphenol. Food Res. Int., 2014, 62, 1165-1174.
[http://dx.doi.org/10.1016/j.foodres.2014.05.059]
[31]
Beloqui, A.; Solinís, M.A.; Delgado, A.; Evora, C.; Isla, A.; Rodríguez-Gascón, A. Fate of nanostructured lipid carriers (NLCs) following the oral route: design, pharmacokinetics and biodistribution. J. Microencapsul., 2014, 31(1), 1-8.
[http://dx.doi.org/10.3109/02652048.2013.788090] [PMID: 23631381]
[32]
Tran, T.H.; Ramasamy, T.; Truong, D.H.; Choi, H-G.; Yong, C.S.; Kim, J.O. Preparation and characterization of fenofibrate-loaded nanostructured lipid carriers for oral bioavailability enhancement. AAPS PharmSciTech, 2014, 15(6), 1509-1515.
[http://dx.doi.org/10.1208/s12249-014-0175-y] [PMID: 25035071]
[33]
Wissing, S.A.; Kayser, O.; Müller, R.H. Solid lipid nanoparticles for parenteral drug delivery. Adv. Drug Deliv. Rev., 2004, 56(9), 1257-1272.
[http://dx.doi.org/10.1016/j.addr.2003.12.002] [PMID: 15109768]
[34]
Attama, A.A. SLN, NLC, LDC: state of the art in drug and active delivery. Recent Pat. Drug Deliv. Formul., 2011, 5(3), 178-187.
[http://dx.doi.org/10.2174/187221111797200524] [PMID: 21834777]
[35]
Wong, H.L.; Bendayan, R.; Rauth, A.M.; Li, Y.; Wu, X.Y. Chemotherapy with anticancer drugs encapsulated in solid lipid nanoparticles. Adv. Drug Deliv. Rev., 2007, 59(6), 491-504.
[http://dx.doi.org/10.1016/j.addr.2007.04.008] [PMID: 17532091]
[36]
Prasad, D.; Chauhan, H. Nanotoxicity of polymeric and solid lipid nanoparticles. Biointeractions of Nanomaterials; CRC Press, 2014, pp. 141-158.
[http://dx.doi.org/10.1201/b17191-8]
[37]
Selvamuthukumar, S.; Velmurugan, R. Nanostructured lipid carriers: a potential drug carrier for cancer chemotherapy. Lipids Health Dis., 2012, 11(1), 159.
[http://dx.doi.org/10.1186/1476-511X-11-159] [PMID: 23167765]
[38]
Hidalgo, A.; Cruz, A.; Pérez-Gil, J. Barrier or carrier? Pulmonary surfactant and drug delivery. Eur. J. Pharm. Biopharm., 2015, 95(Pt A), 117-127.
[http://dx.doi.org/10.1016/j.ejpb.2015.02.014] [PMID: 25709061]
[39]
Patil-Gadhe, A.; Kyadarkunte, A.; Patole, M.; Pokharkar, V. Montelukast-loaded nanostructured lipid carriers: part II pulmonary drug delivery and in vitro-in vivo aerosol performance. Eur. J. Pharm. Biopharm., 2014, 88(1), 169-177.
[http://dx.doi.org/10.1016/j.ejpb.2014.07.007] [PMID: 25078860]
[40]
Cipolla, D.; Shekunov, B.; Blanchard, J.; Hickey, A. Lipid-based carriers for pulmonary products: preclinical development and case studies in humans. Adv. Drug Deliv. Rev., 2014, 75, 53-80.
[http://dx.doi.org/10.1016/j.addr.2014.05.001] [PMID: 24819218]
[41]
Ghasemiyeh, P.; Mohammadi-Samani, S. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: applications, advantages and disadvantages. Res. Pharm. Sci., 2018, 13(4), 288-303.
[http://dx.doi.org/10.4103/1735-5362.235156] [PMID: 30065762]
[42]
Xiang, Q.Y.; Wang, M.T.; Chen, F.; Gong, T.; Jian, Y.L.; Zhang, Z.R.; Huang, Y. Lung-targeting delivery of dexamethasone acetate loaded solid lipid nanoparticles. Arch. Pharm. Res., 2007, 30(4), 519-525.
[http://dx.doi.org/10.1007/BF02980228] [PMID: 17489370]
[43]
Weber, S.; Zimmer, A.; Pardeike, J. Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) for pulmonary application: a review of the state of the art. Eur. J. Pharm. Biopharm., 2014, 86(1), 7-22.
[http://dx.doi.org/10.1016/j.ejpb.2013.08.013] [PMID: 24007657]
[44]
Paranjpe, M.; Finke, J.H.; Richter, C.; Gothsch, T.; Kwade, A.; Büttgenbach, S.; Müller-Goymann, C.C. Physicochemical characterization of sildenafil-loaded solid lipid nanoparticle dispersions (SLN) for pulmonary application. Int. J. Pharm., 2014, 476(1-2), 41-49.
[http://dx.doi.org/10.1016/j.ijpharm.2014.09.031] [PMID: 25261709]
[45]
Dal Magro, R.; Ornaghi, F.; Cambianica, I.; Beretta, S.; Re, F.; Musicanti, C.; Rigolio, R.; Donzelli, E.; Canta, A.; Ballarini, E.; Cavaletti, G.; Gasco, P.; Sancini, G. ApoE-modified solid lipid nanoparticles: A feasible strategy to cross the blood-brain barrier. J. Control. Release, 2017, 249, 103-110.
[http://dx.doi.org/10.1016/j.jconrel.2017.01.039] [PMID: 28153761]
[46]
Blasi, P.; Giovagnoli, S.; Schoubben, A.; Ricci, M.; Rossi, C. Solid lipid nanoparticles for targeted brain drug delivery. Adv. Drug Deliv. Rev., 2007, 59(6), 454-477.
[http://dx.doi.org/10.1016/j.addr.2007.04.011] [PMID: 17570559]
[47]
Seyfoddin, A.; Shaw, J.; Al-Kassas, R. Solid lipid nanoparticles for ocular drug delivery. Drug Deliv., 2010, 17(7), 467-489.
[http://dx.doi.org/10.3109/10717544.2010.483257] [PMID: 20491540]
[48]
Chetoni, P.; Burgalassi, S.; Monti, D.; Tampucci, S.; Tullio, V.; Cuffini, A.M.; Muntoni, E.; Spagnolo, R.; Zara, G.P.; Cavalli, R. Solid lipid nanoparticles as promising tool for intraocular tobramycin delivery: Pharmacokinetic studies on rabbits. Eur. J. Pharm. Biopharm., 2016, 109, 214-223.
[http://dx.doi.org/10.1016/j.ejpb.2016.10.006] [PMID: 27789355]
[49]
Attama, A.A.; Reichl, S.; Müller-Goymann, C.C. Diclofenac sodium delivery to the eye: in vitro evaluation of novel solid lipid nanoparticle formulation using human cornea construct. Int. J. Pharm., 2008, 355(1-2), 307-313.
[http://dx.doi.org/10.1016/j.ijpharm.2007.12.007] [PMID: 18242022]
[50]
Sánchez-López, E.; Espina, M.; Doktorovova, S.; Souto, E.B.; García, M.L. Lipid nanoparticles (SLN, NLC): Overcoming the anatomical and physiological barriers of the eye - Part II - Ocular drug-loaded lipid nanoparticles. Eur. J. Pharm. Biopharm., 2017, 110, 58-69.
[http://dx.doi.org/10.1016/j.ejpb.2016.10.013] [PMID: 27789359]
[51]
Potdar, D.P.; Shetti, A. Chitosan Nanoparticles: An Emerging Weapon against the Cancer. MOJ Cell Science & Report, 2016, 3(1), 39-40.
[http://dx.doi.org/10.15406/mojcsr.2016.03.00049]
[52]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[53]
Wilson, B.; Ambika, T.V.; Patel, R.D.; Jenita, J.L.; Priyadarshini, S.R. Nanoparticles based on albumin: preparation, characterization and the use for 5-flurouracil delivery. Int. J. Biol. Macromol., 2012, 51(5), 874-878.
[http://dx.doi.org/10.1016/j.ijbiomac.2012.07.014] [PMID: 22820011]
[54]
Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer, 2015, 136(5), E359-E386.
[http://dx.doi.org/10.1002/ijc.29210] [PMID: 25220842]
[55]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: the next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[56]
Keeney, S.; McKenna, H.; Fleming, P.; McIlfatrick, S. An exploration of public knowledge of warning signs for cancer. Eur. J. Oncol. Nurs., 2011, 15(1), 31-37.
[http://dx.doi.org/10.1016/j.ejon.2010.05.007] [PMID: 20584627]
[57]
Bruera, E.; Navigante, A.; Barugel, M.; Macmillan, K.; MacDonald, R.N.; Chacon, R. Treatment of pain and other symptoms in cancer patients: patterns in a North American and a South American hospital. J. Pain Symptom Manage., 1990, 5(2), 78-82.
[http://dx.doi.org/10.1016/S0885-3924(05)80020-X] [PMID: 2348091]
[58]
Fass, L. Imaging and cancer: a review. Mol. Oncol., 2008, 2(2), 115-152.
[http://dx.doi.org/10.1016/j.molonc.2008.04.001] [PMID: 19383333]
[59]
Salgia, R. Diagnostic challenges in non-small-cell lung cancer: an integrated medicine approach. Future Oncol., 2015, 11(3), 489-500.
[http://dx.doi.org/10.2217/fon.14.275] [PMID: 25675128]
[60]
Valastyan, S.; Weinberg, R.A. Tumor metastasis: molecular insights and evolving paradigms. Cell, 2011, 147(2), 275-292.
[http://dx.doi.org/10.1016/j.cell.2011.09.024] [PMID: 22000009]
[61]
Camacho, R.; Sepúlveda, C.; Neves, D.; Piñeros, M.; Villanueva, M.; Dangou, J-M.; Fadhil, I.; Galea, G.; Garg, R.; Luciani, S. Cancer control capacity in 50 low- and middle-income countries. Glob. Public Health, 2015, 10(9), 1017-1031.
[http://dx.doi.org/10.1080/17441692.2015.1007469] [PMID: 25646899]
[62]
Zugazagoitia, J.; Guedes, C.; Ponce, S.; Ferrer, I.; Molina-Pinelo, S.; Paz-Ares, L. Current challenges in cancer treatment. Clin. Ther., 2016, 38(7), 1551-1566.
[http://dx.doi.org/10.1016/j.clinthera.2016.03.026] [PMID: 27158009]
[63]
Patel, J.M.; Knopf, J.; Reiner, E.; Bossuyt, V.; Epstein, L.; DiGiovanna, M.; Chung, G.; Silber, A.; Sanft, T.; Hofstatter, E.; Mougalian, S.; Abu-Khalaf, M.; Platt, J.; Shi, W.; Gershkovich, P.; Hatzis, C.; Pusztai, L. Mutation based treatment recommendations from next generation sequencing data: a comparison of web tools. Oncotarget, 2016, 7(16), 22064-22076.
[http://dx.doi.org/10.18632/oncotarget.8017] [PMID: 26980737]
[64]
Masucci, A.; Elayoubi, S.E.; Sayrac, B. 2016IEEE Wireless Communications and Networking Conference, 3-6 April 2016, pp. 1-6.
[65]
Seeta Rama Raju, G.; Benton, L.; Pavitra, E.; Yu, J.S. Multifunctional nanoparticles: recent progress in cancer therapeutics. Chem. Commun. (Camb.), 2015, 51(68), 13248-13259.
[http://dx.doi.org/10.1039/C5CC04643B] [PMID: 26234539]
[66]
Jaiswal, P.; Gidwani, B.; Vyas, A. Nanostructured lipid carriers and their current application in targeted drug delivery. Artif. Cells Nanomed. Biotechnol., 2016, 44(1), 27-40.
[http://dx.doi.org/10.3109/21691401.2014.909822] [PMID: 24813223]
[67]
Müller, R.H.; Radtke, M.; Wissing, S.A. Nanostructured lipid matrices for improved microencapsulation of drugs. Int. J. Pharm., 2002, 242(1-2), 121-128.
[http://dx.doi.org/10.1016/S0378-5173(02)00180-1] [PMID: 12176234]
[68]
Frias, I.; Neves, A.R.; Pinheiro, M.; Reis, S. Design, development, and characterization of lipid nanocarriers-based epigallocatechin gallate delivery system for preventive and therapeutic supplementation. Drug Des. Devel. Ther., 2016, 10, 3519-3528.
[http://dx.doi.org/10.2147/DDDT.S109589] [PMID: 27826184]
[69]
Tetyczka, C.; Hodzic, A.; Kriechbaum, M.; Juraić, K.; Spirk, C.; Hartl, S.; Pritz, E.; Leitinger, G.; Roblegg, E. Comprehensive characterization of nanostructured lipid carriers using laboratory and synchrotron X-ray scattering and diffraction. Eur. J. Pharm. Biopharm., 2019, 139, 153-160.
[http://dx.doi.org/10.1016/j.ejpb.2019.03.017] [PMID: 30905779]
[70]
Li, X.; Jia, X.; Niu, H. Nanostructured lipid carriers co-delivering lapachone and doxorubicin for overcoming multidrug resistance in breast cancer therapy. Int. J. Nanomedicine, 2018, 13, 4107-4119.
[http://dx.doi.org/10.2147/IJN.S163929] [PMID: 30034236]
[71]
Taymouri, S.; Alem, M.; Varshosaz, J.; Rostami, M.; Akbari, V.; Firoozpour, L. Biotin decorated sunitinib loaded nanostructured lipid carriers for tumor targeted chemotherapy of lung cancer. J. Drug Deliv. Sci. Technol., 2019, 50, 237-247.
[http://dx.doi.org/10.1016/j.jddst.2019.01.024]
[72]
Zhang, C.; Peng, F.; Liu, W.; Wan, J.; Wan, C.; Xu, H.; Lam, C.W.; Yang, X. Nanostructured lipid carriers as a novel oral delivery system for triptolide: induced changes in pharmacokinetics profile associated with reduced toxicity in male rats. Int. J. Nanomedicine, 2014, 9, 1049-1063.
[PMID: 24591827]
[73]
Tosi, G.; Musumeci, T.; Ruozi, B.; Carbone, C.; Belletti, D.; Pignatello, R.; Vandelli, M.A.; Puglisi, G. The “fate” of polymeric and lipid nanoparticles for brain delivery and targeting: Strategies and mechanism of blood-brain barrier crossing and trafficking into the central nervous system. J. Drug Deliv. Sci. Technol., 2016, 32, 66-76.
[http://dx.doi.org/10.1016/j.jddst.2015.07.007]
[74]
Iqbal, B.; Ali, J.; Ganguli, M.; Mishra, S.; Baboota, S. Silymarin-loaded nanostructured lipid carrier gel for the treatment of skin cancer. Nanomedicine (Lond.), 2019, 14(9), 1077-1093.
[http://dx.doi.org/10.2217/nnm-2018-0235] [PMID: 31050580]
[75]
Banerjee, P.; Geng, T.; Mahanty, A.; Li, T.; Zong, L.; Wang, B. Integrating the drug, disulfiram into the vitamin E-TPGS-modified PEGylated nanostructured lipid carriers to synergize its repurposing for anti-cancer therapy of solid tumors. Int. J. Pharm., 2019, 557, 374-389.
[http://dx.doi.org/10.1016/j.ijpharm.2018.12.051] [PMID: 30610896]
[76]
Outuki, P.M.; Kleinubing, S.A.; Hoscheid, J.; Montanha, M.C.; da Silva, E.A.; do Couto, R.O.; Kimura, E.; Cardoso, M.L.C. The incorporation of Pterodon pubescens fruit oil into optimized nanostructured lipid carriers improves its effectiveness in colorectal cancer. Ind. Crops Prod., 2018, 123, 719-730.
[http://dx.doi.org/10.1016/j.indcrop.2018.07.044]
[77]
Ding, X.; Xu, X.; Zhao, Y.; Zhang, L.; Yu, Y.; Huang, F.; Yin, D.; Huang, H. Tumor targeted nanostructured lipid carrier co-delivering paclitaxel and indocyanine green for laser triggered synergetic therapy of cancer. RSC Advances, 2017, 7(56), 35086-35095.
[http://dx.doi.org/10.1039/C7RA06119F]
[78]
Jiang, H.; Pei, L.; Liu, N.; Li, J.; Li, Z.; Zhang, S. Etoposide-loaded nanostructured lipid carriers for gastric cancer therapy. Drug Deliv., 2016, 23(4), 1379-1382.
[PMID: 26162024]
[79]
Sun, M.; Nie, S.; Pan, X.; Zhang, R.; Fan, Z.; Wang, S. Quercetin-nanostructured lipid carriers: characteristics and anti-breast cancer activities in vitro. Colloids Surf. B Biointerfaces, 2014, 113(0), 15-24.
[http://dx.doi.org/10.1016/j.colsurfb.2013.08.032] [PMID: 24060926]
[80]
Yang, X.Y.; Li, Y.X.; Li, M.; Zhang, L.; Feng, L.X.; Zhang, N. Hyaluronic acid-coated nanostructured lipid carriers for targeting paclitaxel to cancer. Cancer Lett., 2013, 334(2), 338-345.
[http://dx.doi.org/10.1016/j.canlet.2012.07.002] [PMID: 22776563]
[81]
Zhang, X-G.; Miao, J.; Dai, Y-Q.; Du, Y-Z.; Yuan, H.; Hu, F-Q. Reversal activity of nanostructured lipid carriers loading cytotoxic drug in multi-drug resistant cancer cells. Int. J. Pharm., 2008, 361(1-2), 239-244.
[http://dx.doi.org/10.1016/j.ijpharm.2008.06.002] [PMID: 18586075]
[82]
Adhikari, P.; Pal, P.; Das, A.K.; Ray, S.; Bhattacharjee, A.; Mazumder, B. Nano lipid-drug conjugate: An integrated review. Int. J. Pharm., 2017, 529(1-2), 629-641.
[http://dx.doi.org/10.1016/j.ijpharm.2017.07.039] [PMID: 28723407]
[83]
Farid, R.M.; El-Salamouni, N.S.; El-Kamel, A.H.; El-Gamal, S.S. Lipid-based nanocarriers for ocular drug delivery. Nanostructures for Drug Delivery; Andronescu, E; Grumezescu, A.M., Ed.; Elsevier, 2017, pp. 495-522.
[http://dx.doi.org/10.1016/B978-0-323-46143-6.00016-6]
[84]
Ahmad, H.; Arya, A.; Agrawal, S.; Dwivedi, A.K. Novel lipid nanostructures for delivery of natural agents with antioxidant, antiinflammatory and antistroke potential: perspectives and outcomes. Nanostructures for Oral Medicine; Andronescu, E; Grumezescu, A.M., Ed.; Elsevier, 2017, pp. 577-605.
[http://dx.doi.org/10.1016/B978-0-323-47720-8.00020-1]
[85]
Olbrich, C.; Gessner, A.; Kayser, O.; Müller, R.H. Lipid-drug-conjugate (LDC) nanoparticles as novel carrier system for the hydrophilic antitrypanosomal drug diminazenediaceturate. J. Drug Target., 2002, 10(5), 387-396.
[http://dx.doi.org/10.1080/1061186021000001832] [PMID: 12442809]
[86]
Abu-Fayyad, A.; Kamal, M.M.; Carroll, J.L.; Dragoi, A-M.; Cody, R.; Cardelli, J.; Nazzal, S. Development and in-vitro characterization of nanoemulsions loaded with paclitaxel/γ-tocotrienol lipid conjugates. Int. J. Pharm., 2018, 536(1), 146-157.
[http://dx.doi.org/10.1016/j.ijpharm.2017.11.062] [PMID: 29195915]
[87]
Kebebe, D.; Wu, Y.; Zhang, B.; Yang, J.; Liu, Y.; Li, X.; Ma, Z.; Lu, P.; Liu, Z.; Li, J. Dimeric c(RGD) peptide conjugated nanostructured lipid carriers for efficient delivery of Gambogic acid to breast cancer. Int. J. Nanomedicine, 2019, 14, 6179-6195.
[http://dx.doi.org/10.2147/IJN.S202424] [PMID: 31447559]
[88]
Ashwanikumar, N.; Kumar, N.A.; Asha Nair, S.; Vinod Kumar, G.S. 5-Fluorouracil-lipid conjugate: potential candidate for drug delivery through encapsulation in hydrophobic polyester-based nanoparticles. Acta Biomater., 2014, 10(11), 4685-4694.
[http://dx.doi.org/10.1016/j.actbio.2014.07.032] [PMID: 25110286]
[89]
Neupane, Y.R.; Sabir, M.D.; Ahmad, N.; Ali, M.; Kohli, K. Lipid drug conjugate nanoparticle as a novel lipid nanocarrier for the oral delivery of decitabine: ex vivo gut permeation studies. Nanotechnology, 2013, 24(41)415102
[http://dx.doi.org/10.1088/0957-4484/24/41/415102] [PMID: 24061410]
[90]
Li, F.; Saulsbury, M.; Heyliger, S.; Bondarev, M.; Du, C.; Ramaley, C.C.; Lemieux, K.P. Abstract 5538: A pH-responsive doxorubicin-lipid conjugate loaded nanomedicine for breast cancer treatment. Cancer Res., 2015, 75(15)(Suppl.), 5538.
[PMID: 26069248]
[91]
Du, Y.; Ling, L.; Ismail, M.; He, W.; Xia, Q.; Zhou, W.; Yao, C.; Li, X. Redox sensitive lipid-camptothecin conjugate encapsulated solid lipid nanoparticles for oral delivery. Int. J. Pharm., 2018, 549(1-2), 352-362.
[http://dx.doi.org/10.1016/j.ijpharm.2018.08.010] [PMID: 30099214]
[92]
Zhao, S.; Minh, L.V.; Li, N.; Garamus, V.M.; Handge, U.A.; Liu, J.; Zhang, R.; Willumeit-Römer, R.; Zou, A. Doxorubicin hydrochloride-oleic acid conjugate loaded nanostructured lipid carriers for tumor specific drug release. Colloids Surf. B Biointerfaces, 2016, 145, 95-103.
[http://dx.doi.org/10.1016/j.colsurfb.2016.04.027] [PMID: 27137808]
[93]
Fang, T.; Dong, Y.; Zhang, X.; Xie, K.; Lin, L.; Wang, H. Integrating a novel SN38 prodrug into the PEGylated liposomal system as a robust platform for efficient cancer therapy in solid tumors. Int. J. Pharm., 2016, 512(1), 39-48.
[http://dx.doi.org/10.1016/j.ijpharm.2016.08.036] [PMID: 27544846]
[94]
Zhou, X.; Wang, J.; Wu, J.; Yang, X.; Yung, B.C.; Lee, L.J.; Lee, R.J. Preparation and evaluation of a novel liposomal formulation of cisplatin. Eur. J. Pharm. Sci., 2015, 66, 90-95.
[http://dx.doi.org/10.1016/j.ejps.2014.10.004] [PMID: 25446511]
[95]
Lin, C.H.; Chen, C.H.; Lin, Z.C.; Fang, J.Y. Recent advances in oral delivery of drugs and bioactive natural products using solid lipid nanoparticles as the carriers. Yao Wu Shi Pin Fen Xi, 2017, 25(2), 219-234.
[http://dx.doi.org/10.1016/j.jfda.2017.02.001] [PMID: 28911663]
[96]
Rajpoot, K. Solid lipid nanoparticles: A promising nanomaterial in drug delivery. Curr. Pharm. Des., 2019, 25(37), 3943-3959.
[http://dx.doi.org/10.2174/1381612825666190903155321] [PMID: 31481000]
[97]
Souto, E.B.; Doktorovova, S.; Campos, J.R.; Martins-Lopes, P.; Silva, A.M. Surface-tailored anti-HER2/neu-solid lipid nanoparticles for site-specific targeting MCF-7 and BT-474 breast cancer cells. Eur. J. Pharm. Sci., 2019, 128, 27-35.
[http://dx.doi.org/10.1016/j.ejps.2018.11.022] [PMID: 30472221]
[98]
Shen, M-Y.; Liu, T-I.; Yu, T-W.; Kv, R.; Chiang, W-H.; Tsai, Y-C.; Chen, H-H.; Lin, S-C.; Chiu, H-C. Hierarchically targetable polysaccharide-coated solid lipid nanoparticles as an oral chemo/thermotherapy delivery system for local treatment of colon cancer. Biomaterials, 2019, 197, 86-100.
[http://dx.doi.org/10.1016/j.biomaterials.2019.01.019] [PMID: 30641267]
[99]
Yokaichiya, F.; Schmidt, C.; Storsberg, J.; Kumpugdee Vollrath, M.; de Araujo, D.R.; Kent, B.; Clemens, D.; Wingert, F.; Franco, M.K.K.D. Effects of doxorubicin on the structural and morphological characterization of solid lipid nanoparticles (SLN) using small angle neutron scattering (SANS) and small angle X-ray scattering (SAXS). Physica B, 2018, 551, 191-196.
[http://dx.doi.org/10.1016/j.physb.2017.12.036]
[100]
Wu, X.; Chen, H.; Wu, C.; Wang, J.; Zhang, S.; Gao, J.; Wang, H.; Sun, T.; Yang, Y-G. Inhibition of intrinsic coagulation improves safety and tumor-targeted drug delivery of cationic solid lipid nanoparticles. Biomaterials, 2018, 156, 77-87.
[http://dx.doi.org/10.1016/j.biomaterials.2017.11.040] [PMID: 29190500]
[101]
Wang, W.; Chen, T.; Xu, H.; Ren, B.; Cheng, X.; Qi, R.; Liu, H.; Wang, Y.; Yan, L.; Chen, S.; Yang, Q.; Chen, C. Curcumin-loaded solid lipid nanoparticles enhanced anticancer efficiency in breast cancer. Molecules, 2018, 23(7), 1578.
[http://dx.doi.org/10.3390/molecules23071578] [PMID: 29966245]
[102]
Chen, Z.; Zheng, Y.; Shi, Y.; Cui, Z. Overcoming tumor cell chemoresistance using nanoparticles: lysosomes are beneficial for (stearoyl) gemcitabine-incorporated solid lipid nanoparticles. Int. J. Nanomedicine, 2018, 13, 319-336.
[http://dx.doi.org/10.2147/IJN.S149196] [PMID: 29391792]
[103]
Rajpoot, K.; Jain, S.K. Colorectal cancer-targeted delivery of oxaliplatin via folic acid-grafted solid lipid nanoparticles: preparation, optimization, and in vitro evaluation. Artif. Cells Nanomed. Biotechnol., 2018, 46(6), 1236-1247.
[http://dx.doi.org/10.1080/21691401.2017.1366338] [PMID: 28849671]
[104]
Rajpoot, K.; Jain, S.K. Irinotecan hydrochloride trihydrate loaded folic acid-tailored solid lipid nanoparticles for targeting colorectal cancer: development, characterization, and in vitro cytotoxicity study using HT-29 cells. J. Microencapsul., 2019, 36(7), 659-676.
[http://dx.doi.org/10.1080/02652048.2019.1665723] [PMID: 31495238]
[105]
Hamishehkar, H.; Bahadori, M.B.; Vandghanooni, S.; Eskandani, M.; Nakhlband, A.; Eskandani, M. Preparation, characterization and anti-proliferative effects of sclareol-loaded solid lipid nanoparticles on A549 human lung epithelial cancer cells. J. Drug Deliv. Sci. Technol., 2018, 45, 272-280.
[http://dx.doi.org/10.1016/j.jddst.2018.02.017]
[106]
Guney Eskiler, G.; Cecener, G.; Dikmen, G.; Egeli, U.; Tunca, B. Solid lipid nanoparticles: Reversal of tamoxifen resistance in breast cancer. Eur. J. Pharm. Sci., 2018, 120, 73-88.
[http://dx.doi.org/10.1016/j.ejps.2018.04.040] [PMID: 29719240]
[107]
Wang, F.; Li, L.; Liu, B.; Chen, Z.; Li, C. Hyaluronic acid decorated pluronic P85 solid lipid nanoparticles as a potential carrier to overcome multidrug resistance in cervical and breast cancer. Biomed. Pharmacother., 2017, 86, 595-604.
[http://dx.doi.org/10.1016/j.biopha.2016.12.041] [PMID: 28027535]
[108]
Rompicharla, S.V.K.; Bhatt, H.; Shah, A.; Komanduri, N.; Vijayasarathy, D.; Ghosh, B.; Biswas, S. Formulation optimization, characterization, and evaluation of in vitro cytotoxic potential of curcumin loaded solid lipid nanoparticles for improved anticancer activity. Chem. Phys. Lipids, 2017, 208, 10-18.
[http://dx.doi.org/10.1016/j.chemphyslip.2017.08.009] [PMID: 28842128]
[109]
Xue, H.Y.; Tran, N.; Wong, H.L. A biodistribution study of solid lipid-polyethyleneimine hybrid nanocarrier for cancer RNAi therapy. Eur. J. Pharm. Biopharm., 2016, 108, 68-75.
[http://dx.doi.org/10.1016/j.ejpb.2016.08.014] [PMID: 27569032]
[110]
Soni, N.; Soni, N.; Pandey, H.; Maheshwari, R.; Kesharwani, P.; Tekade, R.K. Augmented delivery of gemcitabine in lung cancer cells exploring mannose anchored solid lipid nanoparticles. J. Colloid Interface Sci., 2016, 481, 107-116.
[http://dx.doi.org/10.1016/j.jcis.2016.07.020] [PMID: 27459173]
[111]
Huang, H-Y.; Hu, S-H.; Hung, S-Y.; Chiang, C-S.; Liu, H-L.; Chiu, T-L.; Lai, H-Y.; Chen, Y-Y.; Chen, S-Y. SPIO nanoparticle-stabilized PAA-F127 thermosensitive nanobubbles with MR/US dual-modality imaging and HIFU-triggered drug release for magnetically guided in vivo tumor therapy. J. Control. Release, 2013, 172(1), 118-127.
[http://dx.doi.org/10.1016/j.jconrel.2013.07.029] [PMID: 23933522]
[112]
Yin, T.; Wang, P.; Zheng, R.; Zheng, B.; Cheng, D.; Zhang, X.; Shuai, X. Nanobubbles for enhanced ultrasound imaging of tumors. Int. J. Nanomedicine, 2012, 7, 895-904.
[PMID: 22393289]
[113]
Ilbasmis-Tamer, S.; Unsal, H.; Tugcu-Demiroz, F.; Kalaycioglu, G.D.; Degim, I.T.; Aydogan, N. Stimuli-responsive lipid nanotubes in gel formulations for the delivery of doxorubicin. Colloids Surf. B Biointerfaces, 2016, 143, 406-414.
[http://dx.doi.org/10.1016/j.colsurfb.2016.03.070] [PMID: 27037777]
[114]
Fan, X.; Wang, L.; Guo, Y.; Tong, H.; Li, L.; Ding, J.; Huang, H. Experimental investigation of the penetration of ultrasound nanobubbles in a gastric cancer xenograft. Nanotechnology, 2013, 24(32)325102
[http://dx.doi.org/10.1088/0957-4484/24/32/325102] [PMID: 23868030]
[115]
Xie, F.; Yao, N.; Qin, Y.; Zhang, Q.; Chen, H.; Yuan, M.; Tang, J.; Li, X.; Fan, W.; Zhang, Q.; Wu, Y.; Hai, L.; He, Q. Investigation of glucose-modified liposomes using polyethylene glycols with different chain lengths as the linkers for brain targeting. Int. J. Nanomedicine, 2012, 7, 163-175.
[http://dx.doi.org/10.2147/IJN.S23771] [PMID: 22275832]
[116]
Hilditch, L.; Matadeen, R.; Goldstone, D.C.; Rosenthal, P.B.; Taylor, I.A.; Stoye, J.P. Ordered assembly of murine leukemia virus capsid protein on lipid nanotubes directs specific binding by the restriction factor, Fv1. Proc. Natl. Acad. Sci. USA, 2011, 108(14), 5771-5776.
[http://dx.doi.org/10.1073/pnas.1100118108] [PMID: 21436027]
[117]
Yao, Y.; Fan, L.; Shi, Y.; Odsbu, I.; Morigen, A spatial control for correct timing of gene expression during the Escherichia coli cell cycle. Genes (Basel), 2017, 8(1)
[http://dx.doi.org/10.3390/genes8010001]
[118]
Gao, S.; Cheng, X.; Li, J. Lipid nanobubbles as an ultrasound-triggered artesunate delivery system for imaging-guided, tumor-targeted chemotherapy. OncoTargets Ther., 2019, 12, 1841-1850.
[http://dx.doi.org/10.2147/OTT.S190208] [PMID: 30881036]
[119]
Fan, X.; Guo, Y.; Wang, L.; Xiong, X.; Zhu, L.; Fang, K. Diagnosis of prostate cancer using anti-PSMA aptamer A10-3.2-oriented lipid nanobubbles. Int. J. Nanomedicine, 2016, 11, 3939-3950.
[http://dx.doi.org/10.2147/IJN.S112951] [PMID: 27574424]
[120]
Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: classification, preparation, and applications. Nanoscale Res. Lett., 2013, 8(1), 102.
[http://dx.doi.org/10.1186/1556-276X-8-102] [PMID: 23432972]
[121]
Hagimori, M.; Chinda, Y.; Suga, T.; Yamanami, K.; Kato, N.; Inamine, T.; Fuchigami, Y.; Kawakami, S. Synthesis of high functionality and quality mannose-grafted lipids to produce macrophage-targeted liposomes. Eur. J. Pharm. Sci., 2018, 123, 153-161.
[http://dx.doi.org/10.1016/j.ejps.2018.07.036] [PMID: 30030100]
[122]
Chiang, Y-T.; Lyu, S-Y.; Wen, Y-H.; Lo, C-L. Preparation and characterization of electrostatically crosslinked polymerliposomes in anticancer therapy. Int. J. Mol. Sci., 2018, 19(6), 1615.
[http://dx.doi.org/10.3390/ijms19061615]
[123]
Deshpande, P.; Jhaveri, A.; Pattni, B.; Biswas, S.; Torchilin, V. Transferrin and octaarginine modified dual-functional liposomes with improved cancer cell targeting and enhanced intracellular delivery for the treatment of ovarian cancer. Drug Deliv., 2018, 25(1), 517-532.
[http://dx.doi.org/10.1080/10717544.2018.1435747] [PMID: 29433357]
[124]
Dan, N. Vesicle-based drug carriers: Liposomes, polymersomes, and niosomes.Design and Development of New Nanocarriers; Grumezescu, A.M., Ed.; William Andrew Publishing, 2018, pp. 1-55.
[http://dx.doi.org/10.1016/B978-0-12-813627-0.00001-6]
[125]
Bozzuto, G.; Molinari, A. Liposomes as nanomedical devices. Int. J. Nanomedicine, 2015, 10, 975-999.
[http://dx.doi.org/10.2147/IJN.S68861] [PMID: 25678787]
[126]
Ordikhani, F.; Erdem Arslan, M.; Marcelo, R.; Sahin, I.; Grigsby, P.; Schwarz, J.K.; Azab, A.K. Drug delivery approaches for the treatment of cervical cancer. Pharmaceutics, 2016, 8(3), E23
[http://dx.doi.org/10.3390/pharmaceutics8030023] [PMID: 27447664]
[127]
Caddeo, C.; Pucci, L.; Gabriele, M.; Carbone, C.; Fernàndez-Busquets, X.; Valenti, D.; Pons, R.; Vassallo, A.; Fadda, A.M.; Manconi, M. Stability, biocompatibility and antioxidant activity of PEG-modified liposomes containing resveratrol. Int. J. Pharm., 2018, 538(1-2), 40-47.
[http://dx.doi.org/10.1016/j.ijpharm.2017.12.047] [PMID: 29294324]
[128]
Sawant, R.R.; Torchilin, V.P. Liposomes as ‘smart’ pharmaceutical nanocarriers. Soft Matter, 2010, 6(17), 4026-4044.
[http://dx.doi.org/10.1039/b923535n]
[129]
Tang, M.; Svirskis, D.; Leung, E.; Kanamala, M.; Wang, H.; Wu, Z. Can intracellular drug delivery using hyaluronic acid functionalised pH-sensitive liposomes overcome gemcitabine resistance in pancreatic cancer? J. Control. Release, 2019, 305, 89-100.
[http://dx.doi.org/10.1016/j.jconrel.2019.05.018] [PMID: 31096017]
[130]
Sun, Y.; Li, X.; Zhang, L.; Liu, X.; Jiang, B.; Long, Z.; Jiang, Y. Cell permeable NBD peptide-modified liposomes by hyaluronic acid coating for the synergistic targeted therapy of metastatic inflammatory breast cancer. Mol. Pharm., 2019, 16(3), 1140-1155.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b01123] [PMID: 30668131]
[131]
Riaz, M.K.; Zhang, X.; Wong, K.H.; Chen, H.; Liu, Q.; Chen, X.; Zhang, G.; Lu, A.; Yang, Z. Pulmonary delivery of transferrin receptors targeting peptide surface-functionalized liposomes augments the chemotherapeutic effect of quercetin in lung cancer therapy. Int. J. Nanomedicine, 2019, 14, 2879-2902.
[http://dx.doi.org/10.2147/IJN.S192219] [PMID: 31118613]
[132]
Marengo, A.; Forciniti, S.; Dando, I.; Dalla Pozza, E.; Stella, B.; Tsapis, N.; Yagoubi, N.; Fanelli, G.; Fattal, E.; Heeschen, C.; Palmieri, M.; Arpicco, S. Pancreatic cancer stem cell proliferation is strongly inhibited by diethyldithiocarbamate-copper complex loaded into hyaluronic acid decorated liposomes. Biochim. Biophys. Acta, Gen. Subj., 2019, 1863(1), 61-72.
[http://dx.doi.org/10.1016/j.bbagen.2018.09.018] [PMID: 30267751]
[133]
Zhang, L.; Cui, H. HAase-sensitive dual-targeting irinotecan liposomes enhance the therapeutic efficacy of lung cancer in animals. Nanotheranostics, 2018, 2(3), 280-294.
[http://dx.doi.org/10.7150/ntno.25555] [PMID: 29977740]
[134]
Wu, M.; Huang, T.; Wang, J.; Chen, P.; Mi, W.; Ying, Y.; Wang, H.; Zhao, D.; Huang, S. Antilung cancer effect of ergosterol and cisplatin-loaded liposomes modified with cyclic arginine-glycine-aspartic acid and octa-arginine peptides. Medicine (Baltimore), 2018, 97(33)e11916
[http://dx.doi.org/10.1097/MD.0000000000011916] [PMID: 30113492]
[135]
Wen, X.; Li, J.; Cai, D.; Yue, L.; Wang, Q.; Zhou, L.; Fan, L.; Sun, J.; Wu, Y. Anticancer efficacy of targeted shikonin liposomes modified with RGD in breast cancer cells. Molecules, 2018, 23(2)E268
[http://dx.doi.org/10.3390/molecules23020268] [PMID: 29382149]
[136]
Tian, Y.; Zhang, H.; Qin, Y.; Li, D.; Liu, Y.; Wang, H.; Gan, L. Overcoming drug-resistant lung cancer by paclitaxel-loaded hyaluronic acid-coated liposomes targeted to mitochondria. Drug Dev. Ind. Pharm., 2018, 44(12), 2071-2082.
[http://dx.doi.org/10.1080/03639045.2018.1512613] [PMID: 30112929]
[137]
Sun, X.; Chen, Y.; Zhao, H.; Qiao, G.; Liu, M.; Zhang, C.; Cui, D.; Ma, L. Dual-modified cationic liposomes loaded with paclitaxel and survivin siRNA for targeted imaging and therapy of cancer stem cells in brain glioma. Drug Deliv., 2018, 25(1), 1718-1727.
[http://dx.doi.org/10.1080/10717544.2018.1494225] [PMID: 30269613]
[138]
Sesarman, A.; Tefas, L.; Sylvester, B.; Licarete, E.; Rauca, V.; Luput, L.; Patras, L.; Banciu, M.; Porfire, A. Anti-angiogenic and anti-inflammatory effects of long-circulating liposomes co-encapsulating curcumin and doxorubicin on C26 murine colon cancer cells. Pharmacol. Rep., 2018, 70(2), 331-339.
[http://dx.doi.org/10.1016/j.pharep.2017.10.004] [PMID: 29477042]
[139]
Patil, Y.; Shmeeda, H.; Amitay, Y.; Ohana, P.; Kumar, S.; Gabizon, A. Targeting of folate-conjugated liposomes with co-entrapped drugs to prostate cancer cells via prostate-specific membrane antigen (PSMA). Nanomedicine (Lond.), 2018, 14(4), 1407-1416.
[http://dx.doi.org/10.1016/j.nano.2018.04.011] [PMID: 29680672]
[140]
Rocca, A.; Cecconetto, L.; Passardi, A.; Melegari, E.; Andreis, D.; Monti, M.; Maltoni, R.; Sarti, S.; Pietri, E.; Schirone, A.; Fabbri, F.; Donati, C.; Nanni, O.; Fedeli, A.; Faedi, M.; Amadori, D. Phase Ib dose-finding trial of lapatinib plus pegylated liposomal doxorubicin in advanced HER2-positive breast cancer. Cancer Chemother. Pharmacol., 2017, 79(5), 863-871.
[http://dx.doi.org/10.1007/s00280-017-3279-8] [PMID: 28341957]
[141]
Giovinazzo, H.; Kumar, P.; Sheikh, A.; Brooks, K.M.; Ivanovic, M.; Walsh, M.; Caron, W.P.; Kowalsky, R.J.; Song, G.; Whitlow, A.; Clarke-Pearson, D.L.; Brewster, W.R.; Van Le, L.; Zamboni, B.A.; Bae-Jump, V.; Gehrig, P.A.; Zamboni, W.C. Technetium Tc 99m sulfur colloid phenotypic probe for the pharmacokinetics and pharmacodynamics of PEGylated liposomal doxorubicin in women with ovarian cancer. Cancer Chemother. Pharmacol., 2016, 77(3), 565-573.
[http://dx.doi.org/10.1007/s00280-015-2945-y] [PMID: 26822231]
[142]
Chastagner, P.; Devictor, B.; Geoerger, B.; Aerts, I.; Leblond, P.; Frappaz, D.; Gentet, J-C.; Bracard, S.; André, N. Phase I study of non-pegylated liposomal doxorubicin in children with recurrent/refractory high-grade glioma. Cancer Chemother. Pharmacol., 2015, 76(2), 425-432.
[http://dx.doi.org/10.1007/s00280-015-2781-0] [PMID: 26115930]
[143]
Lee, H. Shields, A.F.; Siegel, B.A.; Miller, K.D.; Krop, I.; Ma, C.X.; LoRusso, P.M.; Munster, P.N.; Campbell, K.; Gaddy, D.F.; Leonard, S.C.; Geretti, E.; Blocker, S.J.; Kirpotin, D.B.; Moyo, V.; Wickham, T.J.; Hendriks, B.S. Cu-MM-302 positron emission tomography quantifies variability of enhanced permeability and retention of nanoparticles in relation to treatment response in patients with metastatic breast cancer. Clin. Cancer Res., 2017, 23(15), 4190.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-3193] [PMID: 28298546]
[144]
Lyon, P.C.; Gray, M.D.; Mannaris, C.; Folkes, L.K.; Stratford, M.; Campo, L.; Chung, D.Y.F.; Scott, S.; Anderson, M.; Goldin, R.; Carlisle, R.; Wu, F.; Middleton, M.R.; Gleeson, F.V.; Coussios, C.C. Safety and feasibility of ultrasound-triggered targeted drug delivery of doxorubicin from thermosensitive liposomes in liver tumours (TARDOX): a single-centre, open-label, phase 1 trial. Lancet Oncol., 2018, 19(8), 1027-1039.
[http://dx.doi.org/10.1016/S1470-2045(18)30332-2] [PMID: 30001990]
[145]
Lu, B.; Sun, L.; Yan, X.; Ai, Z.; Xu, J. Intratumoral chemotherapy with paclitaxel liposome combined with systemic chemotherapy: a new method of neoadjuvant chemotherapy for stage III unresectable non-small cell lung cancer. Med. Oncol., 2015, 32(1), 345.
[http://dx.doi.org/10.1007/s12032-014-0345-5] [PMID: 25429832]
[146]
Lorusso, V.; Giotta, F.; Bordonaro, R.; Maiello, E.; Del Prete, S.; Gebbia, V.; Filippelli, G.; Pisconti, S.; Cinieri, S.; Romito, S.; Riccardi, F.; Forcignanò, R.; Ciccarese, M.; Petrucelli, L.; Saracino, V.; Lupo, L.I.; Gambino, A.; Leo, S.; Colucci, G. Gruppo Oncologico Dell’Italia Meridionale. Non-pegylated liposome-encapsulated doxorubicin citrate plus cyclophosphamide or vinorelbine in metastatic breast cancer not previously treated with chemotherapy:a multicenter phase III study. Int. J. Oncol., 2014, 45(5), 2137-2142.
[http://dx.doi.org/10.3892/ijo.2014.2604] [PMID: 25176223]
[147]
Wang-Gillam, A.; Li, C-P.; Bodoky, G.; Dean, A.; Shan, Y-S.; Jameson, G.; Macarulla, T.; Lee, K-H.; Cunningham, D.; Blanc, J.F.; Hubner, R.A.; Chiu, C-F.; Schwartsmann, G.; Siveke, J.T.; Braiteh, F.; Moyo, V.; Belanger, B.; Dhindsa, N.; Bayever, E.; Von Hoff, D.D.; Chen, L-T.; Adoo, C.; Anderson, T.; Asselah, J.; Azambuja, A.; Bampton, C.; Barrios, C.H.; Bekaii-Saab, T.; Bohuslav, M.; Chang, D.; Chen, J-S.; Chen, Y-C.; Choi, H.J.; Chung, I.J.; Chung, V.; Csoszi, T.; Cubillo, A.; DeMarco, L.; de Wit, M.; Dragovich, T.; Edenfield, W.; Fein, L.E.; Franke, F.; Fuchs, M.; Gonzales-Cruz, V.; Gozza, A.; Fernando, R.H.; Iaffaioli, R.; Jakesova, J.; Kahan, Z.; Karimi, M.; Kim, J.S.; Korbenfeld, E.; Lang, I.; Lee, F-C.; Lee, K-D.; Lipton, L.; Ma, W.W.; Mangel, L.; Mena, R.; Palmer, D.; Pant, S.; Park, J.O.; Piacentini, P.; Pelzer, U.; Plazas, J.G.; Prasad, C.; Rau, K-M.; Raoul, J-L.; Richards, D.; Ross, P.; Schlittler, L.; Smakal, M.; Stahalova, V.; Sternberg, C.; Seufferlein, T.; Tebbutt, N.; Vinholes, J.J.; Wadlow, R.; Wenczl, M.; Wong, M. NAPOLI-1 Study Group. Nanoliposomal irinotecan with fluorouracil and folinic acid in metastatic pancreatic cancer after previous gemcitabine-based therapy (NAPOLI-1): a global, randomised, open-label, phase 3 trial. Lancet, 2016, 387(10018), 545-557.
[http://dx.doi.org/10.1016/S0140-6736(15)00986-1] [PMID: 26615328]
[148]
Clarke, J.L.; Molinaro, A.M.; Cabrera, J.R.; DeSilva, A.A.; Rabbitt, J.E.; Prey, J.; Drummond, D.C.; Kim, J.; Noble, C.; Fitzgerald, J.B.; Chang, S.M.; Butowski, N.A.; Taylor, J.W.; Park, J.W.; Prados, M.D. A phase 1 trial of intravenous liposomal irinotecan in patients with recurrent high-grade glioma. Cancer Chemother. Pharmacol., 2017, 79(3), 603-610.
[http://dx.doi.org/10.1007/s00280-017-3247-3] [PMID: 28233053]
[149]
Beg, M.S.; Brenner, A.J.; Sachdev, J.; Borad, M.; Kang, Y-K.; Stoudemire, J.; Smith, S.; Bader, A.G.; Kim, S.; Hong, D.S. Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors. Invest. New Drugs, 2017, 35(2), 180-188.
[http://dx.doi.org/10.1007/s10637-016-0407-y] [PMID: 27917453]
[150]
Yurgel, V.; Collares, T.; Seixas, F. Developments in the use of nanocapsules in oncology. Braz. J. Med. Biol. Res., 2013, 46(6), 486-501.
[http://dx.doi.org/10.1590/1414-431X20132643] [PMID: 23802234]
[151]
Moysan, E.; González-Fernández, Y.; Lautram, N.; Béjaud, J.; Bastiat, G.; Benoit, J.P. An innovative hydrogel of gemcitabine-loaded lipid nanocapsules: when the drug is a key player of the nanomedicine structure. Soft Matter, 2014, 10(11), 1767-1777.
[http://dx.doi.org/10.1039/c3sm52781f] [PMID: 24652455]
[152]
Tsakiris, N.; Papavasileiou, M.; Bozzato, E.; Lopes, A.; Vigneron, A.M.; Préat, V. Combinational drug-loaded lipid nanocapsules for the treatment of cancer. Int. J. Pharm., 2019, 569118588
[http://dx.doi.org/10.1016/j.ijpharm.2019.118588] [PMID: 31377406]
[153]
Lollo, G.; Ullio-Gamboa, G.; Fuentes, E.; Matha, K.; Lautram, N.; Benoit, J-P. In vitro anti-cancer activity and pharmacokinetic evaluation of curcumin-loaded lipid nanocapsules. Mater. Sci. Eng. C, 2018, 91, 859-867.
[http://dx.doi.org/10.1016/j.msec.2018.06.014] [PMID: 30033321]
[154]
Hirsjärvi, S.; Belloche, C.; Hindré, F.; Garcion, E.; Benoit, J-P. Tumour targeting of lipid nanocapsules grafted with cRGD peptides. Eur. J. Pharm. Biopharm., 2014, 87(1), 152-159.
[http://dx.doi.org/10.1016/j.ejpb.2013.12.006] [PMID: 24361535]
[155]
Lemaire, L.; Bastiat, G.; Franconi, F.; Lautram, N.; Duong Thi Dan, T.; Garcion, E.; Saulnier, P.; Benoit, J.P. Perfluorocarbon-loaded lipid nanocapsules as oxygen sensors for tumor tissue pO2 assessment. Eur. J. Pharm. Biopharm., 2013, 84(3), 479-486.
[http://dx.doi.org/10.1016/j.ejpb.2013.01.003] [PMID: 23352843]
[156]
Lainé, A-L.; Adriaenssens, E.; Vessières, A.; Jaouen, G.; Corbet, C.; Desruelles, E.; Pigeon, P.; Toillon, R-A.; Passirani, C. The in vivo performance of ferrocenyl tamoxifen lipid nanocapsules in xenografted triple negative breast cancer. Biomaterials, 2013, 34(28), 6949-6956.
[http://dx.doi.org/10.1016/j.biomaterials.2013.05.065] [PMID: 23777919]
[157]
Montigaud, Y.; Ucakar, B.; Krishnamachary, B.; Bhujwalla, Z.M.; Feron, O.; Préat, V.; Danhier, F.; Gallez, B.; Danhier, P. Optimized acriflavine-loaded lipid nanocapsules as a safe and effective delivery system to treat breast cancer. Int. J. Pharm., 2018, 551(1-2), 322-328.
[http://dx.doi.org/10.1016/j.ijpharm.2018.09.034] [PMID: 30236645]
[158]
Resnier, P.; Galopin, N.; Sibiril, Y.; Clavreul, A.; Cayon, J.; Briganti, A.; Legras, P.; Vessières, A.; Montier, T.; Jaouen, G.; Benoit, J-P.; Passirani, C. Efficient ferrocifen anticancer drug and Bcl-2 gene therapy using lipid nanocapsules on human melanoma xenograft in mouse. Pharmacol. Res., 2017, 126, 54-65.
[http://dx.doi.org/10.1016/j.phrs.2017.01.031] [PMID: 28159700]
[159]
Kim, J.; Ramasamy, T.; Choi, J.Y.; Kim, S.T.; Youn, Y.S.; Choi, H-G.; Yong, C.S.; Kim, J.O. PEGylated polypeptide lipid nanocapsules to enhance the anticancer efficacy of erlotinib in non-small cell lung cancer. Colloids Surf. B Biointerfaces, 2017, 150, 393-401.
[http://dx.doi.org/10.1016/j.colsurfb.2016.11.002] [PMID: 27825759]
[160]
Sasso, M.S.; Lollo, G.; Pitorre, M.; Solito, S.; Pinton, L.; Valpione, S.; Bastiat, G.; Mandruzzato, S.; Bronte, V.; Marigo, I.; Benoit, J-P. Low dose gemcitabine-loaded lipid nanocapsules target monocytic myeloid-derived suppressor cells and potentiate cancer immunotherapy. Biomaterials, 2016, 96, 47-62.
[http://dx.doi.org/10.1016/j.biomaterials.2016.04.010] [PMID: 27135716]
[161]
Barras, A.; Boussekey, L.; Courtade, E.; Boukherroub, R. Hypericin-loaded lipid nanocapsules for photodynamic cancer therapy in vitro. Nanoscale, 2013, 5(21), 10562-10572.
[http://dx.doi.org/10.1039/c3nr02724d] [PMID: 24056802]
[162]
Barani, M.; Mirzaei, M.; Torkzadeh-Mahani, M.; Adeli-Sardou, M. Evaluation of Carum-loaded niosomes on breast cancer cells: Physicochemical properties, in vitro cytotoxicity, flow cytometric, DNA fragmentation and cell migration assay. Sci. Rep., 2019, 9(1), 7139-7139.
[http://dx.doi.org/10.1038/s41598-019-43755-w] [PMID: 31073144]
[163]
Ag Seleci, D.; Maurer, V.; Stahl, F.; Scheper, T.; Garnweitner, G. Rapid microfluidic preparation of niosomes for targeted drug delivery. Int. J. Mol. Sci., 2019, 20(19), 4696.
[http://dx.doi.org/10.3390/ijms20194696] [PMID: 31546717]
[164]
Sato, Y.; Note, Y.; Maeki, M.; Kaji, N.; Baba, Y.; Tokeshi, M.; Harashima, H. Elucidation of the physicochemical properties and potency of siRNA-loaded small-sized lipid nanoparticles for siRNA delivery. J. Control. Release, 2016, 229, 48-57.
[http://dx.doi.org/10.1016/j.jconrel.2016.03.019] [PMID: 26995758]
[165]
Lee, J.B.; Zhang, K.; Tam, Y.Y.C.; Quick, J.; Tam, Y.K.; Lin, P.J.C.; Chen, S.; Liu, Y.; Nair, J.K.; Zlatev, I.; Rajeev, K.G.; Manoharan, M.; Rennie, P.S.; Cullis, P.R. A Glu-urea-Lys ligandconjugated lipid nanoparticle/siRNA system inhibits androgen receptor expression in vivo. Mol. Ther. Nucleic Acids,, 2016., 5e348.
[http://dx.doi.org/10.1038/mtna.2016.43] [PMID: 28131285]
[166]
Lee, J.; Saw, P.E.; Gujrati, V.; Lee, Y.; Kim, H.; Kang, S.; Choi, M.; Kim, J-I.; Jon, S. Mono-arginine cholesterol-based small lipid nanoparticles as a systemic siRNA delivery platform for effective cancer therapy. Theranostics, 2016, 6(2), 192-203.
[http://dx.doi.org/10.7150/thno.13657] [PMID: 26877778]
[167]
Zhao, X.; Li, F.; Li, Y.; Wang, H.; Ren, H.; Chen, J.; Nie, G.; Hao, J. Co-delivery of HIF1α siRNA and gemcitabine via biocompatible lipid-polymer hybrid nanoparticles for effective treatment of pancreatic cancer. Biomaterials, 2015, 46, 13-25.
[http://dx.doi.org/10.1016/j.biomaterials.2014.12.028] [PMID: 25678112]
[168]
Suñé-Pou, M.; Prieto-Sánchez, S.; El Yousfi, Y.; Boyero-Corral, S.; Nardi-Ricart, A.; Nofrerias-Roig, I.; Pérez-Lozano, P.; García-Montoya, E.; Miñarro-Carmona, M.; Ticó, J.R.; Suñé-Negre, J.M.; Hernández-Munain, C.; Suñé, C. Cholesteryl oleate-loaded cationic solid lipid nanoparticles as carriers for efficient gene-silencing therapy. Int. J. Nanomedicine, 2018, 13, 3223-3233.
[http://dx.doi.org/10.2147/IJN.S158884] [PMID: 29881274]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy