Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Viral MicroRNAs: Interfering the Interferon Signaling

Author(s): Imran Ahmad, Araceli Valverde, Hasan Siddiqui, Samantha Schaller and Afsar R. Naqvi*

Volume 26, Issue 4, 2020

Page: [446 - 454] Pages: 9

DOI: 10.2174/1381612826666200109181238

Price: $65

Abstract

Interferons are secreted cytokines with potent antiviral, antitumor and immunomodulatory functions. As the first line of defense against viruses, this pathway restricts virus infection and spread. On the contrary, viruses have evolved ingenious strategies to evade host immune responses including the interferon pathway. Multiple families of viruses, in particular, DNA viruses, encode microRNA (miR) that are small, non-protein coding, regulatory RNAs. Virus-derived miRNAs (v-miR) function by targeting host and virus-encoded transcripts and are critical in shaping host-pathogen interaction. The role of v-miRs in viral pathogenesis is emerging as demonstrated by their function in subverting host defense mechanisms and regulating fundamental biological processes such as cell survival, proliferation, modulation of viral life-cycle phase. In this review, we will discuss the role of v-miRs in the suppression of host genes involved in the viral nucleic acid detection, JAK-STAT pathway, and cytokine-mediated antiviral gene activation to favor viral replication and persistence. This information has yielded new insights into our understanding of how v-miRs promote viral evasion of host immunity and likely provide novel antiviral therapeutic targets.

Keywords: Viruses, viral microRNA, interferons, post-transcriptional silencing, immune response, JAK-STAT.

[1]
Wiedenheft B, Sternberg SH, Doudna JA. RNA-guided genetic silencing systems in bacteria and archaea. Nature 2012; 482(7385): 331-8.
[http://dx.doi.org/10.1038/nature10886] [PMID: 22337052]
[2]
Rath D, Amlinger L, Rath A, Lundgren M. The CRISPR-Cas immune system: biology, mechanisms and applications. Biochimie 2015; 117: 119-28.
[http://dx.doi.org/10.1016/j.biochi.2015.03.025] [PMID: 25868999]
[3]
Guo Z, Li Y, Ding SW. Small RNA-based antimicrobial immunity. Nat Rev Immunol 2019; 19(1): 31-44.
[http://dx.doi.org/10.1038/s41577-018-0071-x] [PMID: 30301972]
[4]
Blevins T, Rajeswaran R, Shivaprasad PV, et al. Four plant Dicers mediate viral small RNA biogenesis and DNA virus induced silencing. Nucleic Acids Res 2006; 34(21): 6233-46.
[http://dx.doi.org/10.1093/nar/gkl886] [PMID: 17090584]
[5]
Secombes CJ, Zou J. Evolution of Interferons and Interferon Receptors. Front Immunol 2017; 8: 209.
[http://dx.doi.org/10.3389/fimmu.2017.00209] [PMID: 28303139]
[6]
Katze MG, He Y, Gale M Jr. Viruses and interferon: a fight for supremacy. Nat Rev Immunol 2002; 2(9): 675-87.
[http://dx.doi.org/10.1038/nri888] [PMID: 12209136]
[7]
Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116(2): 281-97.
[http://dx.doi.org/10.1016/S0092-8674(04)00045-5] [PMID: 14744438]
[8]
Naqvi AR, Islam MN, Choudhury NR, Haq QM. The fascinating world of RNA interference. Int J Biol Sci 2009; 5(2): 97-117.
[http://dx.doi.org/10.7150/ijbs.5.97] [PMID: 19173032]
[9]
Plaisance-Bonstaff K, Renne R. Viral miRNAs. Methods Mol Biol 2011; 721: 43-66.
[http://dx.doi.org/10.1007/978-1-61779-037-9_3] [PMID: 21431678]
[10]
Naqvi AR. Immunomodulatory roles of human herpesvirus-encoded microRNA in host-virus interaction. Rev Med Virol 2019. e2081
[http://dx.doi.org/10.1002/rmv.2081] [PMID: 31432608]
[11]
Fabian MR, Sonenberg N, Filipowicz W. Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 2010; 79: 351-79.
[http://dx.doi.org/10.1146/annurev-biochem-060308-103103] [PMID: 20533884]
[12]
Naqvi AR, Shango J, Seal A, Shukla D, Nares S. Herpesviruses and MicroRNAs: New Pathogenesis Factors in Oral Infection and Disease? Front Immunol 2018; 9: 2099.
[http://dx.doi.org/10.3389/fimmu.2018.02099] [PMID: 30319604]
[13]
Auvinen E. Diagnostic and Prognostic Value of MicroRNA in Viral Diseases. Mol Diagn Ther 2017; 21(1): 45-57.
[http://dx.doi.org/10.1007/s40291-016-0236-x] [PMID: 27682074]
[14]
Fan C, Tang Y, Wang J, et al. The emerging role of Epstein-Barr virus encoded microRNAs in nasopharyngeal carcinoma. J Cancer 2018; 9(16): 2852-64.
[http://dx.doi.org/10.7150/jca.25460] [PMID: 30123354]
[15]
Zhang JM, An J. Cytokines, inflammation, and pain. Int Anesthesiol Clin 2007; 45(2): 27-37.
[http://dx.doi.org/10.1097/AIA.0b013e318034194e] [PMID: 17426506]
[16]
Isaacs A, Lindenmann J. Virus interference. I. The interferon. Proc R Soc Lond B Biol Sci 1957; 147(927): 258-67.
[http://dx.doi.org/10.1098/rspb.1957.0048] [PMID: 13465720]
[17]
Chen K, Liu J, Cao X. Regulation of type I interferon signaling in immunity and inflammation: A comprehensive review. J Autoimmun 2017; 83: 1-11.
[http://dx.doi.org/10.1016/j.jaut.2017.03.008] [PMID: 28330758]
[18]
Pestka S, Krause CD, Walter MR. Interferons, interferon-like cytokines, and their receptors. Immunol Rev 2004; 202: 8-32.
[http://dx.doi.org/10.1111/j.0105-2896.2004.00204.x] [PMID: 15546383]
[19]
Le Page C, Génin P, Baines MG, Hiscott J. Interferon activation and innate immunity. Rev Immunogenet 2000; 2(3): 374-86.
[PMID: 11256746]
[20]
Parkin J, Cohen B. An overview of the immune system. Lancet 2001; 357(9270): 1777-89.
[http://dx.doi.org/10.1016/S0140-6736(00)04904-7] [PMID: 11403834]
[21]
Orchansky P, Novick D, Fischer DG, Rubinstein M. Type I and Type II interferon receptors. J Interferon Res 1984; 4(2): 275-82.
[http://dx.doi.org/10.1089/jir.1984.4.275] [PMID: 6086780]
[22]
Uzé G, Schreiber G, Piehler J, Pellegrini S. The receptor of the type I interferon family. Curr Top Microbiol Immunol 2007; 316: 71-95.
[http://dx.doi.org/10.1007/978-3-540-71329-6_5] [PMID: 17969444]
[23]
Wack A, Terczyńska-Dyla E, Hartmann R. Guarding the frontiers: the biology of type III interferons. Nat Immunol 2015; 16(8): 802-9.
[http://dx.doi.org/10.1038/ni.3212] [PMID: 26194286]
[24]
O’Shea JJ, Schwartz DM, Villarino AV, Gadina M, McInnes IB, Laurence A. The JAK-STAT pathway: impact on human disease and therapeutic intervention. Annu Rev Med 2015; 66: 311-28.
[http://dx.doi.org/10.1146/annurev-med-051113-024537] [PMID: 25587654]
[25]
Haan C, Kreis S, Margue C, Behrmann I. Jaks and cytokine receptors--an intimate relationship. Biochem Pharmacol 2006; 72(11): 1538-46.
[http://dx.doi.org/10.1016/j.bcp.2006.04.013] [PMID: 16750817]
[26]
Ragimbeau J, Dondi E, Alcover A, Eid P, Uzé G, Pellegrini S. The tyrosine kinase Tyk2 controls IFNAR1 cell surface expression. EMBO J 2003; 22(3): 537-47.
[http://dx.doi.org/10.1093/emboj/cdg038] [PMID: 12554654]
[27]
Schindler C, Shuai K, Prezioso VR, Darnell JE Jr. Interferon-dependent tyrosine phosphorylation of a latent cytoplasmic transcription factor. Science 1992; 257(5071): 809-13.
[http://dx.doi.org/10.1126/science.1496401] [PMID: 1496401]
[28]
Heim MH, Kerr IM, Stark GR, Darnell JE Jr. Contribution of STAT SH2 groups to specific interferon signaling by the Jak-STAT pathway. Science 1995; 267(5202): 1347-9.
[http://dx.doi.org/10.1126/science.7871432] [PMID: 7871432]
[29]
Levy DE, Darnell JE Jr. Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol 2002; 3(9): 651-62.
[http://dx.doi.org/10.1038/nrm909] [PMID: 12209125]
[30]
Fu XY, Kessler DS, Veals SA, Levy DE, Darnell JE Jr. ISGF3, the transcriptional activator induced by interferon α, consists of multiple interacting polypeptide chains. Proc Natl Acad Sci USA 1990; 87(21): 8555-9.
[http://dx.doi.org/10.1073/pnas.87.21.8555] [PMID: 2236065]
[31]
Schindler C, Fu XY, Improta T, Aebersold R, Darnell JE Jr. Proteins of transcription factor ISGF-3: one gene encodes the 91-and 84-kDa ISGF-3 proteins that are activated by interferon α. Proc Natl Acad Sci USA 1992; 89(16): 7836-9.
[http://dx.doi.org/10.1073/pnas.89.16.7836] [PMID: 1502203]
[32]
Shuai K, Schindler C, Prezioso VR, Darnell JE Jr. Activation of transcription by IFN-gamma: tyrosine phosphorylation of a 91-kD DNA binding protein. Science 1992; 258(5089): 1808-12.
[http://dx.doi.org/10.1126/science.1281555] [PMID: 1281555]
[33]
Decker T, Lew DJ, Mirkovitch J, Darnell JE Jr. Cytoplasmic activation of GAF, an IFN-gamma-regulated DNA-binding factor. EMBO J 1991; 10(4): 927-32.
[http://dx.doi.org/10.1002/j.1460-2075.1991.tb08026.x] [PMID: 1901265]
[34]
Decker T, Kovarik P, Meinke A. GAS elements: a few nucleotides with a major impact on cytokine-induced gene expression. J Interferon Cytokine Res 1997; 17(3): 121-34.
[http://dx.doi.org/10.1089/jir.1997.17.121] [PMID: 9085936]
[35]
Huang J, Wang F, Argyris E, et al. Cellular microRNAs contribute to HIV-1 latency in resting primary CD4+ T lymphocytes. Nat Med 2007; 13(10): 1241-7.
[http://dx.doi.org/10.1038/nm1639] [PMID: 17906637]
[36]
Ahluwalia JK, Khan SZ, Soni K, et al. Human cellular microRNA hsa-miR-29a interferes with viral nef protein expression and HIV-1 replication. Retrovirology 2008; 5: 117.
[http://dx.doi.org/10.1186/1742-4690-5-117] [PMID: 19102781]
[37]
Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P. Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science 2005; 309(5740): 1577-81.
[http://dx.doi.org/10.1126/science.1113329] [PMID: 16141076]
[38]
Kasschau KD, Xie Z, Allen E, et al. P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA unction. Dev Cell 2003; 4(2): 205-17.
[http://dx.doi.org/10.1016/S1534-5807(03)00025-X] [PMID: 12586064]
[39]
Aqil M, Naqvi AR, Bano AS, Jameel S. The HIV-1 Nef protein binds argonaute-2 and functions as a viral suppressor of RNA interference. PLoS One 2013; 8(9)e74472
[http://dx.doi.org/10.1371/journal.pone.0074472] [PMID: 24023945]
[40]
Aqil M, Naqvi AR, Mallik S, Bandyopadhyay S, Maulik U, Jameel S. The HIV Nef protein modulates cellular and exosomal miRNA profiles in human monocytic cells. J Extracell Vesicles 2014; 3: 3.
[http://dx.doi.org/10.3402/jev.v3.23129] [PMID: 24678387]
[41]
Sullivan CS, Ganem D. A virus-encoded inhibitor that blocks RNA interference in mammalian cells. J Virol 2005; 79(12): 7371-9.
[http://dx.doi.org/10.1128/JVI.79.12.7371-7379.2005] [PMID: 15919892]
[42]
Moore PS, Boshoff C, Weiss RA, Chang Y. Molecular mimicry of human cytokine and cytokine response pathway genes by KSHV. Science 1996; 274(5293): 1739-44.
[http://dx.doi.org/10.1126/science.274.5293.1739] [PMID: 8939871]
[43]
Slobedman B, Barry PA, Spencer JV, Avdic S, Abendroth A. Virus-encoded homologs of cellular interleukin-10 and their control of host immune function. J Virol 2009; 83(19): 9618-29.
[http://dx.doi.org/10.1128/JVI.01098-09] [PMID: 19640997]
[44]
Vieira P, de Waal-Malefyt R, Dang MN, et al. Isolation and expression of human cytokine synthesis inhibitory factor cDNA clones: homology to Epstein-Barr virus open reading frame BCRFI. Proc Natl Acad Sci USA 1991; 88(4): 1172-6.
[http://dx.doi.org/10.1073/pnas.88.4.1172] [PMID: 1847510]
[45]
Thurmond S, Wang B, Song J, Hai R. Suppression of Type I Interferon Signaling by Flavivirus NS5. Viruses 2018; 10(12)E712
[http://dx.doi.org/10.3390/v10120712] [PMID: 30558110]
[46]
Ronco LV, Karpova AY, Vidal M, Howley PM. Human papillomavirus 16 E6 oncoprotein binds to interferon regulatory factor-3 and inhibits its transcriptional activity. Genes Dev 1998; 12(13): 2061-72.
[http://dx.doi.org/10.1101/gad.12.13.2061] [PMID: 9649509]
[47]
Neznanov N, Chumakov KM, Neznanova L, Almasan A, Banerjee AK, Gudkov AV. Proteolytic cleavage of the p65-RelA subunit of NF-kappaB during poliovirus infection. J Biol Chem 2005; 280(25): 24153-8.
[http://dx.doi.org/10.1074/jbc.M502303200] [PMID: 15845545]
[48]
Naqvi AR, Seal A, Shango J, et al. Herpesvirus-encoded microRNAs detected in human gingiva alter host cell transcriptome and regulate viral infection. Biochim Biophys Acta Gene Regul Mech 2018; 1861(5): 497-508.
[http://dx.doi.org/10.1016/j.bbagrm.2018.03.001] [PMID: 29550353]
[49]
Naqvi AR, Shango J, Seal A, Shukla D, Nares S. Viral miRNAs alter host cell miRNA profiles and modulate innate immune responses. Front Immunol 2018; 9: 433.
[http://dx.doi.org/10.3389/fimmu.2018.00433] [PMID: 29559974]
[50]
Han Z, Liu X, Chen X, et al. miR-H28 and miR-H29 expressed late in productive infection are exported and restrict HSV-1 replication and spread in recipient cells. Proc Natl Acad Sci USA 2016; 113(7): E894-901.
[http://dx.doi.org/10.1073/pnas.1525674113] [PMID: 26831114]
[51]
Yogev O, Henderson S, Hayes MJ, et al. Herpesviruses shape tumour microenvironment through exosomal transfer of viral microRNAs. PLoS Pathog 2017; 13(8)e1006524
[http://dx.doi.org/10.1371/journal.ppat.1006524] [PMID: 28837697]
[52]
Fiorucci G, Chiantore MV, Mangino G, Romeo G. MicroRNAs in virus-induced tumorigenesis and IFN system. Cytokine Growth Factor Rev 2015; 26(2): 183-94.
[http://dx.doi.org/10.1016/j.cytogfr.2014.11.002] [PMID: 25466647]
[53]
Pfeffer S, Zavolan M, Grässer FA, et al. Identification of virus-encoded microRNAs. Science 2004; 304(5671): 734-6.
[http://dx.doi.org/10.1126/science.1096781] [PMID: 15118162]
[54]
Kim DN, Lee SK. Biogenesis of Epstein-Barr virus microRNAs. Mol Cell Biochem 2012; 365(1-2): 203-10.
[http://dx.doi.org/10.1007/s11010-012-1261-7] [PMID: 22350759]
[55]
Pratt ZL, Zhang J, Sugden B. The latent membrane protein 1 (LMP1) oncogene of Epstein-Barr virus can simultaneously induce and inhibit apoptosis in B cells. J Virol 2012; 86(8): 4380-93.
[http://dx.doi.org/10.1128/JVI.06966-11] [PMID: 22318153]
[56]
Cameron JE, Yin Q, Fewell C, et al. Epstein-Barr virus latent membrane protein 1 induces cellular MicroRNA miR-146a, a modulator of lymphocyte signaling pathways. J Virol 2008; 82(4): 1946-58.
[http://dx.doi.org/10.1128/JVI.02136-07] [PMID: 18057241]
[57]
Ersing I, Bernhardt K, Gewurz BE. NF-κB and IRF7 pathway activation by Epstein-Barr virus Latent Membrane Protein 1. Viruses 2013; 5(6): 1587-606.
[http://dx.doi.org/10.3390/v5061587] [PMID: 23793113]
[58]
Huye LE, Ning S, Kelliher M, Pagano JS. Interferon regulatory factor 7 is activated by a viral oncoprotein through RIP-dependent ubiquitination. Mol Cell Biol 2007; 27(8): 2910-8.
[http://dx.doi.org/10.1128/MCB.02256-06] [PMID: 17296724]
[59]
Lo AK, To KF, Lo KW, et al. Modulation of LMP1 protein expression by EBV-encoded microRNAs. Proc Natl Acad Sci USA 2007; 104(41): 16164-9.
[http://dx.doi.org/10.1073/pnas.0702896104] [PMID: 17911266]
[60]
Riley KJ, Rabinowitz GS, Yario TA, Luna JM, Darnell RB, Steitz JA. EBV and human microRNAs co-target oncogenic and apoptotic viral and human genes during latency. EMBO J 2012; 31(9): 2207-21.
[http://dx.doi.org/10.1038/emboj.2012.63] [PMID: 22473208]
[61]
Skalsky RL, Corcoran DL, Gottwein E, et al. The viral and cellular microRNA targetome in lymphoblastoid cell lines. PLoS Pathog 2012; 8(1)e1002484
[http://dx.doi.org/10.1371/journal.ppat.1002484] [PMID: 22291592]
[62]
Skalsky RL, Kang D, Linnstaedt SD, Cullen BR. Evolutionary conservation of primate lymphocryptovirus microRNA targets. J Virol 2014; 88(3): 1617-35.
[http://dx.doi.org/10.1128/JVI.02071-13] [PMID: 24257599]
[63]
Ramakrishnan R, Donahue H, Garcia D, et al. Epstein-Barr virus BART9 miRNA modulates LMP1 levels and affects growth rate of nasal NK T cell lymphomas. PLoS One 2011; 6(11)e27271
[http://dx.doi.org/10.1371/journal.pone.0027271] [PMID: 22102884]
[64]
Lung RW, Tong JH, Sung YM, et al. Modulation of LMP2A expression by a newly identified Epstein-Barr virus-encoded microRNA miR-BART22. Neoplasia 2009; 11(11): 1174-84.
[http://dx.doi.org/10.1593/neo.09888] [PMID: 19881953]
[65]
Shah KM, Stewart SE, Wei W, et al. The EBV-encoded latent membrane proteins, LMP2A and LMP2B, limit the actions of interferon by targeting interferon receptors for degradation. Oncogene 2009; 28(44): 3903-14.
[http://dx.doi.org/10.1038/onc.2009.249] [PMID: 19718044]
[66]
Huang WT, Lin CW. EBV-encoded miR-BART20-5p and miR-BART8 inhibit the IFN-γ-STAT1 pathway associated with disease progression in nasal NK-cell lymphoma. Am J Pathol 2014; 184(4): 1185-97.
[http://dx.doi.org/10.1016/j.ajpath.2013.12.024] [PMID: 24655378]
[67]
Hooykaas MJG, van Gent M, Soppe JA, et al. EBV MicroRNA BART16 Suppresses Type I IFN Signaling. J Immunol 2017; 198(10): 4062-73.
[http://dx.doi.org/10.4049/jimmunol.1501605] [PMID: 28416598]
[68]
Suhara W, Yoneyama M, Kitabayashi I, Fujita T. Direct involvement of CREB-binding protein/p300 in sequence-specific DNA binding of virus-activated interferon regulatory factor-3 holocomplex. J Biol Chem 2002; 277(25): 22304-13.
[http://dx.doi.org/10.1074/jbc.M200192200] [PMID: 11940575]
[69]
Lu Y, Qin Z, Wang J, et al. Epstein-Barr Virus miR-BART6-3p Inhibits the RIG-I Pathway. J Innate Immun 2017; 9(6): 574-86.
[http://dx.doi.org/10.1159/000479749] [PMID: 28877527]
[70]
Huang Y, Chen D, He J, et al. Hcmv-miR-UL112 attenuates NK cell activity by inhibition type I interferon secretion. Immunol Lett 2015; 163(2): 151-6.
[http://dx.doi.org/10.1016/j.imlet.2014.12.003] [PMID: 25530545]
[71]
Li S, Zhu J, Zhang W, et al. Signature microRNA expression profile of essential hypertension and its novel link to human cytomegalovirus infection. Circulation 2011; 124(2): 175-84.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.110.012237] [PMID: 21690488]
[72]
Liang D, Gao Y, Lin X, et al. A human herpesvirus miRNA attenuates interferon signaling and contributes to maintenance of viral latency by targeting IKKε. Cell Res 2011; 21(5): 793-806.
[http://dx.doi.org/10.1038/cr.2011.5] [PMID: 21221132]
[73]
King AMQ, Lefkowitz E, Adams MJ, Carstens EB. Family - Anelloviridae. In: King AMQ, Lefkowitz E, Carstens EB, Eds. Virus Taxonomy. 331-41.
[74]
Nishizawa T, Okamoto H, Konishi K, Yoshizawa H, Miyakawa Y, Mayumi M. A novel DNA virus (TTV) associated with elevated transaminase levels in posttransfusion hepatitis of unknown etiology. Biochem Biophys Res Commun 1997; 241(1): 92-7.
[http://dx.doi.org/10.1006/bbrc.1997.7765] [PMID: 9405239]
[75]
Hino S, Miyata H. Torque teno virus (TTV): current status. Rev Med Virol 2007; 17(1): 45-57.
[http://dx.doi.org/10.1002/rmv.524] [PMID: 17146841]
[76]
Kincaid RP, Burke JM, Cox JC, de Villiers E-M, Sullivan CS. A human torque teno virus encodes a microRNA that inhibits interferon signaling. PLoS Pathog 2013; 9(12)e1003818
[http://dx.doi.org/10.1371/journal.ppat.1003818] [PMID: 24367263]
[77]
Liu Y, Sun J, Zhang H, Wang M, Gao GF, Li X. Ebola virus encodes a miR-155 analog to regulate importin-α5 expression. Cell Mol Life Sci 2016; 73(19): 3733-44.
[http://dx.doi.org/10.1007/s00018-016-2215-0] [PMID: 27094387]
[78]
Chook YM, Blobel G. Karyopherins and nuclear import. Curr Opin Struct Biol 2001; 11(6): 703-15.
[http://dx.doi.org/10.1016/S0959-440X(01)00264-0] [PMID: 11751052]
[79]
Fagerlund R, Mélen K, Kinnunen L, Julkunen I. Arginine/lysine-rich nuclear localization signals mediate interactions between dimeric STATs and importin alpha 5. J Biol Chem 2002; 277(33): 30072-8.
[http://dx.doi.org/10.1074/jbc.M202943200] [PMID: 12048190]
[80]
McBride KM, Banninger G, McDonald C, Reich NC. Regulated nuclear import of the STAT1 transcription factor by direct binding of importin-alpha. EMBO J 2002; 21(7): 1754-63.
[http://dx.doi.org/10.1093/emboj/21.7.1754] [PMID: 11927559]
[81]
Du Y, Bi J, Liu J, et al. 3Cpro of foot-and-mouth disease virus antagonizes the interferon signaling pathway by blocking STAT1/STAT2 nuclear translocation. J Virol 2014; 88(9): 4908-20.
[http://dx.doi.org/10.1128/JVI.03668-13] [PMID: 24554650]
[82]
Melen K, Fagerlund R, Franke J, Kohler M, Kinnunen L, Julkunen I. Importin alpha nuclear localization signal binding sites for STAT1, STAT2, and influenza A virus nucleoprotein. J Biol Chem 2003; 278(30): 28193-200. l
[http://dx.doi.org/10.1074/jbc.M303571200] [PMID: 12740372]
[83]
Wang C, Sun M, Yuan X, et al. Enterovirus 71 suppresses interferon responses by blocking Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling through inducing karyopherin-α1 degradation. J Biol Chem 2017; 292(24): 10262-74.
[http://dx.doi.org/10.1074/jbc.M116.745729] [PMID: 28455446]
[84]
Wang R, Nan Y, Yu Y, Zhang YJ. Porcine reproductive and respiratory syndrome virus Nsp1β inhibits interferon-activated JAK/STAT signal transduction by inducing karyopherin-α1 degradation. J Virol 2013; 87(9): 5219-28.
[http://dx.doi.org/10.1128/JVI.02643-12] [PMID: 23449802]
[85]
Reid SP, Leung LW, Hartman AL, et al. Ebola virus VP24 binds karyopherin α1 and blocks STAT1 nuclear accumulation. J Virol 2006; 80(11): 5156-67.
[http://dx.doi.org/10.1128/JVI.02349-05] [PMID: 16698996]
[86]
Zhong S, Naqvi A, Bair E, Nares S, Khan AA. Viral MicroRNAs Identified in Human Dental Pulp. J Endod 2017; 43(1): 84-9.
[http://dx.doi.org/10.1016/j.joen.2016.10.006] [PMID: 27939730]
[87]
Naqvi AR, Brambila MF, Martínez G, Chapa G, Nares S. Dysregulation of human miRNAs and increased prevalence of HHV miRNAs in obese periodontitis subjects. J Clin Periodontol 2019; 46(1): 51-61.
[http://dx.doi.org/10.1111/jcpe.13040] [PMID: 30499589]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy