Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Toxic Metal Ions Removal from Electroplating Wastewater Using Polymer Chelating Ligands

Author(s): Md L. Rahman*, Mohd S. Sarjadi, Sazmal E. Arshad, Baba Musta, Mohd H. Abdullah, Shaheen M. Sarkar and Emmet J. O'Reilly

Volume 17, Issue 5, 2021

Published on: 08 January, 2020

Page: [640 - 652] Pages: 13

DOI: 10.2174/1573411016666200108153450

Price: $65

Abstract

Background: Empty fruit bunch (EFB) is a type of biomass waste product formed during the production process of palm oil. In the present work, EFB was used to prepare a cellulose-graft-copolymer which can be converted into poly(amidoxime)-poly(hydroxamic acid) ligands suitable for the removal of heavy metals from electroplating wastewater.

Methods and Results: Poly(amidoxime)-poly(hydroxamic acid) ligands were synthesized from the poly(acrylonitrile-co-methyl acrylate) grafted palm cellulose and were analyzed via FT-IR and FESEM. The binding capacity (qe) with the metals ions such as copper (Cu2+), iron (Fe3+), cobalt (Co2+), nickel (Ni2+) and lead (Pb2+) were 341, 290, 284, 204 and 482 mg g-1, respectively at pH 6. The pseudo-first-order kinetic model is fitted with the results confirming heavy metal adsorption. The isotherm study was conducted using a linear plot of the Langmuir isotherm where results were significantly different from the experimental value (maximum adsorption, qe), indicating that adsorption does not occur on a single layer. However, the coefficient of the correlation values obtained using the Freundlich isotherm model was acceptable (R2>0.99), and it was concluded that adsorption was multilayered with some metal ions.

Conclusion: The polymeric ligands synthesized here showed excellent adsorption of heavy metals from electroplating wastewater containing a notable amount of copper and iron metal ions.

Keywords: Adsorption, amidoxime, electroplating wastewater, heavy metals, palm cellulose, Empty Fruit Bunch (EFB).

Graphical Abstract
[1]
Jacob, J.M.; Karthik, C.; Saratale, R.G.; Kumar, S.S.; Prabakar, D.; Kadirvelu, K.; Pugazhendhi, A. Biological approaches to tackle heavy metal pollution: A survey of literature. J. Environ. Manage., 2018, 217, 56-70.
[http://dx.doi.org/10.1016/j.jenvman.2018.03.077] [PMID: 29597108]
[2]
Rahman, M.L.; Sarkarb, S.M.; Farida, E.M.; Arshad, S.E.; Sarjadi, M.S.; Wid, N. Synthesis of tapioca cellulose-based poly(amidoxime)-poly(hydroxamic acid) ligand for removal of heavy metal ions. J. Macromol. Sci. Part B Phys., 2018, 57, 83-99.
[http://dx.doi.org/10.1080/00222348.2018.1432179]
[3]
Wu, W.; Wu, P.; Yang, F.; Sun, D.L.; Zhang, D.X.; Zhou, Y.K. Assessment of heavy metal pollution and human health risks in urban soils around an electronics manufacturing facility. Sci. Total Environ., 2018, 630, 53-61.
[http://dx.doi.org/10.1016/j.scitotenv.2018.02.183] [PMID: 29475113]
[4]
Fu, J.; Zhao, C.; Luo, Y.; Liu, C.; Kyzas, G.Z.; Luo, Y.; Zhao, D.; An, S.; Zhu, H. Heavy metals in surface sediments of the Jialu River, China: their relations to environmental factors. J. Hazard. Mater., 2014, 270, 102-109.
[http://dx.doi.org/10.1016/j.jhazmat.2014.01.044] [PMID: 24561322]
[5]
Hokkanen, S.; Bhatnagar, A.; Sillanpää, M. A review on modification methods to cellulose-based adsorbents to improve adsorption capacity. Water Res., 2016, 91, 156-173.
[http://dx.doi.org/10.1016/j.watres.2016.01.008] [PMID: 26789698]
[6]
Rahman, M.L.; Sarkar, S.M.; Yusoff, M.M. Efficient removal of heavy metals from electroplating wastewater using polymer ligands. Front. Environ. Sci. Eng., 2016, 10, 352-361.
[http://dx.doi.org/10.1007/s11783-015-0783-0]
[7]
Rahman, M.L.; Mandal, B.H.; Sarkar, S.M.; Yusoff, M.M.; Arshad, S.E.; Musta, B. Synthesis of poly(hydroxamic acid) ligand from polymer grafted corn-cob cellulose for transition metals extraction. Polym. Adv. Technol., 2016, 27, 1625-1636.
[http://dx.doi.org/10.1002/pat.3840]
[8]
Pan, Y.; Shi, X.; Cai, P.; Guo, T.; Tong, Z.; Xiao, H. Dye removal from single and binary systems using gel-like bioadsorbent based on functional-modified cellulose. Cellul., 2018, 25, 2559-2575.
[http://dx.doi.org/10.1007/s10570-018-1711-9]
[9]
Lin, G.; Wang, S.; Zhang, L.; Hu, T.; Peng, J.; Cheng, S.; Fu, L. Selective recovery of Au (III) from aqueous solutions using 2-aminothiazole functionalized corn bract as low-cost bioadsorbent. J. Clean. Prod., 2018, 196, 1007-1015.
[http://dx.doi.org/10.1016/j.jclepro.2018.06.168]
[10]
Chen, X.; Liu, L.; Luo, Z.; Shen, J.; Ni, Q.; Yao, J. Facile preparation of a cellulose-based bioadsorbent modified modified by hPEI in heterogenous system for high-efficiency removal of multiple types of dyes. React. Funct. Polym., 2018, 125, 77-83.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2018.02.009]
[11]
dos Silva, L.S. de O Carvalho, J.; Bezerra, R. D. de S.; da Silva, M. S.; Ferreira, F. J. L.; Osajima, J. A.; Filho, E. C. S. Potential of cellulose functionalized with carboxylic acid as biosorbent for the removal of cationic dyes in aqueous solution. Molecules, 2018, 23, 743.
[http://dx.doi.org/10.3390/molecules23040743]
[12]
Aichour, A.; Boudiaf, H.Z.; Iborra, C.V.; Polo, M.S. Bioadsorbent beads prepared from activated biomass/alginate for enhanced removal of cationic dye from water medium: Kinetics, equilibrium and thermodynamic studies. J. Mol. Liq., 2018, 256, 533-540.
[http://dx.doi.org/10.1016/j.molliq.2018.02.073]
[13]
Dwivedi, A.D.; Dubey, S.P.; Hokkanen, S.; Fallah, R.N.; Sillanpää, M. Recovery of gold from aqueous solutions by taurine modified cellulose: An adsorptive-reduction pathway. Chem. Eng. J., 2014, 255, 97-106.
[http://dx.doi.org/10.1016/j.cej.2014.06.017]
[14]
Liu, L.; Xie, J.P.; Li, Y.J. Three-dimensional macroporous cellulose-based bioadsorbents for efficient removal of nickel ions from aqueous solution. Cellul, 2016, 23, 723-736.
[http://dx.doi.org/10.1007/s10570-015-0837-2]
[15]
Rahman, M.L.; Sarkar, S.M.; Mashitah, M.Y.; Abdullah, M.H. Optical detection and efficient removal of transition metal ions from water using poly(hydroxamic acid) ligand. Sens. Actuators B Chem., 2017, 242, 595-608.
[http://dx.doi.org/10.1016/j.snb.2016.11.007]
[16]
Rahman, M.L.; Sarkar, S.M.; Yusoff, M.M.; Kulkarni, A.K.D.; Ali, E.; Chowdhury, Z.Z. Poly(amidoxime)-poly(hydroxamic acid) from polymer-grafted khaya cellulose: An excellent medium for the removal of transition metal cations from aqueous solution. Bioresour, 2016, 11, 6780-6800.
[http://dx.doi.org/10.15376/biores.11.3.6780-6800]
[17]
Rahman, M.L.; Sarkar, S.M.; Yusoff, M.M.; Abdullah, M.H. Efficient removal of transition metal ions using poly (amidoxime) ligand from polymer grafted kenaf cellulose. RSC Advances, 2016, 6, 745-757.
[http://dx.doi.org/10.1039/C5RA18502E]
[18]
Pan, Y.; Wang, F.; Wei, T.; Zhang, C.; Xiao, H. Hydrophobic modification of bagasse cellulose fibres with cationic latex: Adsorption kinetics and mechanism. Chem. Eng. J., 2016, 302, 33-43.
[http://dx.doi.org/10.1016/j.cej.2016.05.022]
[19]
Long, H.; Zhao, Z.; Chai, Y.; Li, X.; Hua, Z.; Xiao, Y.; Yang, Y. Binding mechanism of the amidoxime functional group on chelating resins toward gallium (III) in Bayer liquor. Ind. Eng. Chem. Res., 2015, 54, 8025-8030.
[http://dx.doi.org/10.1021/acs.iecr.5b01835]
[20]
Ahmad, M.; Ahmed, S.L.; Swami, B.L.; Ikram, S. Adsorption of heavy metal ions: role of chitosan and cellulose for water treatment. Int. J. Pharm., 2015, 2, 280-289.
[21]
Donia, A.M.; Yousif, A.M.; Atia, A.A.; Abd El-Latif, H.M. Preparation and characterization of modified cellulose adsorbents with high surface area and high adsorption affinity for Hg (II). J. Dispers. Sci. Technol., 2013, 35, 380-389.
[http://dx.doi.org/10.1080/01932691.2013.791626]
[22]
Ayawei, N.; Ebelegi, A.N.; Donbebe, W. Modelling and interpretation of adsorption isotherms. J. Chem., 2017, 1-11.
[http://dx.doi.org/10.1155/2017/3039817]
[23]
Ahmadpour, A.; Eftekhari, N.; Ayati, A. Performance of MWCNTs and a low-cost adsorbent for chromium (VI) ion removal. J. Nanostruct. Chem, 2014, 4, 119-125.
[http://dx.doi.org/10.1007/s40097-014-0119-9]
[24]
Jang, H.M.; Yoo, S.; Choi, Y.K.; Park, S.; Kan, E. Adsorption isotherm, kinetic modeling and mechanism of tetracycline on Pinus taeda-derived activated biochar. Bioresour. Technol., 2018, 259, 24-31.
[http://dx.doi.org/10.1016/j.biortech.2018.03.013] [PMID: 29536870]
[25]
Silva, S.M.; Sampaio, K.A.; Ceriani, R.; Verhé, R.; Stevens, C.; De Greyt, W.; Meirelles, A.J.A. Adsorption of carotenes and phosphorus from palm oil onto acid activated bleaching earth: Equilibrium, kinetics and thermodynamics. J. Food Eng., 2013, 118, 341-349.
[http://dx.doi.org/10.1016/j.jfoodeng.2013.04.026]
[26]
Yousef, R.I.; El-Eswed, B.; Al-Muhtaseb, A.H. Adsorption characteristics of natural zeolites as solid adsorbents for phenol r emoval from aqueous solutions: kinetics, mechanism, and thermodynamics studies. Chem. Eng. J., 2011, 171, 1143-1149.
[http://dx.doi.org/10.1016/j.cej.2011.05.012]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy