Generic placeholder image

Current Proteomics

Editor-in-Chief

ISSN (Print): 1570-1646
ISSN (Online): 1875-6247

Research Article

Association of Mutations in the NS5A-PKRBD Region and IFNL4 Genotypes with Hepatitis C Interferon Responsiveness and its Functional and Structural Analysis

Author(s): Tayebeh Hashempour*, Behzad Dehghani, Zahra Mousavi, Tahereh Akbari, Zahra Hasanshahi, Javad Moayedi, Maryam Yahaghi and Mohammad Ali Davarpanah*

Volume 18, Issue 1, 2021

Published on: 06 January, 2020

Page: [38 - 49] Pages: 12

DOI: 10.2174/1570164617666200107091124

Price: $65

Abstract

Background: The cellular antiviral responses induced by interferons require some cellular protein kinase for its activation. Evidence indicated that a number of Hepatitis C Virus (HCV) proteins can repress double-stranded (ds) RNA-dependent Protein Kinase (PKR) function and help HCV to escape. However, the reports are controversial, some researchers have suggested that a region in Nonstructural 5A (NS5A) gene called Protein Kinase R-Binding Domain (PKR-BD) is associated with HCV sensitivity to the antiviral effects of Interferon (IFN). In addition, the other factor that might be associated with response to PEGylated-IFNα (Peg-IFNα) and Ribavirin (RBV) combination therapy, is IFNL4 genotypes.

Objective: The aim of this study was to investigate the association between amino acid (aa) substitutions in the NS5A region and the IFNL4 genotypes in two Single Nucleotide Polymorphism (SNP) (rs8099917. rs12979860) in patients with HCV genotypes 1a and 3a. We also examined their response to combination therapy and the effect of these mutations on the function and structure of PKR-BD.

Methods: Eighty-six patients with hepatitis C were recruited and follow-up for 6 months. Several tests, including alanine aminotransferase (ALT), aspartate aminotransferase (AST), viral load, IFNL4 genotyping, and PKR-BD sequencing were performed. Using several well-known and trustworthy bioinformatics tools, sequences were analyzed to define physio-chemical properties, structural features, immune epitopes and protein-protein interaction.

Results: Of the 86 patients, 65.1% had high viral load at baseline, 64% had CT genotype for rs12979860 and 57% had GT genotype for rs8099917. Several aa residues changes were found in the PKR-BD region. We could not find any link between mutations in the PKR-BD region and different genotypes of IFNL4 in response to antiviral therapy. Regardless of pI, PKR-BD 1a and 3a showed similar physio-chemical properties, and 2 phosphorylation sites and one glycosylation site were estimated for both PKR-BD 1a and 3a. Trustworthy software were employed in order to predict B-cell epitopes, 3 regions (6-17, 26-32, 34-41) were found for both proteins, indicating a huge potential of PKR-BD protein to induce humoral immune system. Docking analysis determined non-responder sequences in both 1a and 3a genotypes to have higher energy value and are more compatible with PKR.

Conclusion: To sum up, our results could not determine any significant relationship between mutations of PKR-BD and genotypes of IFNL4 with other factors; ALT, AST, viral load. However, docking results showed strengthened interaction between PKR-BD and PKR in non-responders that could have a momentous impact on the illness severity.

Keywords: Hepatitis C virus, PKR-BD, NS5A, mutations, bioinformatics, interferon.

Graphical Abstract
[1]
de Oliveria Andrade, L.J.; D’Oliveira, A.; Melo, R.C.; De Souza, E.C.; Costa Silva, C.A.; Paraná, R. Association between hepatitis C and hepatocellular carcinoma. J. Glob. Infect. Dis., 2009, 1(1), 33-37.
[http://dx.doi.org/10.4103/0974-777X.52979] [PMID: 20300384]
[2]
Hoshida, Y.; Fuchs, B.C.; Bardeesy, N.; Baumert, T.F.; Chung, R.T. Pathogenesis and prevention of hepatitis C virus-induced hepatocellular carcinoma. J. Hepatol., 2014, 61(1)(Suppl.), S79-S90.
[http://dx.doi.org/10.1016/j.jhep.2014.07.010] [PMID: 25443348]
[3]
Norouzian, H.; Gholami, M.; Shakib, P.; Goudarzi, G.; Ghobadian Diali, H.; Rezvani, A. Prevalence of HCV infections and co-infection with HBV and HIV and associated risk factors among addicts in drug treatment centers, Lorestan Province, Iran. Prevalence of HCV infections and co-infection with HBV and HIV and associated risk factors among addicts in drug treatment centers, Lorestan Province, Iran. Int. J. High Risk Behav. Addict., 2016, 5(1)e25028
[http://dx.doi.org/10.5812/ijhrba.25028] [PMID: 27162762]
[4]
Butel, J.S. Viral carcinogenesis: Revelation of molecular mechanisms and etiology of human disease. Carcinogenesis, 2000, 21(3), 405-426.
[http://dx.doi.org/10.1093/carcin/21.3.405] [PMID: 10688861]
[5]
Mühlberger, N.; Schwarzer, R.; Lettmeier, B.; Sroczynski, G.; Zeuzem, S.; Siebert, U. HCV-related burden of disease in Europe: A systematic assessment of incidence, prevalence, morbidity, and mortality. BMC Public Health, 2009, 9(1), 34.
[http://dx.doi.org/10.1186/1471-2458-9-34] [PMID: 19161623]
[6]
Haj-Sheykholeslami, A.; Keshvari, M.; Sharafi, H.; Pouryasin, A.; Hemmati, K.; Mohammad Zadehparji Kolaei, F. Interferon-λ polymorphisms and response to pegylated interferon in Iranian hepatitis C patients. World J. Gastroenterol., 2015, 21(29), 8935-8942.
[http://dx.doi.org/10.3748/wjg.v21.i29.8935] [PMID: 26269684]
[7]
Suppiah, V.; Moldovan, M.; Ahlenstiel, G.; Berg, T.; Weltman, M.; Abate, M.L.; Bassendine, M.; Spengler, U.; Dore, G.J.; Powell, E.; Riordan, S.; Sheridan, D.; Smedile, A.; Fragomeli, V.; Müller, T.; Bahlo, M.; Stewart, G.J.; Booth, D.R.; George, J. IL28B is associated with response to chronic hepatitis C interferon-α and ribavirin therapy. Nat. Genet., 2009, 41(10), 1100-1104.
[http://dx.doi.org/10.1038/ng.447] [PMID: 19749758]
[8]
Ge, D.; Fellay, J.; Thompson, A.J.; Simon, J.S.; Shianna, K.V.; Urban, T.J.; Heinzen, E.L.; Qiu, P.; Bertelsen, A.H.; Muir, A.J.; Sulkowski, M.; McHutchison, J.G.; Goldstein, D.B. Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance. Nature, 2009, 461(7262), 399-401.
[http://dx.doi.org/10.1038/nature08309] [PMID: 19684573]
[9]
Kim, J.L.; Morgenstern, K.A.; Lin, C.; Fox, T.; Dwyer, M.D.; Landro, J.A.; Chambers, S.P.; Markland, W.; Lepre, C.A.; O’Malley, E.T.; Harbeson, S.L.; Rice, C.M.; Murcko, M.A.; Caron, P.R.; Thomson, J.A. Crystal structure of the hepatitis C virus NS3 protease domain complexed with a synthetic NS4A cofactor peptide. Cell, 1996, 87(2), 343-355.
[http://dx.doi.org/10.1016/S0092-8674(00)81351-3] [PMID: 8861917]
[10]
Tellinghuisen, T.L.; Marcotrigiano, J.; Gorbalenya, A.E.; Rice, C.M. The NS5A protein of hepatitis C virus is a zinc metalloprotein. J. Biol. Chem., 2004, 279(47), 48576-48587.
[http://dx.doi.org/10.1074/jbc.M407787200] [PMID: 15339921]
[11]
Nakamoto, S.; Kanda, T.; Wu, S.; Shirasawa, H.; Yokosuka, O. Hepatitis C virus NS5A inhibitors and drug resistance mutations. World J. Gastroenterol., 2014, 20(11), 2902-2912.
[http://dx.doi.org/10.3748/wjg.v20.i11.2902] [PMID: 24659881]
[12]
Muñoz de Rueda, P.; Casado, J.; Patón, R.; Quintero, D.; Palacios, A.; Gila, A.; Quiles, R.; León, J.; Ruiz-Extremera, A.; Salmerón, J. Mutations in E2-PePHD, NS5A-PKRBD, NS5A-ISDR, and NS5A-V3 of hepatitis C virus genotype 1 and their relationships to pegylated interferon-ribavirin treatment responses. J. Virol., 2008, 82(13), 6644-6653.
[http://dx.doi.org/10.1128/JVI.02231-07] [PMID: 18448540]
[13]
Shen, C.; Hu, T.; Shen, L.; Gao, L.; Xie, W.; Zhang, J. Mutations in ISDR of NS5A gene influence interferon efficacy in Chinese patients with chronic hepatitis C virus genotype 1b infection. J. Gastroenterol. Hepatol., 2007, 22(11), 1898-1903..
[http://dx.doi.org/10.1111/j.1440-1746.2006.04566.x] [PMID: 17914967]
[14]
Watanabe, H.; Enomoto, N.; Nagayama, K.; Izumi, N.; Marumo, F.; Sato, C.; Watanabe, M. Number and position of mutations in the interferon (IFN) sensitivity-determining region of the gene for nonstructural protein 5A correlate with IFN efficacy in hepatitis C virus genotype 1b infection. J. Infect. Dis., 2001, 183(8), 1195-1203.
[http://dx.doi.org/10.1086/319674] [PMID: 11262201]
[15]
Fukuma, T.; Enomoto, N.; Marumo, F.; Sato, C. Mutations in the interferon-sensitivity determining region of hepatitis C virus and transcriptional activity of the nonstructural region 5A protein. Hepatology, 1998, 28(4), 1147-1153.
[http://dx.doi.org/10.1002/hep.510280433] [PMID: 9755255]
[16]
Baclig, M.O.; Gopez-Cervantes, J.; Natividad, F.F. Bioinformatics tools for identifying hepatitis C virus subtypes. Philipp. J. Sci., 2012, 141(1), 25-34.
[17]
Lara, J.; López-Labrador, F.; González-Candelas, F.; Berenguer, M.; Khudyakov, Y.E. Computational models of liver fibrosis progression for hepatitis C virus chronic infection. BMC Bioinformatics, 2014, 15(8)(Suppl. 8), S5.
[http://dx.doi.org/10.1186/1471-2105-15-S8-S5] [PMID: 25081062]
[18]
Alborzi, A.; Hashempour, T.; Moayedi, J.; Musavi, Z.; Pouladfar, G.; Merat, S. Role of serum level and genetic variation of IL-28B in interferon responsiveness and advanced liver disease in chronic hepatitis C patients. Med. Microbiol. Immunol. (Berl.), 2017, 206(2), 165-174.
[http://dx.doi.org/10.1007/s00430-017-0497-y] [PMID: 28214926]
[19]
Iakoucheva, L.M.; Radivojac, P.; Brown, C.J.; O’Connor, T.R.; Sikes, J.G.; Obradovic, Z.; Dunker, A.K. The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Res., 2004, 32(3), 1037-1049.
[http://dx.doi.org/10.1093/nar/gkh253] [PMID: 14960716]
[20]
Blom, N.; Gammeltoft, S.; Brunak, S. Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J. Mol. Biol., 1999, 294(5), 1351-1362.
[http://dx.doi.org/10.1006/jmbi.1999.3310] [PMID: 10600390]
[21]
Blom, N.; Sicheritz-Pontén, T.; Gupta, R.; Gammeltoft, S.; Brunak, S. Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics, 2004, 4(6), 1633-1649.
[http://dx.doi.org/10.1002/pmic.200300771] [PMID: 15174133]
[22]
Gupta, R.; Jung, E.; Brunak, S. Prediction of N-glycosylation sites in human proteins. Preparation, 2004 (Epub ahead of print)..
[23]
Chauhan, J.S.; Rao, A.; Raghava, G.P. In silico platform for prediction of N-, O- and C-glycosites in eukaryotic protein sequences. PLoS One, 2013, 8(6)e67008
[http://dx.doi.org/10.1371/journal.pone.0067008] [PMID: 23840574]
[24]
Saha, S.; Raghava, G. In BcePred: prediction of continuous B-cell epitopes in antigenic sequences using physico-chemical properties Int. Conf. Artificial Immune Syst, 2004, pp. 197-204.
[http://dx.doi.org/10.1007/978-3-540-30220-9_16]
[25]
Saha, S.; Raghava, G.P. Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins, 2006, 65(1), 40-48.
[http://dx.doi.org/10.1002/prot.21078] [PMID: 16894596]
[26]
Kelley, L.A.; Mezulis, S.; Yates, C.M.; Wass, M.N.; Sternberg, M.J.E. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc., 2015, 10(6), 845-858.
[http://dx.doi.org/10.1038/nprot.2015.053] [PMID: 25950237]
[27]
Gale, M., Jr; Blakely, C.M.; Kwieciszewski, B.; Tan, S-L.; Dossett, M.; Tang, N.M.; Korth, M.J.; Polyak, S.J.; Gretch, D.R.; Katze, M.G. Control of PKR protein kinase by hepatitis C virus nonstructural 5A protein: Molecular mechanisms of kinase regulation. Mol. Cell. Biol., 1998, 18(9), 5208-5218.
[http://dx.doi.org/10.1128/MCB.18.9.5208] [PMID: 9710605]
[28]
El-Shamy, A.; Hotta, H. Impact of hepatitis C virus heterogeneity on interferon sensitivity: An overview. World J. Gastroenterol., 2014, 20(24), 7555-7569.
[http://dx.doi.org/10.3748/wjg.v20.i24.7555] [PMID: 24976696]
[29]
Murphy, M.D.; Rosen, H.R.; Marousek, G.I.; Chou, S. Analysis of sequence configurations of the ISDR, PKR-binding domain, and V3 region as predictors of response to induction interferon-α and ribavirin therapy in chronic hepatitis C infection. Dig. Dis. Sci., 2002, 47(6), 1195-1205.
[http://dx.doi.org/10.1023/A:1015349924116] [PMID: 12064791]
[30]
Kmieciak, D.; Kruszyna, Ł.; Migdalski, P.; Łaciński, M.; Juszczyk, J.; Trzeciak, W.H. Mutations within protein kinase R-binding domain of NS5A protein of Hepatitis C Virus (HCV) and specificity of HCV antibodies in pretreatment sera of HCV-chronically infected patients and their effect on the result of treatment. Jpn. J. Infect. Dis., 2006, 59(2), 92-99.
[PMID: 16632908]
[31]
Yokozaki, S.; Katano, Y.; Hayashi, K.; Ishigami, M.; Itoh, A.; Hirooka, Y.; Nakano, I.; Goto, H. Mutations in two PKR-binding domains in chronic hepatitis C of genotype 3a and correlation with viral loads and interferon responsiveness. J. Med. Virol., 2011, 83(10), 1727-1732.
[http://dx.doi.org/10.1002/jmv.21959] [PMID: 21837788]
[32]
Sarrazin, C.; Berg, T.; Lee, J-H.; Rüster, B.; Kronenberger, B.; Roth, W.K.; Zeuzem, S. Mutations in the protein kinase-binding domain of the NS5A protein in patients infected with hepatitis C virus type 1a are associated with treatment response. J. Infect. Dis., 2000, 181(2), 432-441.
[http://dx.doi.org/10.1086/315263] [PMID: 10669323]
[33]
Malta, F. M.; Medeiros-Filho, J.E.; Azevedo, R.S.; Gonçalves, L.; Silva, L.C.; Carrilho, F.J.; Pinho, J.R.R. Sequencing of E2 and NS5A regions of HCV genotype 3a in Brazilian patients with chronic hepatitis. Mem. Inst. Oswaldo Cruz, 2010, 105(1), 92-98.
[http://dx.doi.org/10.1590/S0074-02762010000100014] [PMID: 20209336]
[34]
Pascu, M.; Martus, P.; Höhne, M.; Wiedenmann, B.; Hopf, U.; Schreier, E.; Berg, T. Sustained virological response in hepatitis C virus type 1b infected patients is predicted by the number of mutations within the NS5A-ISDR: a meta-analysis focused on geographical differences. Gut, 2004, 53(9), 1345-1351.
[http://dx.doi.org/10.1136/gut.2003.031336] [PMID: 15306598]
[35]
Lusida, M.I.; Nagano-Fujii, M.; Nidom, C.A. Soetjipto, Handajani, R.; Fujita, T.; Oka, K.; Hotta, H. Correlation between mutations in the interferon sensitivity-determining region of NS5A protein and viral load of hepatitis C virus subtypes 1b, 1c, and 2a. J. Clin. Microbiol., 2001, 39(11), 3858-3864..
[http://dx.doi.org/10.1128/JCM.39.11.3858-3864.2001] [PMID: 11682498]
[36]
Chayama, K.; Tsubota, A.; Kobayashi, M.; Okamoto, K.; Hashimoto, M.; Miyano, Y.; Koike, H.; Kobayashi, M.; Koida, I.; Arase, Y.; Saitoh, S.; Suzuki, Y.; Murashima, N.; Ikeda, K.; Kumada, H. Pretreatment virus load and multiple amino acid substitutions in the interferon sensitivity-determining region predict the outcome of interferon treatment in patients with chronic genotype 1b hepatitis C virus infection. Hepatology, 1997, 25(3), 745-749.
[http://dx.doi.org/10.1002/hep.510250342] [PMID: 9049229]
[37]
Chayama, K.; Suzuki, F.; Tsubota, A.; Kobayashi, M.; Arase, Y.; Saitoh, S.; Suzuki, Y.; Murashima, N.; Ikeda, K.; Takahashi, N.; Kinoshita, M.; Kumada, H. Association of amino acid sequence in the PKR-eIF2 phosphorylation homology domain and response to interferon therapy. Hepatology, 2000, 32(5), 1138-1144.
[http://dx.doi.org/10.1053/jhep.2000.19364] [PMID: 11050067]
[38]
Hayashi, K.; Katano, Y.; Kuzuya, T.; Tachi, Y.; Honda, T.; Ishigami, M.; Itoh, A.; Hirooka, Y.; Ishikawa, T.; Nakano, I.; Urano, F.; Yoshioka, K.; Toyoda, H.; Kumada, T.; Goto, H. Prevalence of hepatitis C virus genotype 1a in Japan and correlation of mutations in the NS5A region and single-nucleotide polymorphism of interleukin-28B with the response to combination therapy with pegylated-interferon-alpha 2b and ribavirin. J. Med. Virol., 2012, 84(3), 438-444.
[http://dx.doi.org/10.1002/jmv.23207] [PMID: 22246829]
[39]
Hayashi, K.; Katano, Y.; Ishizu, Y.; Kuzuya, T.; Honda, T.; Ishigami, M.; Itoh, A.; Hirooka, Y.; Ishikawa, T.; Nakano, I.; Yoshioka, K.; Toyoda, H.; Kumada, T.; Goto, H. Association of interleukin 28B polymorphism and mutations in the NS5A region of hepatitis C virus genotype 2 with interferon responsiveness. J. Gastroenterol. Hepatol., 2015, 30(1), 178-183.
[http://dx.doi.org/10.1111/jgh.12673] [PMID: 24995561]
[40]
Hayes, C.N.; Kobayashi, M.; Akuta, N.; Suzuki, F.; Kumada, H.; Abe, H.; Miki, D.; Imamura, M.; Ochi, H.; Kamatani, N.; Nakamura, Y.; Chayama, K. HCV substitutions and IL28B polymorphisms on outcome of peg-interferon plus ribavirin combination therapy. Gut, 2011, 60(2), 261-267..
[http://dx.doi.org/10.1136/gut.2010.223495] [PMID: 21068134]
[41]
Domagalski, K.; Pawlowska, M.; Tretyn, A.; Halota, W.; Tyczyno, M.; Kozielewicz, D.; Dybowska, D. Association of IL28B polymorphisms with the response to peginterferon plus ribavirin combined therapy in Polish patients infected with HCV genotype 1 and 4. Hepat. Mon., 2013, 13(11)e13678
[http://dx.doi.org/10.5812/hepatmon.13678] [PMID: 24348648]
[42]
Venegas Santos, M. E.; Villanueva Arancibia, R. A.; González Lagos, K. V.; Brahm Barril, J. R. IL28B polymorphisms associated with therapy responsee in Chilean chronic hepatitis C patients. 2011, 17(31), 3636-3639.
[43]
Sarrazin, C.; Susser, S.; Doehring, A.; Lange, C.M.; Müller, T.; Schlecker, C.; Herrmann, E.; Lötsch, J.; Berg, T. Importance of IL28B gene polymorphisms in hepatitis C virus genotype 2 and 3 infected patients. J. Hepatol., 2011, 54(3), 415-421.
[http://dx.doi.org/10.1016/j.jhep.2010.07.041] [PMID: 21112657]
[44]
Peiffer, K.H.; Sommer, L.; Susser, S.; Vermehren, J.; Herrmann, E.; Döring, M.; Dietz, J.; Perner, D.; Berkowski, C.; Zeuzem, S.; Sarrazin, C. Interferon lambda 4 genotypes and resistance-associated variants in patients infected with hepatitis C virus genotypes 1 and 3. Hepatology, 2016, 63(1), 63-73.
[http://dx.doi.org/10.1002/hep.28255] [PMID: 26406534]
[45]
Chaturvedi, N.; Svarovskaia, E.S.; Mo, H.; Osinusi, A.O.; Brainard, D.M.; Subramanian, G.M.; McHutchison, J.G.; Zeuzem, S.; Fellay, J. Adaptation of hepatitis C virus to interferon lambda polymorphism across multiple viral genotypes. eLife, 2019, 8, 8.
[http://dx.doi.org/10.7554/eLife.42542] [PMID: 31478832]
[46]
Ansari, M.A.; Aranday-Cortes, E.; Ip, C.L.; da Silva Filipe, A.; Lau, S.H.; Bamford, C.; Bonsall, D.; Trebes, A.; Piazza, P.; Sreenu, V.; Cowton, V.M.; Ball, J.; Barnes, E.; Burgess, G.; Cooke, G.; Dillon, J.; Foster, G.; Gore, C.; Guha, N.; Halford, R.; Holmes, C.; Hudson, E.; Hutchinson, S.; Irving, W.; Khakoo, S.; Klenerman, P.; Martin, N.; Mbisa, T.; McKeating, J.; McLauchlan, J.; Miners, A.; Murray, A.; Shaw, P.; Simmonds, P.; Smith, S.; Spencer, C.; Thomson, E.; Troke, P.; Vickerman, P.; Zitzmann, N.; Hudson, E.; Bowden, R.; Patel, A.H.; Foster, G.R.; Irving, W.L.; Agarwal, K.; Thomson, E.C.; Simmonds, P.; Klenerman, P.; Holmes, C.; Barnes, E.; Spencer, C.C.; McLauchlan, J.; Pedergnana, V. STOP-HCV Consortium. Interferon lambda 4 impacts the genetic diversity of hepatitis C virus. eLife, 2019, 8e42463
[http://dx.doi.org/10.7554/eLife.42463] [PMID: 31478835]
[47]
Ansari, M.A.; Pedergnana, V.; L.C., Ip C.; Magri, A.; Von Delft, A.; Bonsall, D.; Chaturvedi, N.; Bartha, I.; Smith, D.; Nicholson, G.; McVean, G.; Trebes, A.; Piazza, P.; Fellay, J.; Cooke, G.; Foster, G.R.; Hudson, E.; McLauchlan, J.; Simmonds, P.; Bowden, R.; Klenerman, P.; Barnes, E.; Spencer, C.C.A. STOP-HCV Consortium. Genome-to-genome analysis highlights the effect of the human innate and adaptive immune systems on the hepatitis C virus. Nat. Genet., 2017, 49(5), 666-673.
[http://dx.doi.org/10.1038/ng.3835] [PMID: 28394351]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy