Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Telomerase-based Cancer Therapeutics: A Review on their Clinical Trials

Author(s): Nicola Relitti*, Akella P. Saraswati, Stefano Federico, Tuhina Khan, Margherita Brindisi, Daniela Zisterer, Simone Brogi, Sandra Gemma, Stefania Butini and Giuseppe Campiani*

Volume 20, Issue 6, 2020

Page: [433 - 457] Pages: 25

DOI: 10.2174/1568026620666200102104930

Price: $65

Abstract

Telomeres are protective chromosomal ends that shield the chromosomes from DNA damage, exonucleolytic degradation, recombination, and end-to-end fusion. Telomerase is a ribonucleoprotein that adds TTAGGG tandem repeats to the telomeric ends. It has been observed that 85 to 90% of human tumors express high levels of telomerase, playing a crucial role in the development of cancers. Interestingly, the telomerase activity is generally absent in normal somatic cells. This selective telomerase expression has driven scientists to develop novel anti-cancer therapeutics with high specificity and potency. Several advancements have been made in this area, which is reflected by the enormous success of the anticancer agent Imetelstat. Since the discovery of Imetelstat, several research groups have contributed to enrich the therapeutic arsenal against cancer. Such contributions include the application of new classes of small molecules, peptides, and hTERT-based immunotherapeutic agents (p540, GV1001, GRNVAC1 or combinations of these such as Vx-001). Many of these therapeutic tools are under different stages of clinical trials and have shown promising outcomes. In this review, we highlight the current status of telomerase-based cancer therapeutics and the outcome of these investigations.

Keywords: Telomeres, hTERT, Telomerase inhibitors, Clinical trials, Cancer therapy, Vaccines.

Graphical Abstract
[1]
Muller, H. The remaking of chromosomes. Collect. Net, 1938, 13, 181-198.
[http://dx.doi.org/10.1371/journal.pgen.1004130]
[2]
McClintock, B. The stability of broken ends of chromosomes in Zea mays. Genetics, 1941, 26(2), 234-282.
[PMID: 17247004]
[3]
Lu, W.; Zhang, Y.; Liu, D.; Songyang, Z.; Wan, M. Telomeres-structure, function, and regulation. Exp. Cell Res., 2013, 319(2), 133-141.
[http://dx.doi.org/10.1016/j.yexcr.2012.09.005] [PMID: 23006819]
[4]
Greider, C.W. Telomeres. Curr. Opin. Cell Biol., 1991, 3(3), 444-451.
[http://dx.doi.org/10.1016/0955-0674(91)90072-7] [PMID: 1892656]
[5]
Reig-Viader, R.; Garcia-Caldés, M.; Ruiz-Herrera, A. Telomere homeostasis in mammalian germ cells: a review. Chromosoma, 2016, 125(2), 337-351.
[http://dx.doi.org/10.1007/s00412-015-0555-4] [PMID: 26525972]
[6]
de Lange, T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev., 2005, 19(18), 2100-2110.
[http://dx.doi.org/10.1101/gad.1346005] [PMID: 16166375]
[7]
Broccoli, D.; Smogorzewska, A.; Chong, L.; de Lange, T. Human telomeres contain two distinct Myb-related proteins, TRF1 and TRF2. Nat. Genet., 1997, 17(2), 231-235.
[http://dx.doi.org/10.1038/ng1097-231] [PMID: 9326950]
[8]
Bianchi, A.; Stansel, R.M.; Fairall, L.; Griffith, J.D.; Rhodes, D.; de Lange, T. TRF1 binds a bipartite telomeric site with extreme spatial flexibility. EMBO J., 1999, 18(20), 5735-5744.
[http://dx.doi.org/10.1093/emboj/18.20.5735] [PMID: 10523316]
[9]
Lin, C. Yang, D. Telomeres and Telomerase; Springer: Berlin, 2017, pp. 171-196.
[http://dx.doi.org/10.1007/978-1-4939-6892-3_17]
[10]
Robin, J.D.; Ludlow, A.T.; Batten, K.; Magdinier, F.; Stadler, G.; Wagner, K.R.; Shay, J.W.; Wright, W.E. Telomere position effect: regulation of gene expression with progressive telomere shortening over long distances. Genes Dev., 2014, 28(22), 2464-2476.
[http://dx.doi.org/10.1101/gad.251041.114] [PMID: 25403178]
[11]
Wellinger, R.J. In the end, what’s the problem? Mol. Cell, 2014, 53(6), 855-856.
[http://dx.doi.org/10.1016/j.molcel.2014.03.008] [PMID: 24656125]
[12]
Shay, J.W.; Wright, W.E. Hayflick, his limit, and cellular ageing. Nat. Rev. Mol. Cell Biol., 2000, 1(1), 72-76.
[http://dx.doi.org/10.1038/35036093] [PMID: 11413492]
[13]
Mender, I.; Shay, J.W. Telomere Dysfunction Induced Foci (TIF) Analysis. Bio Protoc., 2015, 5(22), e1656
[http://dx.doi.org/10.21769/BioProtoc.1656] [PMID: 27500188]
[14]
Maestroni, L.; Matmati, S.; Coulon, S. Solving the telomere replication problem. Genes (Basel), 2017, 8(2), 55.
[http://dx.doi.org/10.3390/genes8020055] [PMID: 28146113]
[15]
Bryan, T.M.; Englezou, A.; Dalla-Pozza, L.; Dunham, M.A.; Reddel, R.R. Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines. Nat. Med., 1997, 3(11), 1271-1274.
[http://dx.doi.org/10.1038/nm1197-1271] [PMID: 9359704]
[16]
Napier, C.E.; Huschtscha, L.I.; Harvey, A.; Bower, K.; Noble, J.R.; Hendrickson, E.A.; Reddel, R.R. ATRX represses alternative lengthening of telomeres. Oncotarget, 2015, 6(18), 16543-16558.
[http://dx.doi.org/10.18632/oncotarget.3846] [PMID: 26001292]
[17]
O’Sullivan, R.J.; Almouzni, G. Assembly of telomeric chromatin to create ALTernative endings. Trends Cell Biol., 2014, 24(11), 675-685.
[http://dx.doi.org/10.1016/j.tcb.2014.07.007] [PMID: 25172551]
[18]
Azzalin, C.M.; Reichenbach, P.; Khoriauli, L.; Giulotto, E.; Lingner, J. Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science, 2007, 318(5851), 798-801.
[http://dx.doi.org/10.1126/science.1147182] [PMID: 17916692]
[19]
Schoeftner, S.; Blasco, M.A. Developmentally regulated transcription of mammalian telomeres by DNA-dependent RNA polymerase II. Nat. Cell Biol., 2008, 10(2), 228-236.
[http://dx.doi.org/10.1038/ncb1685] [PMID: 18157120]
[20]
Balk, B.; Maicher, A.; Dees, M.; Klermund, J.; Luke-Glaser, S.; Bender, K.; Luke, B. Telomeric RNA-DNA hybrids affect telomere-length dynamics and senescence. Nat. Struct. Mol. Biol., 2013, 20(10), 1199-1205.
[http://dx.doi.org/10.1038/nsmb.2662] [PMID: 24013207]
[21]
Porro, A.; Feuerhahn, S.; Delafontaine, J.; Riethman, H.; Rougemont, J.; Lingner, J. Functional characterization of the TERRA transcriptome at damaged telomeres. Nat. Commun., 2014, 5, 5379.
[http://dx.doi.org/10.1038/ncomms6379] [PMID: 25359189]
[22]
Redon, S.; Reichenbach, P.; Lingner, J. The non-coding RNA TERRA is a natural ligand and direct inhibitor of human telomerase. Nucleic Acids Res., 2010, 38(17), 5797-5806.
[http://dx.doi.org/10.1093/nar/gkq296] [PMID: 20460456]
[23]
Greider, C.W.; Blackburn, E.H. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell, 1985, 43(2 Pt 1), 405-413.
[http://dx.doi.org/10.1016/0092-8674(85)90170-9] [PMID: 3907856]
[24]
Shay, J.W.; Bacchetti, S. A survey of telomerase activity in human cancer. Eur. J. Cancer, 1997, 33(5), 787-791.
[http://dx.doi.org/10.1016/S0959-8049(97)00062-2] [PMID: 9282118]
[25]
Zhang, Q.; Kim, N-K.; Feigon, J. Architecture of human telomerase RNA. Proc. Natl. Acad. Sci. USA, 2011, 108(51), 20325-20332.
[http://dx.doi.org/10.1073/pnas.1100279108] [PMID: 21844345]
[26]
Venteicher, A.S.; Abreu, E.B.; Meng, Z.; McCann, K.E.; Terns, R.M.; Veenstra, T.D.; Terns, M.P.; Artandi, S.E. A human telomerase holoenzyme protein required for Cajal body localization and telomere synthesis. Science, 2009, 323(5914), 644-648.
[http://dx.doi.org/10.1126/science.1165357] [PMID: 19179534]
[27]
Mitchell, J.R.; Wood, E.; Collins, K. A telomerase component is defective in the human disease dyskeratosis congenita. Nature, 1999, 402(6761), 551-555.
[http://dx.doi.org/10.1038/990141] [PMID: 10591218]
[28]
Fu, D.; Collins, K. Purification of human telomerase complexes identifies factors involved in telomerase biogenesis and telomere length regulation. Mol. Cell, 2007, 28(5), 773-785.
[http://dx.doi.org/10.1016/j.molcel.2007.09.023] [PMID: 18082603]
[29]
Venteicher, A.S.; Meng, Z.; Mason, P.J.; Veenstra, T.D.; Artandi, S.E. Identification of ATPases pontin and reptin as telomerase components essential for holoenzyme assembly. Cell, 2008, 132(6), 945-957.
[http://dx.doi.org/10.1016/j.cell.2008.01.019] [PMID: 18358808]
[30]
Ghosh, A.; Saginc, G.; Leow, S.C.; Khattar, E.; Shin, E.M.; Yan, T.D.; Wong, M.; Zhang, Z.; Li, G.; Sung, W-K.; Zhou, J.; Chng, W.J.; Li, S.; Liu, E.; Tergaonkar, V. Telomerase directly regulates NF-κB-dependent transcription. Nat. Cell Biol., 2012, 14(12), 1270-1281.
[http://dx.doi.org/10.1038/ncb2621] [PMID: 23159929]
[31]
Liu, H.; Liu, Q.; Ge, Y.; Zhao, Q.; Zheng, X.; Zhao, Y. hTERT promotes cell adhesion and migration independent of telomerase activity. Sci. Rep., 2016, 6, 22886.
[http://dx.doi.org/10.1038/srep22886] [PMID: 26971878]
[32]
Liu, Z.; Li, Q.; Li, K.; Chen, L.; Li, W.; Hou, M.; Liu, T.; Yang, J.; Lindvall, C.; Björkholm, M.; Jia, J.; Xu, D. Telomerase reverse transcriptase promotes epithelial-mesenchymal transition and stem cell-like traits in cancer cells. Oncogene, 2013, 32(36), 4203-4213.
[http://dx.doi.org/10.1038/onc.2012.441] [PMID: 23045275]
[33]
Wu, R.A.; Upton, H.E.; Vogan, J.M.; Collins, K. Telomerase mechanism of telomere synthesis. Annu. Rev. Biochem., 2017, 86, 439-460.
[http://dx.doi.org/10.1146/annurev-biochem-061516-045019] [PMID: 28141967]
[34]
Masutomi, K.; Kaneko, S.; Hayashi, N.; Yamashita, T.; Shirota, Y.; Kobayashi, K.; Murakami, S. Telomerase activity reconstituted in vitro with purified human telomerase reverse transcriptase and human telomerase RNA component. J. Biol. Chem., 2000, 275(29), 22568-22573.
[http://dx.doi.org/10.1074/jbc.M000622200] [PMID: 10811633]
[35]
Schmidt, J.C.; Dalby, A.B.; Cech, T.R. Identification of human TERT elements necessary for telomerase recruitment to telomeres. eLife, 2014, 3, e03563
[http://dx.doi.org/10.7554/eLife.03563] [PMID: 25271372]
[36]
Lee, J.H.; Jeong, S.A.; Khadka, P.; Hong, J.; Chung, I.K. Involvement of SRSF11 in cell cycle-specific recruitment of telomerase to telomeres at nuclear speckles. Nucleic Acids Res., 2015, 43(17), 8435-8451.
[http://dx.doi.org/10.1093/nar/gkv844] [PMID: 26286192]
[37]
Zhong, F.; Savage, S.A.; Shkreli, M.; Giri, N.; Jessop, L.; Myers, T.; Chen, R.; Alter, B.P.; Artandi, S.E. Disruption of telomerase trafficking by TCAB1 mutation causes dyskeratosis congenita. Genes Dev., 2011, 25(1), 11-16.
[http://dx.doi.org/10.1101/gad.2006411] [PMID: 21205863]
[38]
Vulliamy, T.; Beswick, R.; Kirwan, M.; Marrone, A.; Digweed, M.; Walne, A.; Dokal, I. Mutations in the telomerase component NHP2 cause the premature ageing syndrome dyskeratosis congenita. Proc. Natl. Acad. Sci. USA, 2008, 105(23), 8073-8078.
[http://dx.doi.org/10.1073/pnas.0800042105] [PMID: 18523010]
[39]
Walne, A.J.; Vulliamy, T.; Marrone, A.; Beswick, R.; Kirwan, M.; Masunari, Y.; Al-Qurashi, F.H.; Aljurf, M.; Dokal, I. Genetic heterogeneity in autosomal recessive dyskeratosis congenita with one subtype due to mutations in the telomerase-associated protein NOP10. Hum. Mol. Genet., 2007, 16(13), 1619-1629.
[http://dx.doi.org/10.1093/hmg/ddm111] [PMID: 17507419]
[40]
Vinagre, J.; Almeida, A.; Pópulo, H.; Batista, R.; Lyra, J.; Pinto, V.; Coelho, R.; Celestino, R.; Prazeres, H.; Lima, L.; Melo, M.; da Rocha, A.G.; Preto, A.; Castro, P.; Castro, L.; Pardal, F.; Lopes, J.M.; Santos, L.L.; Reis, R.M.; Cameselle-Teijeiro, J.; Sobrinho-Simões, M.; Lima, J.; Máximo, V.; Soares, P. Frequency of TERT promoter mutations in human cancers. Nat. Commun., 2013, 4, 2185.
[http://dx.doi.org/10.1038/ncomms3185] [PMID: 23887589]
[41]
Horn, S.; Figl, A.; Rachakonda, P.S.; Fischer, C.; Sucker, A.; Gast, A.; Kadel, S.; Moll, I.; Nagore, E.; Hemminki, K.; Schadendorf, D.; Kumar, R. TERT promoter mutations in familial and sporadic melanoma. Science, 2013, 339(6122), 959-961.
[http://dx.doi.org/10.1126/science.1230062] [PMID: 23348503]
[42]
Huang, F.W.; Hodis, E.; Xu, M.J.; Kryukov, G.V.; Chin, L.; Garraway, L.A. Highly recurrent TERT promoter mutations in human melanoma. Science, 2013, 339(6122), 957-959.
[http://dx.doi.org/10.1126/science.1229259] [PMID: 23348506]
[43]
Killela, P.J.; Reitman, Z.J.; Jiao, Y.; Bettegowda, C.; Agrawal, N.; Diaz, L.A., Jr; Friedman, A.H.; Friedman, H.; Gallia, G.L.; Giovanella, B.C.; Grollman, A.P.; He, T.C.; He, Y.; Hruban, R.H.; Jallo, G.I.; Mandahl, N.; Meeker, A.K.; Mertens, F.; Netto, G.J.; Rasheed, B.A.; Riggins, G.J.; Rosenquist, T.A.; Schiffman, M.; Shih, IeM.; Theodorescu, D.; Torbenson, M.S.; Velculescu, V.E.; Wang, T.L.; Wentzensen, N.; Wood, L.D.; Zhang, M.; McLendon, R.E.; Bigner, D.D.; Kinzler, K.W.; Vogelstein, B.; Papadopoulos, N.; Yan, H. TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal. Proc. Natl. Acad. Sci. USA, 2013, 110(15), 6021-6026.
[http://dx.doi.org/10.1073/pnas.1303607110] [PMID: 23530248]
[44]
Chan, A.K-Y.; Yao, Y.; Zhang, Z.; Chung, N.Y-F.; Liu, J.S-M.; Li, K.K-W.; Shi, Z.; Chan, D.T-M.; Poon, W.S.; Zhou, L.; Ng, H.K. TERT promoter mutations contribute to subset prognostication of lower-grade gliomas. Mod. Pathol., 2015, 28(2), 177-186.
[http://dx.doi.org/10.1038/modpathol.2014.94] [PMID: 25081751]
[45]
Huang, F.W.; Bielski, C.M.; Rinne, M.L.; Hahn, W.C.; Sellers, W.R.; Stegmeier, F.; Garraway, L.A.; Kryukov, G.V. TERT promoter mutations and monoallelic activation of TERT in cancer. Oncogenesis, 2015, 4(12), e176
[http://dx.doi.org/10.1038/oncsis.2015.39] [PMID: 26657580]
[46]
Zurek, M.; Altschmied, J.; Kohlgrüber, S.; Ale-Agha, N.; Haendeler, J. Role of telomerase in the cardiovascular system. Genes (Basel), 2016, 7(6), 29.
[http://dx.doi.org/10.3390/genes7060029] [PMID: 27322328]
[47]
Pech, M.F.; Garbuzov, A.; Hasegawa, K.; Sukhwani, M.; Zhang, R.J.; Benayoun, B.A.; Brockman, S.A.; Lin, S.; Brunet, A.; Orwig, K.E.; Artandi, S.E. High telomerase is a hallmark of undifferentiated spermatogonia and is required for maintenance of male germline stem cells. Genes Dev., 2015, 29(23), 2420-2434.
[http://dx.doi.org/10.1101/gad.271783.115] [PMID: 26584619]
[48]
Wright, W.E.; Piatyszek, M.A.; Rainey, W.E.; Byrd, W.; Shay, J.W. Telomerase activity in human germline and embryonic tissues and cells. Dev. Genet., 1996, 18(2), 173-179.
[http://dx.doi.org/10.1002/(SICI)1520-6408(1996)18:2<173:AID-DVG10>3.0.CO;2-3] [PMID: 8934879]
[49]
Forsyth, N.R.; Wright, W.E.; Shay, J.W. Telomerase and differentiation in multicellular organisms: turn it off, turn it on, and turn it off again. Differentiation, 2002, 69(4-5), 188-197.
[http://dx.doi.org/10.1046/j.1432-0436.2002.690412.x] [PMID: 11841477]
[50]
Kim, N.W.; Piatyszek, M.A.; Prowse, K.R.; Harley, C.B.; West, M.D.; Ho, P.L.; Coviello, G.M.; Wright, W.E.; Weinrich, S.L.; Shay, J.W. Specific association of human telomerase activity with immortal cells and cancer. Science, 1994, 266(5193), 2011-2015.
[http://dx.doi.org/10.1126/science.7605428] [PMID: 7605428]
[51]
Broccoli, D.; Young, J.W.; de Lange, T. Telomerase activity in normal and malignant hematopoietic cells. Proc. Natl. Acad. Sci. USA, 1995, 92(20), 9082-9086.
[http://dx.doi.org/10.1073/pnas.92.20.9082] [PMID: 7568077]
[52]
Ludlow, A.T.; Robin, J.D.; Sayed, M.; Litterst, C.M.; Shelton, D.N.; Shay, J.W.; Wright, W.E. Quantitative telomerase enzyme activity determination using droplet digital PCR with single cell resolution. Nucleic Acids Res., 2014, 42(13), e104
[http://dx.doi.org/10.1093/nar/gku439] [PMID: 24861623]
[53]
Sekaran, V.; Soares, J.; Jarstfer, M.B. Telomere maintenance as a target for drug discovery. J. Med. Chem., 2014, 57(3), 521-538.
[http://dx.doi.org/10.1021/jm400528t] [PMID: 24053596]
[54]
Arndt, G.M.; MacKenzie, K.L. New prospects for targeting telomerase beyond the telomere. Nat. Rev. Cancer, 2016, 16(8), 508-524.
[http://dx.doi.org/10.1038/nrc.2016.55] [PMID: 27339602]
[55]
Buseman, C.M.; Wright, W.E.; Shay, J.W. Is telomerase a viable target in cancer? Mutat. Res., 2012, 730(1-2), 90-97.
[http://dx.doi.org/10.1016/j.mrfmmm.2011.07.006] [PMID: 21802433]
[56]
Saraswati, A.P.; Relitti, N.; Brindisi, M.; Gemma, S.; Zisterer, D.; Butini, S.; Campiani, G. Raising the bar in anticancer therapy: recent advances in, and perspectives on, telomerase inhibitors. Drug Discov. Today, 2019, 24(7), 1370-1388.
[http://dx.doi.org/10.1016/j.drudis.2019.05.015] [PMID: 31136800]
[57]
Bryan, C.; Rice, C.; Hoffman, H.; Harkisheimer, M.; Sweeney, M.; Skordalakes, E. Structural basis of telomerase inhibition by the highly specific BIBR1532. Structure, 2015, 23(10), 1934-1942.
[http://dx.doi.org/10.1016/j.str.2015.08.006] [PMID: 26365799]
[58]
Crees, Z.; Girard, J.; Rios, Z.; Botting, G.M.; Harrington, K.; Shearrow, C.; Wojdyla, L.; Stone, A.L.; Uppada, S.B.; Devito, J.T.; Puri, N. Oligonucleotides and G-quadruplex stabilizers: targeting telomeres and telomerase in cancer therapy. Curr. Pharm. Des., 2014, 20(41), 6422-6437.
[http://dx.doi.org/10.2174/1381612820666140630100702] [PMID: 24975605]
[59]
Abliz, G.; Mijit, F.; Hua, L.; Abdixkur, G.; Ablimit, T.; Amat, N.; Upur, H. Anti-carcinogenic effects of the phenolic-rich extract from abnormal Savda Munziq in association with its cytotoxicity, apoptosis-inducing properties and telomerase activity in human cervical cancer cells (SiHa). BMC Complement. Altern. Med., 2015, 15(1), 23.
[http://dx.doi.org/10.1186/s12906-015-0530-x] [PMID: 25880193]
[60]
Jahanban-Esfahlan, R.; Seidi, K.; Monfaredan, A.; Shafie-Irannejad, V.; Abbasi, M.M.; Karimian, A.; Yousefi, B. The herbal medicine Melissa officinalis extract effects on gene expression of p53, Bcl-2, Her2, VEGF-A and hTERT in human lung, breast and prostate cancer cell lines. Gene, 2017, 613, 14-19.
[http://dx.doi.org/10.1016/j.gene.2017.02.034] [PMID: 28259690]
[61]
Demir, S.; Turan, I.; Aliyazicioglu, Y.; Kilinc, K.; Yaman, S.O.; Ayazoglu Demir, E.; Arslan, A.; Mentese, A.; Deger, O. Morus rubra extract induces cell cycle arrest and apoptosis in human colon cancer cells through endoplasmic reticulum stress and telomerase. Nutr. Cancer, 2017, 69(1), 74-83.
[http://dx.doi.org/10.1080/01635581.2017.1247887] [PMID: 27880042]
[62]
Chen, J.L-Y.; Sperry, J.; Ip, N.Y.; Brimble, M.A. Natural products targeting telomere maintenance. MedChemComm, 2011, 2(4), 229-245.
[http://dx.doi.org/10.1039/c0md00241k]
[63]
Wolchok, J.D.; Chiarion-Sileni, V.; Gonzalez, R.; Rutkowski, P.; Grob, J-J.; Cowey, C.L.; Lao, C.D.; Wagstaff, J.; Schadendorf, D.; Ferrucci, P.F.; Smylie, M.; Dummer, R.; Hill, A.; Hogg, D.; Haanen, J.; Carlino, M.S.; Bechter, O.; Maio, M.; Marquez-Rodas, I.; Guidoboni, M.; McArthur, G.; Lebbé, C.; Ascierto, P.A.; Long, G.V.; Cebon, J.; Sosman, J.; Postow, M.A.; Callahan, M.K.; Walker, D.; Rollin, L.; Bhore, R.; Hodi, F.S.; Larkin, J. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl. J. Med., 2017, 377(14), 1345-1356.
[http://dx.doi.org/10.1056/NEJMoa1709684] [PMID: 28889792]
[64]
Park, J.H.; Rivière, I.; Gonen, M.; Wang, X.; Sénéchal, B.; Curran, K.J.; Sauter, C.; Wang, Y.; Santomasso, B.; Mead, E.; Roshal, M.; Maslak, P.; Davila, M.; Brentjens, R.J.; Sadelain, M. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N. Engl. J. Med., 2018, 378(5), 449-459.
[http://dx.doi.org/10.1056/NEJMoa1709919] [PMID: 29385376]
[65]
Maude, S.L.; Laetsch, T.W.; Buechner, J.; Rives, S.; Boyer, M.; Bittencourt, H.; Bader, P.; Verneris, M.R.; Stefanski, H.E.; Myers, G.D.; Qayed, M.; De Moerloose, B.; Hiramatsu, H.; Schlis, K.; Davis, K.L.; Martin, P.L.; Nemecek, E.R.; Yanik, G.A.; Peters, C.; Baruchel, A.; Boissel, N.; Mechinaud, F.; Balduzzi, A.; Krueger, J.; June, C.H.; Levine, B.L.; Wood, P.; Taran, T.; Leung, M.; Mueller, K.T.; Zhang, Y.; Sen, K.; Lebwohl, D.; Pulsipher, M.A.; Grupp, S.A. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N. Engl. J. Med., 2018, 378(5), 439-448.
[http://dx.doi.org/10.1056/NEJMoa1709866] [PMID: 29385370]
[66]
Smyth, M.J.; Teng, M.W. 2018 Nobel Prize in physiology or medicine. Clin. Transl. Immunology, 2018, 7(10), e1041
[http://dx.doi.org/10.1002/cti2.1041] [PMID: 30386598]
[67]
Nakamura, T.M.; Morin, G.B.; Chapman, K.B.; Weinrich, S.L.; Andrews, W.H.; Lingner, J.; Harley, C.B.; Cech, T.R. Telomerase catalytic subunit homologs from fission yeast and human. Science, 1997, 277(5328), 955-959.
[http://dx.doi.org/10.1126/science.277.5328.955] [PMID: 9252327]
[68]
Vonderheide, R.H.; Hahn, W.C.; Schultze, J.L.; Nadler, L.M. The telomerase catalytic subunit is a widely expressed tumor-associated antigen recognized by cytotoxic T lymphocytes. Immunity, 1999, 10(6), 673-679.
[http://dx.doi.org/10.1016/S1074-7613(00)80066-7] [PMID: 10403642]
[69]
Minev, B.; Hipp, J.; Firat, H.; Schmidt, J.D.; Langlade-Demoyen, P.; Zanetti, M. Cytotoxic T cell immunity against telomerase reverse transcriptase in humans. Proc. Natl. Acad. Sci. USA, 2000, 97(9), 4796-4801.
[http://dx.doi.org/10.1073/pnas.070560797] [PMID: 10759561]
[70]
Chen, D.S.; Mellman, I. Oncology meets immunology: the cancer-immunity cycle. Immunity, 2013, 39(1), 1-10.
[http://dx.doi.org/10.1016/j.immuni.2013.07.012] [PMID: 23890059]
[71]
Cortez-Gonzalez, X.; Sidney, J.; Adotevi, O.; Sette, A.; Millard, F.; Lemonnier, F.; Langlade-Demoyen, P.; Zanetti, M. Immunogenic HLA-B7-restricted peptides of hTRT. Int. Immunol., 2006, 18(12), 1707-1718.
[http://dx.doi.org/10.1093/intimm/dxl105] [PMID: 17077179]
[72]
Adotévi, O.; Mollier, K.; Neuveut, C.; Cardinaud, S.; Boulanger, E.; Mignen, B.; Fridman, W-H.; Zanetti, M.; Charneau, P.; Tartour, E.; Lemonnier, F.; Langlade-Demoyen, P. Immunogenic HLA-B*0702-restricted epitopes derived from human telomerase reverse transcriptase that elicit antitumor cytotoxic T-cell responses. Clin. Cancer Res., 2006, 12(10), 3158-3167.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-2647] [PMID: 16707616]
[73]
Thorn, M.; Wang, M.; Kløverpris, H.; Schmidt, E.G.; Fomsgaard, A.; Wenandy, L.; Berntsen, A.; Brunak, S.; Buus, S.; Claesson, M.H. Identification of a new hTERT-derived HLA-A*0201 restricted, naturally processed CTL epitope. Cancer Immunol. Immunother., 2007, 56(11), 1755-1763.
[http://dx.doi.org/10.1007/s00262-007-0319-y] [PMID: 17464507]
[74]
Hernández, J.; García-Pons, F.; Lone, Y.C.; Firat, H.; Schmidt, J.D.; Langlade-Demoyen, P.; Zanetti, M. Identification of a human telomerase reverse transcriptase peptide of low affinity for HLA A2.1 that induces cytotoxic T lymphocytes and mediates lysis of tumor cells. Proc. Natl. Acad. Sci. USA, 2002, 99(19), 12275-12280.
[http://dx.doi.org/10.1073/pnas.182418399] [PMID: 12218171]
[75]
Mizukoshi, E.; Kaneko, S. Telomerase-Targeted Cancer Immunotherapy. Int. J. Mol. Sci., 2019, 20(8), 1823.
[http://dx.doi.org/10.3390/ijms20081823] [PMID: 31013796]
[76]
Kumagai, M.; Mizukoshi, E.; Tamai, T.; Kitahara, M.; Yamashita, T.; Arai, K.; Terashima, T.; Iida, N.; Fushimi, K.; Kaneko, S. Immune response to human telomerase reverse transcriptase-derived helper T cell epitopes in hepatocellular carcinoma patients. Liver Int., 2018, 38(9), 1635-1645.
[http://dx.doi.org/10.1111/liv.13713] [PMID: 29405561]
[77]
Lev, A.; Denkberg, G.; Cohen, C.J.; Tzukerman, M.; Skorecki, K.L.; Chames, P.; Hoogenboom, H.R.; Reiter, Y. Isolation and characterization of human recombinant antibodies endowed with the antigen-specific, major histocompatibility complex-restricted specificity of T cells directed toward the widely expressed tumor T-cell epitopes of the telomerase catalytic subunit. Cancer Res., 2002, 62(11), 3184-3194.
[PMID: 12036932]
[78]
Vonderheide, R.H. Prospects and challenges of building a cancer vaccine targeting telomerase. Biochimie, 2008, 90(1), 173-180.
[http://dx.doi.org/10.1016/j.biochi.2007.07.005] [PMID: 17716803]
[79]
Vonderheide, R.H. Telomerase as a universal tumor-associated antigen for cancer immunotherapy. Oncogene, 2002, 21(4), 674-679.
[http://dx.doi.org/10.1038/sj.onc.1205074] [PMID: 11850795]
[80]
Schroers, R.; Shen, L.; Rollins, L.; Rooney, C.M.; Slawin, K.; Sonderstrup, G.; Huang, X.F.; Chen, S-Y. Human telomerase reverse transcriptase-specific T-helper responses induced by promiscuous major histocompatibility complex class II-restricted epitopes. Clin. Cancer Res., 2003, 9(13), 4743-4755.
[PMID: 14581345]
[81]
Liu, J-P.; Chen, W.; Schwarer, A.P.; Li, H. Telomerase in cancer immunotherapy. Biochim. Biophys. Acta, 2010, 1805(1), 35-42.
[http://dx.doi.org/10.1016/j.bbabio.2010.04.123] [PMID: 19751801]
[82]
Fenoglio, D.; Traverso, P.; Parodi, A.; Tomasello, L.; Negrini, S.; Kalli, F.; Battaglia, F.; Ferrera, F.; Sciallero, S.; Murdaca, G.; Setti, M.; Sobrero, A.; Boccardo, F.; Cittadini, G.; Puppo, F.; Criscuolo, D.; Carmignani, G.; Indiveri, F.; Filaci, G. A multi-peptide, dual-adjuvant telomerase vaccine (GX301) is highly immunogenic in patients with prostate and renal cancer. Cancer Immunol. Immunother., 2013, 62(6), 1041-1052.
[http://dx.doi.org/10.1007/s00262-013-1415-9] [PMID: 23591981]
[83]
Liu, G.Y.; Fairchild, P.J.; Smith, R.M.; Prowle, J.R.; Kioussis, D.; Wraith, D.C. Low avidity recognition of self-antigen by T cells permits escape from central tolerance. Immunity, 1995, 3(4), 407-415.
[http://dx.doi.org/10.1016/1074-7613(95)90170-1] [PMID: 7584132]
[84]
Scardino, A.; Gross, D-A.; Alves, P.; Schultze, J.L.; Graff-Dubois, S.; Faure, O.; Tourdot, S.; Chouaib, S.; Nadler, L.M.; Lemonnier, F.A.; Vonderheide, R.H.; Cardoso, A.A.; Kosmatopoulos, K. HER-2/neu and hTERT cryptic epitopes as novel targets for broad spectrum tumor immunotherapy. J. Immunol., 2002, 168(11), 5900-5906.
[http://dx.doi.org/10.4049/jimmunol.168.11.5900] [PMID: 12023395]
[85]
Galati, D.; Zanotta, S. Empowering dendritic cell cancer vaccination: the role of combinatorial strategies. Cytotherapy, 2018, 20(11), 1309-1323.
[http://dx.doi.org/10.1016/j.jcyt.2018.09.007] [PMID: 30360963]
[86]
Yan, J.; Pankhong, P.; Shin, T.H.; Obeng-Adjei, N.; Morrow, M.P.; Walters, J.N.; Khan, A.S.; Sardesai, N.Y.; Weiner, D.B. Highly optimized DNA vaccine targeting human telomerase reverse transcriptase stimulates potent antitumor immunity. Cancer Immunol. Res., 2013, 1(3), 179-189.
[http://dx.doi.org/10.1158/2326-6066.CIR-13-0001] [PMID: 24777680]
[87]
Mu, X.; Sang, Y.; Fang, C.; Shao, B.; Yang, L.; Yao, K.; Zhao, X.; Gou, J.; Wei, Y.; Yi, T.; Wu, Y.; Zhao, X. Immunotherapy of tumors with human telomerase reverse transcriptase immortalized human umbilical vein endothelial cells. Int. J. Oncol., 2015, 47(5), 1901-1911.
[http://dx.doi.org/10.3892/ijo.2015.3175] [PMID: 26398907]
[88]
Wang, Y.; Zhang, J.; Wu, Y.; Ding, Z-Y.; Luo, X-M.; Liu, J.; Zhong, W-N.; Deng, G-H.; Xia, X-Y.; Deng, Y-T.; Wei, Y.Q.; Jiang, Y. Mannan-modified adenovirus targeting TERT and VEGFR-2: A universal tumour vaccine. Sci. Rep., 2015, 5, 11275.
[http://dx.doi.org/10.1038/srep11275] [PMID: 26085010]
[89]
Morgan, R.A.; Dudley, M.E.; Wunderlich, J.R.; Hughes, M.S.; Yang, J.C.; Sherry, R.M.; Royal, R.E.; Topalian, S.L.; Kammula, U.S.; Restifo, N.P.; Zheng, Z.; Nahvi, A.; de Vries, C.R.; Rogers-Freezer, L.J.; Mavroukakis, S.A.; Rosenberg, S.A. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science, 2006, 314(5796), 126-129.
[http://dx.doi.org/10.1126/science.1129003] [PMID: 16946036]
[90]
Kageyama, S.; Ikeda, H.; Miyahara, Y.; Imai, N.; Ishihara, M.; Saito, K.; Sugino, S.; Ueda, S.; Ishikawa, T.; Kokura, S.; Naota, H.; Ohishi, K.; Shiraishi, T.; Inoue, N.; Tanabe, M.; Kidokoro, T.; Yoshioka, H.; Tomura, D.; Nukaya, I.; Mineno, J.; Takesako, K.; Katayama, N.; Shiku, H. Adoptive transfer of MAGE-A4 T-cell receptor gene-transduced lymphocytes in patients with recurrent esophageal cancer. Clin. Cancer Res., 2015, 21(10), 2268-2277.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-1559] [PMID: 25855804]
[91]
Jackson, H.J.; Rafiq, S.; Brentjens, R.J. Driving CAR T-cells forward. Nat. Rev. Clin. Oncol., 2016, 13(6), 370-383.
[http://dx.doi.org/10.1038/nrclinonc.2016.36] [PMID: 27000958]
[92]
Asai, A.; Oshima, Y.; Yamamoto, Y.; Uochi, T.A.; Kusaka, H.; Akinaga, S.; Yamashita, Y.; Pongracz, K.; Pruzan, R.; Wunder, E.; Piatyszek, M.; Li, S.; Chin, A.C.; Harley, C.B.; Gryaznov, S. A novel telomerase template antagonist (GRN163) as a potential anticancer agent. Cancer Res., 2003, 63(14), 3931-3939.
[PMID: 12873987]
[93]
Herbert, B-S.; Gellert, G.C.; Hochreiter, A.; Pongracz, K.; Wright, W.E.; Zielinska, D.; Chin, A.C.; Harley, C.B.; Shay, J.W.; Gryaznov, S.M. Lipid modification of GRN163, an N3′-->P5′ thio-phosphoramidate oligonucleotide, enhances the potency of telomerase inhibition. Oncogene, 2005, 24(33), 5262-5268.
[http://dx.doi.org/10.1038/sj.onc.1208760] [PMID: 15940257]
[94]
Djojosubroto, M.W.; Chin, A.C.; Go, N.; Schaetzlein, S.; Manns, M.P.; Gryaznov, S.; Harley, C.B.; Rudolph, K.L. Telomerase antagonists GRN163 and GRN163L inhibit tumor growth and increase chemosensitivity of human hepatoma. Hepatology, 2005, 42(5), 1127-1136.
[http://dx.doi.org/10.1002/hep.20822] [PMID: 16114043]
[95]
Ozawa, T.; Gryaznov, S.M.; Hu, L.J.; Pongracz, K.; Santos, R.A.; Bollen, A.W.; Lamborn, K.R.; Deen, D.F. Antitumor effects of specific telomerase inhibitor GRN163 in human glioblastoma xenografts. Neuro-oncol., 2004, 6(3), 218-226.
[http://dx.doi.org/10.1215/S1152851704000055] [PMID: 15279714]
[96]
Hochreiter, A.E.; Xiao, H.; Goldblatt, E.M.; Gryaznov, S.M.; Miller, K.D.; Badve, S.; Sledge, G.W.; Herbert, B-S. Telomerase template antagonist GRN163L disrupts telomere maintenance, tumor growth, and metastasis of breast cancer. Clin. Cancer Res., 2006, 12(10), 3184-3192.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-2760] [PMID: 16707619]
[97]
Bruedigam, C.; Bagger, F.O.; Heidel, F.H.; Paine Kuhn, C.; Guignes, S.; Song, A.; Austin, R.; Vu, T.; Lee, E.; Riyat, S.; Moore, A.S.; Lock, R.B.; Bullinger, L.; Hill, G.R.; Armstrong, S.A.; Williams, D.A.; Lane, S.W. Telomerase inhibition effectively targets mouse and human AML stem cells and delays relapse following chemotherapy. Cell Stem Cell, 2014, 15(6), 775-790.
[http://dx.doi.org/10.1016/j.stem.2014.11.010] [PMID: 25479751]
[98]
Dikmen, Z.G.; Wright, W.E.; Shay, J.W.; Gryaznov, S.M. Telomerase targeted oligonucleotide thio-phosphoramidates in T24-luc bladder cancer cells. J. Cell. Biochem., 2008, 104(2), 444-452.
[http://dx.doi.org/10.1002/jcb.21635] [PMID: 18044713]
[99]
Frink, R.E.; Peyton, M.; Schiller, J.H.; Gazdar, A.F.; Shay, J.W.; Minna, J.D. Telomerase inhibitor imetelstat has preclinical activity across the spectrum of non-small cell lung cancer oncogenotypes in a telomere length dependent manner. Oncotarget, 2016, 7(22), 31639-31651.
[http://dx.doi.org/10.18632/oncotarget.9335] [PMID: 27192120]
[100]
Dikmen, Z.G.; Gellert, G.C.; Jackson, S.; Gryaznov, S.; Tressler, R.; Dogan, P.; Wright, W.E.; Shay, J.W. In vivo inhibition of lung cancer by GRN163L: a novel human telomerase inhibitor. Cancer Res., 2005, 65(17), 7866-7873.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1215] [PMID: 16140956]
[101]
Hu, Y.; Bobb, D.; Lu, Y.; He, J.; Dome, J.S. Effect of telomerase inhibition on preclinical models of malignant rhabdoid tumor. Cancer Genet., 2014, 207(9), 403-411.
[http://dx.doi.org/10.1016/j.cancergen.2014.09.002] [PMID: 25441685]
[102]
Mender, I.; Senturk, S.; Ozgunes, N.; Akcali, K.C.; Kletsas, D.; Gryaznov, S.; Can, A.; Shay, J.W.; Dikmen, Z.G. Imetelstat (a telomerase antagonist) exerts off‑target effects on the cytoskeleton. Int. J. Oncol., 2013, 42(5), 1709-1715.
[http://dx.doi.org/10.3892/ijo.2013.1865] [PMID: 23545855]
[103]
Röth, A. Harley, C.B.; Baerlocher, G.M. Small Molecules in Oncology; Springer: Berlin, 2010, pp. 221-234.
[104]
Harley, C.B. Telomerase and cancer therapeutics. Nat. Rev. Cancer, 2008, 8(3), 167-179.
[http://dx.doi.org/10.1038/nrc2275] [PMID: 18256617]
[105]
Kim, B-K.; Kim, B-R.; Lee, H-J.; Lee, S-A.; Kim, B-J.; Kim, H.; Won, Y-S.; Shon, W-J.; Lee, N-R.; Inn, K-S.; Kim, B.J. Tumor-suppressive effect of a telomerase-derived peptide by inhibiting hypoxia-induced HIF-1α-VEGF signaling axis. Biomaterials, 2014, 35(9), 2924-2933.
[http://dx.doi.org/10.1016/j.biomaterials.2013.12.077] [PMID: 24411674]
[106]
Kozloff, M.; Sledge, G.; Benedetti, F.; Starr, A.; Wallace, J.; Stuart, M.; Gruver, D.; Miller, K. Phase I study of imetelstat (GRN163L) in combination with paclitaxel (P) and bevacizumab (B) in patients (pts) with locally recurrent or Metastatic Breast Cancer (MBC) J. Clin. Oncol., 2010, 28(15_suppl), 2598-2598.
[107]
Thompson, P.A.; Drissi, R.; Muscal, J.A.; Panditharatna, E.; Fouladi, M.; Ingle, A.M.; Ahern, C.H.; Reid, J.M.; Lin, T.; Weigel, B.J.; Blaney, S.M. A phase I trial of imetelstat in children with refractory or recurrent solid tumors: a Children’s Oncology Group Phase I Consortium Study (ADVL1112). Clin. Cancer Res., 2013, 19(23), 6578-6584.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-1117] [PMID: 24097866]
[108]
Salloum, R.; Hummel, T.R.; Kumar, S.S.; Dorris, K.; Li, S.; Lin, T.; Daryani, V.M.; Stewart, C.F.; Miles, L.; Poussaint, T.Y.; Stevenson, C.; Goldman, S.; Dhall, G.; Packer, R.; Fisher, P.; Pollack, I.F.; Fouladi, M.; Boyett, J.; Drissi, R. A molecular biology and phase II study of imetelstat (GRN163L) in children with recurrent or refractory central nervous system malignancies: a pediatric brain tumor consortium study. J. Neurooncol., 2016, 129(3), 443-451.
[http://dx.doi.org/10.1007/s11060-016-2189-7] [PMID: 27350411]
[109]
Chiappori, A.A.; Kolevska, T.; Spigel, D.R.; Hager, S.; Rarick, M.; Gadgeel, S.; Blais, N.; Von Pawel, J.; Hart, L.; Reck, M.; Bassett, E.; Burington, B.; Schiller, J.H. A randomized phase II study of the telomerase inhibitor imetelstat as maintenance therapy for advanced non-small-cell lung cancer. Ann. Oncol., 2015, 26(2), 354-362.
[http://dx.doi.org/10.1093/annonc/mdu550] [PMID: 25467017]
[110]
Chiappori, A.; Bassett, E.; Burington, B.; Kolevska, T.; Spigel, D.R.; Hager, S.; Rarick, M.; Gadgeel, S.; Blais, N.; Von Pawel, J. A randomized phase II study of the telomerase inhibitor imetelstat as maintenance therapy for advanced non-small-cell lung cancer. AACR, 2015, 26(2), 354-362.
[http://dx.doi.org/10.1093/annonc/mdu550]
[111]
Chanan-Khan, A.A.; Munshi, N.C.; Hussein, M.A.; Elias, L.; Benedetti, F.; Smith, J.; Khor, S-P.; Huff, C.A. Results of a phase I study of GRN163L, a direct inhibitor of telomerase, in patients with relapsed and refractory Multiple Myeloma (MM). Blood, 2008, 112(11), 3688.
[http://dx.doi.org/10.1182/blood.V112.11.3688.3688]
[112]
Bernhardt, S.L.; Gjertsen, M.K.; Trachsel, S.; Møller, M.; Eriksen, J.A.; Meo, M.; Buanes, T.; Gaudernack, G. Telomerase peptide vaccination of patients with non-resectable pancreatic cancer: A dose escalating phase I/II study. Br. J. Cancer, 2006, 95(11), 1474-1482.
[http://dx.doi.org/10.1038/sj.bjc.6603437] [PMID: 17060934]
[113]
Tefferi, A.; Lasho, T.L.; Begna, K.H.; Patnaik, M.M.; Zblewski, D.L.; Finke, C.M.; Laborde, R.R.; Wassie, E.; Schimek, L.; Hanson, C.A.; Gangat, N.; Wang, X.; Pardanani, A. A pilot study of the telomerase inhibitor imetelstat for myelofibrosis. N. Engl. J. Med., 2015, 373(10), 908-919.
[http://dx.doi.org/10.1056/NEJMoa1310523] [PMID: 26332545]
[114]
Tefferi, A.; Al-Kali, A.; Begna, K.H.; Patnaik, M.M.; Lasho, T.L.; Rizo, A.; Wan, Y.; Hanson, C.A. Imetelstat therapy in refractory anemia with ring sideroblasts with or without thrombocytosis. Blood Cancer J., 2016, 6(3), e405
[http://dx.doi.org/10.1038/bcj.2016.13] [PMID: 26967822]
[115]
Urien, S.; Brain, E.; Bugat, R.; Pivot, X.; Lochon, I.; Van, M-L.V.; Vauzelle, F.; Lokiec, F. Pharmacokinetics of platinum after oral or intravenous cisplatin: a phase 1 study in 32 adult patients. Cancer Chemother. Pharmacol., 2005, 55(1), 55-60.
[http://dx.doi.org/10.1007/s00280-004-0852-8] [PMID: 15258698]
[116]
Berenson, J.R.; Boccia, R.; Siegel, D.; Bozdech, M.; Bessudo, A.; Stadtmauer, E.; Talisman Pomeroy, J.; Steis, R.; Flam, M.; Lutzky, J.; Jilani, S.; Volk, J.; Wong, S.F.; Moss, R.; Patel, R.; Ferretti, D.; Russell, K.; Louie, R.; Yeh, H.S.; Swift, R.A. Efficacy and safety of melphalan, arsenic trioxide and ascorbic acid combination therapy in patients with relapsed or refractory multiple myeloma: a prospective, multicentre, phase II, single-arm study. Br. J. Haematol., 2006, 135(2), 174-183.
[http://dx.doi.org/10.1111/j.1365-2141.2006.06280.x] [PMID: 17010047]
[117]
Phatak, P.; Dai, F.; Butler, M.; Nandakumar, M.P.; Gutierrez, P.L.; Edelman, M.J.; Hendriks, H.; Burger, A.M. KML001 cytotoxic activity is associated with its binding to telomeric sequences and telomere erosion in prostate cancer cells. Clin. Cancer Res., 2008, 14(14), 4593-4602.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-4572] [PMID: 18628474]
[118]
Chou, T-C.; Talalay, P. Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv. Enzyme Regul., 1984, 22, 27-55.
[http://dx.doi.org/10.1016/0065-2571(84)90007-4] [PMID: 6382953]
[119]
Edelman, M.J.; Lapidus, R.; Feliciano, J.; Styblo, M.; Beumer, J.H.; Liu, T.; Gobbru, J. Phase I and pharmacokinetic evaluation of the anti-telomerase agent KML-001 with cisplatin in advanced solid tumors. Cancer Chemother. Pharmacol., 2016, 78(5), 959-967.
[http://dx.doi.org/10.1007/s00280-016-3148-x] [PMID: 27620207]
[120]
Unger, C.; Berdel, W.; Hanauske, A-R.; Sindermann, H.; Engel, J.; Mross, K. First-time-in-man and pharmacokinetic study of weekly oral perifosine in patients with solid tumours. Eur. J. Cancer, 2010, 46(5), 920-925.
[http://dx.doi.org/10.1016/j.ejca.2009.12.028] [PMID: 20079628]
[121]
Haendeler, J.; Hoffmann, J.; Rahman, S.; Zeiher, A.M.; Dimmeler, S. Regulation of telomerase activity and anti-apoptotic function by protein-protein interaction and phosphorylation. FEBS Lett., 2003, 536(1-3), 180-186.
[http://dx.doi.org/10.1016/S0014-5793(03)00058-9] [PMID: 12586360]
[122]
Bae-Jump, V.L.; Zhou, C.; Gehrig, P.A.; Whang, Y.E.; Boggess, J.F. Rapamycin inhibits hTERT telomerase mRNA expression, independent of cell cycle arrest. Gynecol. Oncol., 2006, 100(3), 487-494.
[http://dx.doi.org/10.1016/j.ygyno.2005.08.053] [PMID: 16249016]
[123]
Friedman, D.R.; Lanasa, M.C.; Davis, P.H.; Allgood, S.D.; Matta, K.M.; Brander, D.M.; Chen, Y.; Davis, E.D.; Volkheimer, A.D.; Moore, J.O.; Gockerman, J.P.; Sportelli, P.; Weinberg, J.B. Perifosine treatment in chronic lymphocytic leukemia: results of a phase II clinical trial and in vitro studies. Leuk. Lymphoma, 2014, 55(5), 1067-1075.
[http://dx.doi.org/10.3109/10428194.2013.824080] [PMID: 23863122]
[124]
Holohan, B.; Hagiopian, M.M.; Lai, T-P.; Huang, E.; Friedman, D.R.; Wright, W.E.; Shay, J.W. Perifosine as a potential novel anti-telomerase therapy. Oncotarget, 2015, 6(26), 21816-21826.
[http://dx.doi.org/10.18632/oncotarget.5200] [PMID: 26307677]
[125]
Nair, S.K.; Morse, M.; Boczkowski, D.; Cumming, R.I.; Vasovic, L.; Gilboa, E.; Lyerly, H.K. Induction of tumor-specific cytotoxic T lymphocytes in cancer patients by autologous tumor RNA-transfected dendritic cells. Ann. Surg., 2002, 235(4), 540-549.
[http://dx.doi.org/10.1097/00000658-200204000-00013] [PMID: 11923611]
[126]
Vonderheide, R.H.; Anderson, K.S.; Hahn, W.C.; Butler, M.O.; Schultze, J.L.; Nadler, L.M. Characterization of HLA-A3-restricted cytotoxic T lymphocytes reactive against the widely expressed tumor antigen telomerase. Clin. Cancer Res., 2001, 7(11), 3343-3348.
[PMID: 11705846]
[127]
Filaci, G.; Fravega, M.; Setti, M.; Traverso, P.; Millo, E.; Fenoglio, D.; Negrini, S.; Ferrera, F.; Romagnoli, A.; Basso, M.; Contini, P.; Rizzi, M.; Ghio, M.; Benatti, U.; Damonte, G.; Ravetti, J.L.; Carmignani, G.; Zanetti, M.; Indiveri, F. Frequency of telomerase-specific CD8+ T lymphocytes in patients with cancer. Blood, 2006, 107(4), 1505-1512.
[http://dx.doi.org/10.1182/blood-2005-01-0258] [PMID: 16249379]
[128]
Vonderheide, R.H.; Domchek, S.M.; Schultze, J.L.; George, D.J.; Hoar, K.M.; Chen, D-Y.; Stephans, K.F.; Masutomi, K.; Loda, M.; Xia, Z.; Anderson, K.S.; Hahn, W.C.; Nadler, L.M. Vaccination of cancer patients against telomerase induces functional antitumor CD8+ T lymphocytes. Clin. Cancer Res., 2004, 10(3), 828-839.
[http://dx.doi.org/10.1158/1078-0432.CCR-0620-3] [PMID: 14871958]
[129]
Wenandy, L.; Sørensen, R.B.; Sengeløv, L.; Svane, I.M.; thor Straten, P.; Andersen, M.H. The immunogenicity of the hTERT540-548 peptide in cancer. Clin. Cancer Res., 2008, 14(1), 4-7.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-4590] [PMID: 18172245]
[130]
Domchek, S.M.; Recio, A.; Mick, R.; Clark, C.E.; Carpenter, E.L.; Fox, K.R.; DeMichele, A.; Schuchter, L.M.; Leibowitz, M.S.; Wexler, M.H.; Vance, B.A.; Beatty, G.L.; Veloso, E.; Feldman, M.D.; Vonderheide, R.H. Telomerase-specific T-cell immunity in breast cancer: effect of vaccination on tumor immunosurveillance. Cancer Res., 2007, 67(21), 10546-10555.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-2765] [PMID: 17974999]
[131]
Disis, M.L.; Schiffman, K.; Gooley, T.A.; McNeel, D.G.; Rinn, K.; Knutson, K.L. Delayed-type hypersensitivity response is a predictor of peripheral blood T-cell immunity after HER-2/neu peptide immunization. Clin. Cancer Res., 2000, 6(4), 1347-1350.
[PMID: 10778962]
[132]
Aloysius, M.M.; Mc Kechnie, A.J.; Robins, R.A.; Verma, C.; Eremin, J.M.; Farzaneh, F.; Habib, N.A.; Bhalla, J.; Hardwick, N.R.; Satthaporn, S.; Sreenivasan, T.; El-Sheemy, M.; Eremin, O. Generation in vivo of peptide-specific cytotoxic T cells and presence of regulatory T cells during vaccination with hTERT (class I and II) peptide-pulsed DCs. J. Transl. Med., 2009, 7(1), 18.
[http://dx.doi.org/10.1186/1479-5876-7-18] [PMID: 19298672]
[133]
Lee, Y.K.; Nata’atmaja, B.S.; Kim, B.H.; Pak, C.S.; Heo, C.Y. Protective effect of telomerase-based 16-mer peptide vaccine (GV1001) on inferior epigastric island skin flap survivability in ischaemia-reperfusion injury rat model. J. Plast. Surg. Hand Surg., 2017, 51(3), 210-216.
[http://dx.doi.org/10.1080/2000656X.2016.1235046] [PMID: 27670432]
[134]
Kyte, J.A. Cancer vaccination with telomerase peptide GV1001. Expert Opin. Investig. Drugs, 2009, 18(5), 687-694.
[http://dx.doi.org/10.1517/13543780902897631] [PMID: 19388882]
[135]
Brunsvig, P.; Gjertsen, M.; Kvalheim, G.; Aamdal, S.; Markowski-Grimsrud, C.; Sve, I.; Dyrhaug, M.; Trachsel, S.; Møller, M.; Eriksen, J. A phase I/II study of telomerase peptide vaccination of patients with non-small cell lung cancer. J. Clin. Oncol., 2005, 2580-2580.
[136]
Su, Z.; Vieweg, J.; Weizer, A.Z.; Dahm, P.; Yancey, D.; Turaga, V.; Higgins, J.; Boczkowski, D.; Gilboa, E.; Dannull, J. Enhanced induction of telomerase-specific CD4(+) T cells using dendritic cells transfected with RNA encoding a chimeric gene product. Cancer Res., 2002, 62(17), 5041-5048.
[PMID: 12208759]
[137]
Kokhaei, P.; Palma, M.; Hansson, L.; Österborg, A.; Mellstedt, H.; Choudhury, A. Telomerase (hTERT 611-626) serves as a tumor antigen in B-cell chronic lymphocytic leukemia and generates spontaneously antileukemic, cytotoxic T cells. Exp. Hematol., 2007, 35(2), 297-304.
[http://dx.doi.org/10.1016/j.exphem.2006.10.006] [PMID: 17258078]
[138]
Williams, M.A.; Bevan, M.J. Effector and memory CTL differentiation. Annu. Rev. Immunol., 2007, 25, 171-192.
[http://dx.doi.org/10.1146/annurev.immunol.25.022106.141548] [PMID: 17129182]
[139]
Correale, P.; Cusi, M.G.; Tsang, K.Y.; Del Vecchio, M.T.; Marsili, S.; Placa, M.L.; Intrivici, C.; Aquino, A.; Micheli, L.; Nencini, C.; Ferrari, F.; Giorgi, G.; Bonmassar, E.; Francini, G. Chemo-immunotherapy of metastatic colorectal carcinoma with gemcitabine plus FOLFOX 4 followed by subcutaneous granulocyte macrophage colony-stimulating factor and interleukin-2 induces strong immunologic and antitumor activity in metastatic colon cancer patients. J. Clin. Oncol., 2005, 23(35), 8950-8958.
[http://dx.doi.org/10.1200/JCO.2005.12.147] [PMID: 16061910]
[140]
Staff, C.; Mozaffari, F.; Frödin, J-E.; Mellstedt, H.; Liljefors, M. Telomerase (GV1001) vaccination together with gemcitabine in advanced pancreatic cancer patients. Int. J. Oncol., 2014, 45(3), 1293-1303.
[http://dx.doi.org/10.3892/ijo.2014.2496] [PMID: 24919654]
[141]
Middleton, G.; Silcocks, P.; Cox, T.; Valle, J.; Wadsley, J.; Propper, D.; Coxon, F.; Ross, P.; Madhusudan, S.; Roques, T.; Cunningham, D.; Falk, S.; Wadd, N.; Harrison, M.; Corrie, P.; Iveson, T.; Robinson, A.; McAdam, K.; Eatock, M.; Evans, J.; Archer, C.; Hickish, T.; Garcia-Alonso, A.; Nicolson, M.; Steward, W.; Anthoney, A.; Greenhalf, W.; Shaw, V.; Costello, E.; Naisbitt, D.; Rawcliffe, C.; Nanson, G.; Neoptolemos, J. Gemcitabine and capecitabine with or without telomerase peptide vaccine GV1001 in patients with locally advanced or metastatic pancreatic cancer (TeloVac): an open-label, randomised, phase 3 trial. Lancet Oncol., 2014, 15(8), 829-840.
[http://dx.doi.org/10.1016/S1470-2045(14)70236-0] [PMID: 24954781]
[142]
Inderberg-Suso, E-M.; Trachsel, S.; Lislerud, K.; Rasmussen, A-M.; Gaudernack, G. Widespread CD4+ T-cell reactivity to novel hTERT epitopes following vaccination of cancer patients with a single hTERT peptide GV1001. OncoImmunology, 2012, 1(5), 670-686.
[http://dx.doi.org/10.4161/onci.20426] [PMID: 22934259]
[143]
Brunsvig, P.F.; Aamdal, S.; Gjertsen, M.K.; Kvalheim, G.; Markowski-Grimsrud, C.J.; Sve, I.; Dyrhaug, M.; Trachsel, S.; Møller, M.; Eriksen, J.A.; Gaudernack, G. Telomerase peptide vaccination: a phase I/II study in patients with non-small cell lung cancer. Cancer Immunol. Immunother., 2006, 55(12), 1553-1564.
[http://dx.doi.org/10.1007/s00262-006-0145-7] [PMID: 16491401]
[144]
Brunsvig, P.F.; Kyte, J.A.; Kersten, C.; Sundstrøm, S.; Møller, M.; Nyakas, M.; Hansen, G.L.; Gaudernack, G.; Aamdal, S. Telomerase peptide vaccination in NSCLC: a phase II trial in stage III patients vaccinated after chemoradiotherapy and an 8-year update on a phase I/II trial. Clin. Cancer Res., 2011, 17(21), 6847-6857.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-1385] [PMID: 21918169]
[145]
Hunger, R.E.; Kernland Lang, K.; Markowski, C.J.; Trachsel, S.; Møller, M.; Eriksen, J.A.; Rasmussen, A-M.; Braathen, L.R.; Gaudernack, G. Vaccination of patients with cutaneous melanoma with telomerase-specific peptides. Cancer Immunol. Immunother., 2011, 60(11), 1553-1564.
[http://dx.doi.org/10.1007/s00262-011-1061-z] [PMID: 21681371]
[146]
Lencioni, R. Seminars in liver disease; Thieme Medical Publishers: New York, 2010, 30, p. 052-060.
[147]
Kyte, J.A.; Gaudernack, G.; Dueland, S.; Trachsel, S.; Julsrud, L.; Aamdal, S. Telomerase peptide vaccination combined with temozolomide: a clinical trial in stage IV melanoma patients. Clin. Cancer Res., 2011, 17(13), 4568-4580.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-0184] [PMID: 21586625]
[148]
Schlapbach, C.; Yerly, D.; Daubner, B.; Yawalkar, N.; Hunger, R.E. Telomerase-specific GV1001 peptide vaccination fails to induce objective tumor response in patients with cutaneous T cell lymphoma. J. Dermatol. Sci., 2011, 62(2), 75-83.
[http://dx.doi.org/10.1016/j.jdermsci.2011.02.001] [PMID: 21377838]
[149]
Greten, T.F.; Forner, A.; Korangy, F.; N’Kontchou, G.; Barget, N.; Ayuso, C.; Ormandy, L.A.; Manns, M.P.; Beaugrand, M.; Bruix, J. A phase II open label trial evaluating safety and efficacy of a telomerase peptide vaccination in patients with advanced hepatocellular carcinoma. BMC Cancer, 2010, 10(1), 209.
[http://dx.doi.org/10.1186/1471-2407-10-209] [PMID: 20478057]
[150]
Kailashiya, C.; Sharma, H.B.; Kailashiya, J. Telomerase based anticancer immunotherapy and vaccines approaches. Vaccine, 2017, 35(43), 5768-5775.
[http://dx.doi.org/10.1016/j.vaccine.2017.09.011] [PMID: 28893481]
[151]
Pardoll, D.M.; Topalian, S.L. The role of CD4+ T cell responses in antitumor immunity. Curr. Opin. Immunol., 1998, 10(5), 588-594.
[http://dx.doi.org/10.1016/S0952-7915(98)80228-8] [PMID: 9794842]
[152]
Aucouturier, J.; Dupuis, L.; Deville, S.; Ascarateil, S.; Ganne, V. Montanide ISA 720 and 51: a new generation of water in oil emulsions as adjuvants for human vaccines. Expert Rev. Vaccines, 2002, 1(1), 111-118.
[http://dx.doi.org/10.1586/14760584.1.1.111] [PMID: 12908518]
[153]
Johnston, D.; Bystryn, J-C. Topical imiquimod is a potent adjuvant to a weakly-immunogenic protein prototype vaccine. Vaccine, 2006, 24(11), 1958-1965.
[http://dx.doi.org/10.1016/j.vaccine.2005.10.045] [PMID: 16310898]
[154]
Rashin, A.A.; Jernigan, R.L. Clusters of structurally similar MHC I HLA-A2 molecules, found with a new method, suggest mechanisms of t-cell receptor Avidity. Biochemistry, 2016, 55(1), 167-185.
[http://dx.doi.org/10.1021/acs.biochem.5b01077] [PMID: 26600404]
[155]
Fenoglio, D.; Parodi, A.; Lavieri, R.; Kalli, F.; Ferrera, F.; Tagliamacco, A.; Guastalla, A.; Lamperti, M.G.; Giacomini, M.; Filaci, G. Immunogenicity of GX301 cancer vaccine: Four (telomerase peptides) are better than one. Hum. Vaccin. Immunother., 2015, 11(4), 838-850.
[http://dx.doi.org/10.1080/21645515.2015.1012032] [PMID: 25714118]
[156]
Menez-Jamet, J.; Gallou, C.; Rougeot, A.; Kosmatopoulos, K. Optimized tumor cryptic peptides: the basis for universal neo-antigen-like tumor vaccines. Ann. Transl. Med., 2016, 4(14), 266.
[http://dx.doi.org/10.21037/atm.2016.05.15] [PMID: 27563653]
[157]
Vetsika, E-K.; Papadimitraki, E.; Aggouraki, D.; Konsolakis, G.; Mela, M-E.; Kotsakis, A.; Christou, S.; Patramani, S.; Alefantinou, M.; Kaskara, A.; Christophyllakis, C.; Kosmatopoulos, K.; Georgoulias, V.; Mavroudis, D. Sequential administration of the native TERT572 cryptic peptide enhances the immune response initiated by its optimized variant TERT(572Y) in cancer patients. J. Immunother., 2011, 34(9), 641-650.
[http://dx.doi.org/10.1097/CJI.0b013e31823284a6] [PMID: 21989412]
[158]
Mavroudis, D.; Bolonakis, I.; Cornet, S.; Myllaki, G.; Kanellou, P.; Kotsakis, A.; Galanis, A.; Nikoloudi, I.; Spyropoulou, M.; Menez, J.; Miconnet, I.; Niniraki, M.; Cordopatis, P.; Kosmatopoulos, K.; Georgoulias, V. A phase I study of the optimized cryptic peptide TERT(572y) in patients with advanced malignancies. Oncology, 2006, 70(4), 306-314.
[http://dx.doi.org/10.1159/000096252] [PMID: 17047402]
[159]
Bolonaki, I.; Kotsakis, A.; Papadimitraki, E.; Aggouraki, D.; Konsolakis, G.; Vagia, A.; Christophylakis, C.; Nikoloudi, I.; Magganas, E.; Galanis, A.; Cordopatis, P.; Kosmatopoulos, K.; Georgoulias, V.; Mavroudis, D. Vaccination of patients with advanced non-small-cell lung cancer with an optimized cryptic human telomerase reverse transcriptase peptide. J. Clin. Oncol., 2007, 25(19), 2727-2734.
[http://dx.doi.org/10.1200/JCO.2006.10.3465] [PMID: 17602077]
[160]
Vetsika, E-K.; Konsolakis, G.; Aggouraki, D.; Kotsakis, A.; Papadimitraki, E.; Christou, S.; Menez-Jamet, J.; Kosmatopoulos, K.; Georgoulias, V.; Mavroudis, D. Immunological responses in cancer patients after vaccination with the therapeutic telomerase-specific vaccine Vx-001. Cancer Immunol. Immunother., 2012, 61(2), 157-168.
[http://dx.doi.org/10.1007/s00262-011-1093-4] [PMID: 21858533]
[161]
Kotsakis, A.; Vetsika, E-K.; Christou, S.; Hatzidaki, D.; Vardakis, N.; Aggouraki, D.; Konsolakis, G.; Georgoulias, V.; Christophyllakis, Ch.; Cordopatis, P.; Kosmatopoulos, K.; Mavroudis, D. Clinical outcome of patients with various advanced cancer types vaccinated with an optimized cryptic human telomerase reverse transcriptase (TERT) peptide: results of an expanded phase II study. Ann. Oncol., 2012, 23(2), 442-449.
[http://dx.doi.org/10.1093/annonc/mdr396] [PMID: 21873272]
[162]
Georgoulias, V.; Douillard, J-Y.; Khayat, D.; Manegold, C.; Rosell, R.; Rossi, A.; Menez-Jamet, J.; Iché, M.; Kosmatopoulos, K.; Gridelli, C. A multicenter randomized phase IIb efficacy study of Vx-001, a peptide-based cancer vaccine as maintenance treatment in advanced non-small-cell lung cancer: treatment rationale and protocol dynamics. Clin. Lung Cancer, 2013, 14(4), 461-465.
[http://dx.doi.org/10.1016/j.cllc.2013.02.001] [PMID: 23647738]
[163]
Kotsakis, A.; Papadimitraki, E.; Vetsika, E.K.; Aggouraki, D.; Dermitzaki, E.K.; Hatzidaki, D.; Kentepozidis, N.; Mavroudis, D.; Georgoulias, V. A phase II trial evaluating the clinical and immunologic response of HLA-A2(+) non-small cell lung cancer patients vaccinated with an hTERT cryptic peptide. Lung Cancer, 2014, 86(1), 59-66.
[http://dx.doi.org/10.1016/j.lungcan.2014.07.018] [PMID: 25130084]
[164]
Gridelli, C.; Ciuleanu, T.; Gomez, M.D.; Szczesna, A.; Bover, I.; Dols, M.C.; Kentepozidis, N.; Viteri, S.; Manegold, C.; Khayat, D. LBA52Randomized double blind phase IIb trial in advanced NSCLC patients who did not progress after first line platinum based chemotherapy: Vx-001, a therapeutic cancer vaccine, vs. placebo as maintenance therapy. Ann. Oncol., 2017, 285.
[165]
Lilleby, W.; Gaudernack, G.; Brunsvig, P.F.; Vlatkovic, L.; Schulz, M.; Mills, K.; Hole, K.H.; Inderberg, E.M. Phase I/IIa clinical trial of a novel hTERT peptide vaccine in men with metastatic hormone-naive prostate cancer. Cancer Immunol. Immunother., 2017, 66(7), 891-901.
[http://dx.doi.org/10.1007/s00262-017-1994-y] [PMID: 28391357]
[166]
Rapoport, A.P.; Aqui, N.A.; Stadtmauer, E.A.; Vogl, D.T.; Fang, H-B.; Cai, L.; Janofsky, S.; Chew, A.; Storek, J.; Akpek, G.; Badros, A.; Yanovich, S.; Tan, M.T.; Veloso, E.; Pasetti, M.F.; Cross, A.; Philip, S.; Murphy, H.; Bhagat, R.; Zheng, Z.; Milliron, T.; Cotte, J.; Cannon, A.; Levine, B.L.; Vonderheide, R.H.; June, C.H. Combination immunotherapy using adoptive T-cell transfer and tumor antigen vaccination on the basis of hTERT and survivin after ASCT for myeloma. Blood, 2011, 117(3), 788-797.
[http://dx.doi.org/10.1182/blood-2010-08-299396] [PMID: 21030558]
[167]
Mizukoshi, E.; Nakagawa, H.; Kitahara, M.; Yamashita, T.; Arai, K.; Sunagozaka, H.; Fushimi, K.; Kobayashi, E.; Kishi, H.; Muraguchi, A.; Kaneko, S. Immunological features of T cells induced by human telomerase reverse transcriptase-derived peptides in patients with hepatocellular carcinoma. Cancer Lett., 2015, 364(2), 98-105.
[http://dx.doi.org/10.1016/j.canlet.2015.04.031] [PMID: 25982205]
[168]
Banchereau, J.; Steinman, R.M. Dendritic cells and the control of immunity. Nature, 1998, 392(6673), 245-252.
[http://dx.doi.org/10.1038/32588] [PMID: 9521319]
[169]
Ludewig, B.; Barchiesi, F.; Pericin, M.; Zinkernagel, R.M.; Hengartner, H.; Schwendener, R.A. In vivo antigen loading and activation of dendritic cells via a liposomal peptide vaccine mediates protective antiviral and anti-tumour immunity. Vaccine, 2000, 19(1), 23-32.
[http://dx.doi.org/10.1016/S0264-410X(00)00163-8] [PMID: 10924783]
[170]
Anguille, S.; Smits, E.L.; Bryant, C.; Van Acker, H.H.; Goossens, H.; Lion, E.; Fromm, P.D.; Hart, D.N.; Van Tendeloo, V.F.; Berneman, Z.N. Dendritic cells as pharmacological tools for cancer immunotherapy. Pharmacol. Rev., 2015, 67(4), 731-753.
[http://dx.doi.org/10.1124/pr.114.009456] [PMID: 26240218]
[171]
Banchereau, J.; Palucka, A.K. Dendritic cells as therapeutic vaccines against cancer. Nat. Rev. Immunol., 2005, 5(4), 296-306.
[http://dx.doi.org/10.1038/nri1592] [PMID: 15803149]
[172]
Yamanaka, R.; Homma, J.; Yajima, N.; Tsuchiya, N.; Sano, M.; Kobayashi, T.; Yoshida, S.; Abe, T.; Narita, M.; Takahashi, M.; Tanaka, R. Clinical evaluation of dendritic cell vaccination for patients with recurrent glioma: results of a clinical phase I/II trial. Clin. Cancer Res., 2005, 11(11), 4160-4167.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-0120] [PMID: 15930352]
[173]
Boczkowski, D.; Nair, S.K.; Snyder, D.; Gilboa, E. Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo. J. Exp. Med., 1996, 184(2), 465-472.
[http://dx.doi.org/10.1084/jem.184.2.465] [PMID: 8760800]
[174]
Frolkis, M.; Fischer, M.B.; Wang, Z.; Lebkowski, J.S.; Chiu, C-P.; Majumdar, A.S. Dendritic cells reconstituted with human telomerase gene induce potent cytotoxic T-cell response against different types of tumors. Cancer Gene Ther., 2003, 10(3), 239-249.
[http://dx.doi.org/10.1038/sj.cgt.7700563] [PMID: 12637945]
[175]
Khoury, H.J.; Collins, R.H., Jr; Blum, W.; Stiff, P.S.; Elias, L.; Lebkowski, J.S.; Reddy, A.; Nishimoto, K.P.; Sen, D.; Wirth, E.D., III; Case, C.C.; DiPersio, J.F. Immune responses and long-term disease recurrence status after telomerase-based dendritic cell immunotherapy in patients with acute myeloid leukemia. Cancer, 2017, 123(16), 3061-3072.
[http://dx.doi.org/10.1002/cncr.30696] [PMID: 28411378]
[176]
Sioud, M.; Nyakas, M.; Sæbøe-Larssen, S.; Mobergslien, A.; Aamdal, S.; Kvalheim, G. Diversification of antitumour immunity in a patient with metastatic melanoma treated with ipilimumab and an IDO-silenced dendritic cell vaccine. Case Rep. Med., 2016., 9639585 Epub ahead of Print
[http://dx.doi.org/10.1155/2016/9639585]
[177]
Suso, E.M.I.; Dueland, S.; Rasmussen, A-M.; Vetrhus, T.; Aamdal, S.; Kvalheim, G.; Gaudernack, G. hTERT mRNA dendritic cell vaccination: complete response in a pancreatic cancer patient associated with response against several hTERT epitopes. Cancer Immunol. Immunother., 2011, 60(6), 809-818.
[http://dx.doi.org/10.1007/s00262-011-0991-9] [PMID: 21365467]
[178]
DiPersio, J.F.; Collins, R.H.; Blum, W.; Devetten, M.P.; Stiff, P.; Elias, L.; Reddy, A.; Smith, J.A.; Khoury, H.J. Immune responses in AML patients following vaccination with GRNVAC1, autologous RNA transfected dendritic cells expressing telomerase catalytic subunit hTERT. Blood, 2009, 114(22), 633.
[http://dx.doi.org/10.1182/blood.V114.22.633.633]
[179]
Su, Z.; Dannull, J.; Yang, B.K.; Dahm, P.; Coleman, D.; Yancey, D.; Sichi, S.; Niedzwiecki, D.; Boczkowski, D.; Gilboa, E.; Vieweg, J. Telomerase mRNA-transfected dendritic cells stimulate antigen-specific CD8+ and CD4+ T cell responses in patients with metastatic prostate cancer. J. Immunol., 2005, 174(6), 3798-3807.
[http://dx.doi.org/10.4049/jimmunol.174.6.3798] [PMID: 15749921]
[180]
Mehrotra, S.; Britten, C.D.; Chin, S.; Garrett-Mayer, E.; Cloud, C.A.; Li, M.; Scurti, G.; Salem, M.L.; Nelson, M.H.; Thomas, M.B.; Paulos, C.M.; Salazar, A.M.; Nishimura, M.I.; Rubinstein, M.P.; Li, Z.; Cole, D.J. Vaccination with poly(IC:LC) and peptide-pulsed autologous dendritic cells in patients with pancreatic cancer. J. Hematol. Oncol., 2017, 10(1), 82.
[http://dx.doi.org/10.1186/s13045-017-0459-2] [PMID: 28388966]
[181]
Calvet, C.Y.; Thalmensi, J.; Liard, C.; Pliquet, E.; Bestetti, T.; Huet, T.; Langlade-Demoyen, P.; Mir, L.M. Optimization of a gene electrotransfer procedure for efficient intradermal immunization with an hTERT-based DNA vaccine in mice. Mol. Ther. Methods Clin. Dev., 2014, 1, 14045.
[http://dx.doi.org/10.1038/mtm.2014.45] [PMID: 26015983]
[182]
Thalmensi, J.; Pliquet, E.; Liard, C.; Escande, M.; Bestetti, T.; Julithe, M.; Kostrzak, A.; Pailhes-Jimenez, A-S.; Bourges, E.; Loustau, M.; Caumartin, J.; Lachgar, A.; Huet, T.; Wain-Hobson, S.; Langlade-Demoyen, P. Anticancer DNA vaccine based on human telomerase reverse transcriptase generates a strong and specific T cell immune response. OncoImmunology, 2015, 5(3), e1083670
[http://dx.doi.org/10.1080/2162402X.2015.1083670] [PMID: 27141336]
[183]
Teixeira, L.; Medioni, J.; Doucet, L.; Culine, S.; Oudard, S.; Adotevi, O.; Dragon Durey, M.-A.; Kiladjian, J.-J.; Brizard, M.; Bourré, L. Results of a first-in-human phase I study of INVAC-1, an optimized plasmid DNA encoding an inactive form of human telomerase reverse transcriptase (hTERT), in patients with advanced solid tumors. J. Clin. Oncology., 2017, 35(15_suppl.), 3087.
[http://dx.doi.org/10.1200/JCO.2017.35.15_suppl.3087]
[184]
Vonderheide, R.H.; Aggarwal, C.; Bajor, D.L.; Goldenberg, J.; Loch, C.; Lee, J.C.; Yan, J.; Morrow, M.P.; DeMichele, A.; Langer, C. J Study of hTERT and IL-12 DNA immunotherapy using electroporation in patients with solid tumors after definitive surgery and adjuvant therapy. J. Clin. Oncol., 2015, 33, TPS3104
[185]
Benedetti, R.; Dell’Aversana, C.; Giorgio, C.; Astorri, R.; Altucci, L. Breast cancer vaccines: new insights. Front. Endocrinol. (Lausanne), 2017, 8, 270.
[http://dx.doi.org/10.3389/fendo.2017.00270] [PMID: 29081765]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy