Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Mini-Review Article

Dietary Epicatechin, A Novel Anti-aging Bioactive Small Molecule

Author(s): Hongwei Si*, Chao-Qiang Lai* and Dongmin Liu*

Volume 28, Issue 1, 2021

Published on: 30 December, 2019

Page: [3 - 18] Pages: 16

DOI: 10.2174/0929867327666191230104958

Price: $65

Abstract

Epicatechin (EC), a flavonoid present in various foods including cocoa, dark chocolate, berries, and tea, has recently been reported to promote general health and survival of old mice fed a standard chow diet. This is considered a novel discovery in the field of identifying natural compounds to extend lifespan, given that presumably popular anti-aging natural agents including resveratrol, green tea extract, and curcumin had failed in extending the lifespan of standard chow-diet-fed mice. However, the anti-aging mechanism of EC is not fully understood, thus impeding the potential application of this natural compound in improving a healthy lifespan in humans. In this review, we first summarized the main dietary sources that contain a significant amount of EC and recent research regarding the absorption, metabolism and distribution of EC in humans and rodents. The review is then focused on the anti-aging effects of EC in cultured cells, animals and humans with the possible physiological, cellular and molecular mechanisms underlying its lifespan-extending effects.

Keywords: Epicatechin, dietary intake, lifespan, anti-aging, animals, humans, EC, Bioactive molecule.

[1]
Baur, J.A.; Pearson, K.J.; Price, N.L.; Jamieson, H.A.; Lerin, C.; Kalra, A.; Prabhu, V.V.; Allard, J.S.; Lopez-Lluch, G.; Lewis, K.; Pistell, P.J.; Poosala, S.; Becker, K.G.; Boss, O.; Gwinn, D.; Wang, M.; Ramaswamy, S.; Fishbein, K.W.; Spencer, R.G.; Lakatta, E.G.; Le Couteur, D.; Shaw, R.J.; Navas, P.; Puigserver, P.; Ingram, D.K.; de Cabo, R.; Sinclair, D.A. Resveratrol improves health and survival of mice on a high-calorie diet. Nature, 2006, 444(7117), 337-342.
[http://dx.doi.org/10.1038/nature05354] [PMID: 17086191]
[2]
Si, H.; Liu, D. Dietary antiaging phytochemicals and mechanisms associated with prolonged survival. J. Nutr. Biochem., 2014, 25(6), 581-591.
[http://dx.doi.org/10.1016/j.jnutbio.2014.02.001] [PMID: 24742470]
[3]
Pearson, K.J.; Baur, J.A.; Lewis, K.N.; Peshkin, L.; Price, N.L.; Labinskyy, N.; Swindell, W.R.; Kamara, D.; Minor, R.K.; Perez, E.; Jamieson, H.A.; Zhang, Y.; Dunn, S.R.; Sharma, K.; Pleshko, N.; Woollett, L.A.; Csiszar, A.; Ikeno, Y.; Le Couteur, D.; Elliott, P.J.; Becker, K.G.; Navas, P.; Ingram, D.K.; Wolf, N.S.; Ungvari, Z.; Sinclair, D.A.; de Cabo, R. Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell Metab., 2008, 8(2), 157-168.
[http://dx.doi.org/10.1016/j.cmet.2008.06.011] [PMID: 18599363]
[4]
Miller, R.A.; Harrison, D.E.; Astle, C.M.; Baur, J.A.; Boyd, A.R.; de Cabo, R.; Fernandez, E.; Flurkey, K.; Javors, M.A.; Nelson, J.F.; Orihuela, C.J.; Pletcher, S.; Sharp, Z.D.; Sinclair, D.; Starnes, J.W.; Wilkinson, J.E.; Nadon, N.L.; Strong, R. Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice. J. Gerontol. A Biol. Sci. Med. Sci., 2011, 66(2), 191-201.
[http://dx.doi.org/10.1093/gerona/glq178] [PMID: 20974732]
[5]
Strong, R.; Miller, R.A.; Astle, C.M.; Baur, J.A.; de Cabo, R.; Fernandez, E.; Guo, W.; Javors, M.; Kirkland, J.L.; Nelson, J.F.; Sinclair, D.A.; Teter, B.; Williams, D.; Zaveri, N.; Nadon, N.L.; Harrison, D.E. Evaluation of resveratrol, green tea extract, curcumin, oxaloacetic acid, and medium-chain triglyceride oil on life span of genetically heterogeneous mice. J. Gerontol. A Biol. Sci. Med. Sci., 2013, 68(1), 6-16.
[http://dx.doi.org/10.1093/gerona/gls070] [PMID: 22451473]
[6]
Nadon, N.L.; Strong, R.; Miller, R.A.; Harrison, D.E. NIA interventions testing program: investigating putative aging intervention agents in a genetically heterogeneous mouse model. EBioMedicine, 2017, 21, 3-4.
[http://dx.doi.org/10.1016/j.ebiom.2016.11.038] [PMID: 27923560]
[7]
Si, H.; Fu, Z.; Babu, P.V.; Zhen, W.; Leroith, T.; Meaney, M.P.; Voelker, K.A.; Jia, Z.; Grange, R.W.; Liu, D. Dietary epicatechin promotes survival of obese diabetic mice and Drosophila melanogaster. J. Nutr., 2011, 141(6), 1095-1100.
[http://dx.doi.org/10.3945/jn.110.134270] [PMID: 21525262]
[8]
Si, H.; Wang, X.; Zhang, L.; Parnell, L.D.; Admed, B.; LeRoith, T.; Ansah, T.A.; Zhang, L.; Li, J.; Ordovás, J.M.; Si, H.; Liu, D.; Lai, C.Q. Dietary epicatechin improves survival and delays skeletal muscle degeneration in aged mice. FASEB J., 2019, 33(1), 965-977.
[http://dx.doi.org/10.1096/fj.201800554RR] [PMID: 30096038]
[9]
Bhagwat, S.; Haytowitz, D.B.; Holden, J.M. 2014. USDA database for the flavonoid content of selected foods,Release 2.0 and 3.1. US Department of Agriculture,Beltsville, MD, USA, 2014., Available at. http://www.ars.usda.gov/nutrientdata/flav (Accessed date: September2019.
[10]
Sellappan, S.; Akoh, C.C.; Krewer, G. Phenolic compounds and antioxidant capacity of Georgia-grown blueberries and blackberries. J. Agric. Food Chem., 2002, 50(8), 2432-2438.
[http://dx.doi.org/10.1021/jf011097r] [PMID: 11929309]
[11]
Quettier-Deleu, C.; Gressier, B.; Vasseur, J.; Dine, T.; Brunet, C.; Luyckx, M.; Cazin, M.; Cazin, J.C.; Bailleul, F.; Trotin, F. Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. J. Ethnopharmacol., 2000, 72(1-2), 35-42.
[http://dx.doi.org/10.1016/S0378-8741(00)00196-3] [PMID: 10967451]
[12]
Danila, A.M.; Kotani, A.; Hakamata, H.; Kusu, F. Determination of rutin, catechin, epicatechin, and epicatechin gallate in buckwheat Fagopyrum esculentum Moench by micro-high-performance liquid chromatography with electrochemical detection. J. Agric. Food Chem., 2007, 55(4), 1139-1143.
[http://dx.doi.org/10.1021/jf062815i] [PMID: 17253718]
[13]
Sakakibara, H.; Honda, Y.; Nakagawa, S.; Ashida, H.; Kanazawa, K. Simultaneous determination of all polyphenols in vegetables, fruits, and teas. J. Agric. Food Chem., 2003, 51(3), 571-581.
[http://dx.doi.org/10.1021/jf020926l] [PMID: 12537425]
[14]
de Pascual-Teresa, S.; Santos-Buelga, C.; Rivas-Gonzalo, J.C. Quantitative analysis of flavan-3-ols in Spanish foodstuffs and beverages. J. Agric. Food Chem., 2000, 48(11), 5331-5337.
[http://dx.doi.org/10.1021/jf000549h] [PMID: 11087482]
[15]
Cifuentes-Gomez, T.; Rodriguez-Mateos, A.; Gonzalez-Salvador, I.; Alañon, M.E.; Spencer, J.P. Factors affecting the absorption, metabolism, and excretion of cocoa flavanols in humans. J. Agric. Food Chem., 2015, 63(35), 7615-7623.
[http://dx.doi.org/10.1021/acs.jafc.5b00443] [PMID: 25711140]
[16]
Dower, J.I.; Geleijnse, J.M.; Hollman, P.Ch.; Soedamah-Muthu, S.S.; Kromhout, D. Dietary epicatechin intake and 25-y risk of cardiovascular mortality: the Zutphen Elderly Study. Am. J. Clin. Nutr., 2016, 104(1), 58-64.
[http://dx.doi.org/10.3945/ajcn.115.128819] [PMID: 27225434]
[17]
Bonaccio, M.; Cerletti, C.; Iacoviello, L.; de Gaetano, G. Mediterranean diet and low-grade subclinical inflammation: the Moli-sani study. Endocr. Metab. Immune Disord. Drug Targets, 2015, 15(1), 18-24.
[http://dx.doi.org/10.2174/1871530314666141020112146] [PMID: 25329200]
[18]
Kirakosyan, A.; Kaufman, P.; Warber, S.; Zick, S.; Aaronson, K.; Bolling, S.; Chul Chang, S. Applied environmental stresses to enhance the levels of polyphenolics in leaves of hawthorn plants. Physiol. Plant., 2004, 121(2), 182-186.
[http://dx.doi.org/10.1111/j.1399-3054.2004.00332.x] [PMID: 15153184]
[19]
Chakravarthy, B.K.; Gode, K.D. Isolation of (-)-Epicatechin from Pterocarpus marsupium and its Pharmacological Actions. Planta Med., 1985, 51(1), 56-59.
[http://dx.doi.org/10.1055/s-2007-969393] [PMID: 17340403]
[20]
Cai, Y.; Luo, Q.; Sun, M.; Corke, H. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci., 2004, 74(17), 2157-2184.
[http://dx.doi.org/10.1016/j.lfs.2003.09.047] [PMID: 14969719]
[21]
Ottaviani, J.I.; Borges, G.; Momma, T.Y.; Spencer, J.P.; Keen, C.L.; Crozier, A.; Schroeter, H. The metabolome of [2-(14)C](-)-epicatechin in humans: implications for the assessment of efficacy, safety, and mechanisms of action of polyphenolic bioactives. Sci. Rep., 2016, 6, 29034.
[http://dx.doi.org/10.1038/srep29034] [PMID: 27363516]
[22]
Natsume, M.; Osakabe, N.; Oyama, M.; Sasaki, M.; Baba, S.; Nakamura, Y.; Osawa, T.; Terao, J. Structures of (-)-epicatechin glucuronide identified from plasma and urine after oral ingestion of (-)-epicatechin: differences between human and rat. Free Radic. Biol. Med., 2003, 34(7), 840-849.
[http://dx.doi.org/10.1016/S0891-5849(02)01434-X] [PMID: 12654472]
[23]
Rodriguez-Mateos, A.; Cifuentes-Gomez, T.; Gonzalez-Salvador, I.; Ottaviani, J.I.; Schroeter, H.; Kelm, M.; Heiss, C.; Spencer, J.P. Influence of age on the absorption, metabolism, and excretion of cocoa flavanols in healthy subjects. Mol. Nutr. Food Res., 2015, 59(8), 1504-1512.
[http://dx.doi.org/10.1002/mnfr.201500091] [PMID: 25981347]
[24]
Maurya, P.K.; Prakash, S. Intracellular uptake of (-)epicatechin by human erythrocytes as a function of human age. Phytother. Res., 2011, 25(6), 944-946.
[http://dx.doi.org/10.1002/ptr.3343] [PMID: 21626601]
[25]
Sansone, R.; Ottaviani, J.I.; Rodriguez-Mateos, A.; Heinen, Y.; Noske, D.; Spencer, J.P.; Crozier, A.; Merx, M.W.; Kelm, M.; Schroeter, H.; Heiss, C. Methylxanthines enhance the effects of cocoa flavanols on cardiovascular function: randomized, double-masked controlled studies. Am. J. Clin. Nutr., 2017, 105(2), 352-360.
[http://dx.doi.org/10.3945/ajcn.116.140046] [PMID: 28003203]
[26]
Zhang, L.; Virgous, C.; Si, H. Synergistic anti-inflammatory effects and mechanisms of combined phytochemicals. J. Nutr. Biochem., 2019, 69(7), 19-30.
[http://dx.doi.org/10.1016/j.jnutbio.2019.03.009] [PMID: 31048206]
[27]
Schantz, M.; Erk, T.; Richling, E. Metabolism of green tea catechins by the human small intestine. Biotechnol. J., 2010, 5(10), 1050-1059.
[http://dx.doi.org/10.1002/biot.201000214] [PMID: 20931601]
[28]
Borges, G.; van der Hooft, J.J.J.; Crozier, A. A comprehensive evaluation of the [2-14C](-)-epicatechin metabolome in rats. Free Radic. Biol. Med., 2016, 99, 128-138.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.08.001] [PMID: 27495388]
[29]
Urpi-Sarda, M.; Monagas, M.; Khan, N.; Lamuela-Raventos, R.M.; Santos-Buelga, C.; Sacanella, E.; Castell, M.; Permanyer, J.; Andres-Lacueva, C. Epicatechin, procyanidins, and phenolic microbial metabolites after cocoa intake in humans and rats. Anal. Bioanal. Chem., 2009, 394(6), 1545-1556.
[http://dx.doi.org/10.1007/s00216-009-2676-1] [PMID: 19333587]
[30]
Borges, G.; Ottaviani, J.I.; van der Hooft, J.J.J.; Schroeter, H.; Crozier, A. Absorption, metabolism, distribution and excretion of (-)-epicatechin: a review of recent findings. Mol. Aspects Med., 2018, 61, 18-30.
[http://dx.doi.org/10.1016/j.mam.2017.11.002] [PMID: 29126853]
[31]
Kurlbaum, M.; Mülek, M.; Högger, P. Facilitated uptake of a bioactive metabolite of maritime pine bark extract (pycnogenol) into human erythrocytes. PLoS One, 2013, 8(4)e63197
[http://dx.doi.org/10.1371/journal.pone.0063197] [PMID: 23646194]
[32]
Wang, J.; Ferruzzi, M.G.; Ho, L.; Blount, J.; Janle, E.M.; Gong, B.; Pan, Y.; Gowda, G.A.; Raftery, D.; Arrieta-Cruz, I.; Sharma, V.; Cooper, B.; Lobo, J.; Simon, J.E.; Zhang, C.; Cheng, A.; Qian, X.; Ono, K.; Teplow, D.B.; Pavlides, C.; Dixon, R.A.; Pasinetti, G.M. Brain-targeted proanthocyanidin metabolites for Alzheimer’s disease treatment. J. Neurosci., 2012, 32(15), 5144-5150.
[http://dx.doi.org/10.1523/JNEUROSCI.6437-11.2012] [PMID: 22496560]
[33]
Goodrich, K.M.; Dorenkott, M.R.; Ye, L.; O’Keefe, S.F.; Hulver, M.W.; Neilson, A.P. Dietary supplementation with cocoa flavanols does not alter colon tissue profiles of native flavanols and their microbial metabolites established during habitual dietary exposure in C57BL/6J mice. J. Agric. Food Chem., 2014, 62(46), 11190-11199.
[http://dx.doi.org/10.1021/jf503838q] [PMID: 25336378]
[34]
Baiges, I.; Arola, L. COCOA (Theobroma cacao) polyphenol-rich extract increases the chronological lifespan of Saccharomyces cerevisiae. J. Frailty Aging, 2016, 5(3), 186-190.
[PMID: 29240368]
[35]
Northcott, J.M.; Czubryt, M.P.; Wigle, J.T. Vascular senescence and ageing: a role for the MEOX proteins in promoting endothelial dysfunction. Can. J. Physiol. Pharmacol., 2017, 95(10), 1067-1077.
[http://dx.doi.org/10.1139/cjpp-2017-0149] [PMID: 28727928]
[36]
Ramirez-Sanchez, I.; Mansour, C.; Navarrete-Yañez, V.; Ayala-Hernandez, M.; Guevara, G.; Castillo, C.; Loredo, M.; Bustamante, M.; Ceballos, G.; Villarreal, F.J. (-)-Epicatechin induced reversal of endothelial cell aging and improved vascular function: underlying mechanisms. Food Funct., 2018, 9(9), 4802-4813.
[http://dx.doi.org/10.1039/C8FO00483H] [PMID: 30129961]
[37]
Ramirez-Sanchez, I.; Maya, L.; Ceballos, G.; Villarreal, F. (-)-epicatechin activation of endothelial cell endothelial nitric oxide synthase, nitric oxide, and related signaling pathways. Hypertension, 2010, 55(6), 1398-1405.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.109.147892 ] [PMID: 20404222]
[38]
López-Lluch, G.; Irusta, P.M.; Navas, P.; de Cabo, R. Mitochondrial biogenesis and healthy aging. Exp. Gerontol., 2008, 43(9), 813-819.
[http://dx.doi.org/10.1016/j.exger.2008.06.014] [PMID: 18662766]
[39]
Moreno-Ulloa, A.; Miranda-Cervantes, A.; Licea-Navarro, A.; Mansour, C.; Beltrán-Partida, E.; Donis-Maturano, L.; Delgado De la Herrán, H.C.; Villarreal, F.; Álvarez-Delgado, C. (-)-Epicatechin stimulates mitochondrial biogenesis and cell growth in C2C12 myotubes via the G-protein coupled estrogen receptor. Eur. J. Pharmacol., 2018, 822, 95-107.
[http://dx.doi.org/10.1016/j.ejphar.2018.01.014] [PMID: 29355558]
[40]
Proshkina, E.; Lashmanova, E.; Dobrovolskaya, E.; Zemskaya, N.; Kudryavtseva, A.; Shaposhnikov, M.; Moskalev, A. Geroprotective and radioprotective activity of quercetin, (-)-epicatechin, and ibuprofen in Drosophila melanogaster. Front. Pharmacol., 2016, 7, 505.
[http://dx.doi.org/10.3389/fphar.2016.00505] [PMID: 28066251]
[41]
Bahadorani, S.; Hilliker, A.J. Cocoa confers life span extension in Drosophila melanogaster. Nutr. Res., 2008, 28(6), 377-382.
[http://dx.doi.org/10.1016/j.nutres.2008.03.018] [PMID: 19083435]
[42]
Sunagawa, T.; Shimizu, T.; Kanda, T.; Tagashira, M.; Sami, M.; Shirasawa, T. Procyanidins from apples (Malus pumila Mill.) extend the lifespan of Caenorhabditis elegans. Planta Med., 2011, 77(2), 122-127.
[http://dx.doi.org/10.1055/s-0030-1250204] [PMID: 20717869]
[43]
Ruzaidi, A.M.M.; Abbe, M.M.J.; Amin, I.; Nawalyahl, A.G.; Muhajirl, H. Protective effect of polyphenol-rich extract prepared from Malaysian cocoa (Theobroma cacao) on glucose levels and lipid profiles in streptozotocin-induced diabetic rats. J. Sci. Food Agric., 2008, 88(8), 1442-1447.
[http://dx.doi.org/10.1002/jsfa.3236]
[44]
Bisson, J.F.; Nejdi, A.; Rozan, P.; Hidalgo, S.; Lalonde, R.; Messaoudi, M. Effects of long-term administration of a cocoa polyphenolic extract (Acticoa powder) on cognitive performances in aged rats. Br. J. Nutr., 2008, 100(1), 94-101.
[http://dx.doi.org/10.1017/S0007114507886375] [PMID: 18179729]
[45]
Madhavadas, S.; Kapgal, V.K.; Kutty, B.M.; Subramanian, S. The neuroprotective effect of dark chocolate in monosodium glutamate-induced nontransgenic alzheimer disease model rats: biochemical, behavioral, and histological studies. J. Diet. Suppl., 2016, 13(4), 449-460.
[http://dx.doi.org/10.3109/19390211.2015.1108946] [PMID: 26673833]
[46]
Bayard, V.; Chamorro, F.; Motta, J.; Hollenberg, N.K. Does flavanol intake influence mortality from nitric oxide-dependent processes? Ischemic heart disease, stroke, diabetes mellitus, and cancer in Panama. Int. J. Med. Sci., 2007, 4(1), 53-58.
[http://dx.doi.org/10.7150/ijms.4.53] [PMID: 17299579]
[47]
Hollenberg, N.K.; Martinez, G.; McCullough, M.; Meinking, T.; Passan, D.; Preston, M.; Rivera, A.; Taplin, D.; Vicaria-Clement, M. Aging, acculturation, salt intake, and hypertension in the Kuna of Panama. Hypertension, 1997, 29(1 Pt 2), 171-176.
[http://dx.doi.org/10.1161/01.HYP.29.1.171] [PMID: 9039098]
[48]
Hollenberg, N.K.; Fisher, N.D. Is it the dark in dark chocolate? Circulation, 2007, 116(21), 2360-2362.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.73-8070] [PMID: 18025400]
[49]
Kirschbaum, J. Effect on human longevity of added dietary chocolate. Nutrition, 1998, 14(11-12), 869.
[http://dx.doi.org/10.1016/s0899-9007(98)00116-6] [PMID: 9834932]
[50]
Strandberg, T.E.; Strandberg, A.Y.; Pitkälä, K.; Salomaa, V.V.; Tilvis, R.S.; Miettinen, T.A. Chocolate, well-being and health among elderly men. Eur. J. Clin. Nutr., 2008, 62(2), 247-253.
[http://dx.doi.org/10.1038/sj.ejcn.1602707] [PMID: 17327862]
[51]
Mastroiacovo, D.; Kwik-Uribe, C.; Grassi, D.; Necozione, S.; Raffaele, A.; Pistacchio, L.; Righetti, R.; Bocale, R.; Lechiara, M.C.; Marini, C.; Ferri, C.; Desideri, G. Cocoa flavanol consumption improves cognitive function, blood pressure control, and metabolic profile in elderly subjects: the cocoa, cognition, and aging (CoCoA) study--a randomized controlled trial. Am. J. Clin. Nutr., 2015, 101(3), 538-548.
[http://dx.doi.org/10.3945/ajcn.114.092189] [PMID: 25733639]
[52]
Munguia, L.; Rubio-Gayosso, I.; Ramirez-Sanchez, I.; Ortiz, A.; Hidalgo, I.; Gonzalez, C.; Meaney, E.; Villarreal, F.; Najera, N.; Ceballos, G. High flavonoid cocoa supplement ameliorates plasma oxidative stress and inflammation levels while improving mobility and quality of life in older subjects: a double blind randomized clinical trial. J. Gerontol. A Biol. Sci. Med. Sci., 2019, 74(10), 1620-1627.
[http://dx.doi.org/10.1093/gerona/glz107] [PMID: 31056655]
[53]
Dower, J.I.; Geleijnse, J.M.; Gijsbers, L.; Schalkwijk, C.; Kromhout, D.; Hollman, P.C. Supplementation of the pure flavonoids epicatechin and quercetin affects some biomarkers of endothelial dysfunction and inflammation in (pre)hypertensive adults: a randomized double-blind, placebo-controlled, crossover trial. J. Nutr., 2015, 145(7), 1459-1463.
[http://dx.doi.org/10.3945/jn.115.211888] [PMID: 25972527]
[54]
Dower, J.I.; Geleijnse, J.M.; Gijsbers, L.; Zock, P.L.; Kromhout, D.; Hollman, P.C. Effects of the pure flavonoids epicatechin and quercetin on vascular function and cardiometabolic health: a randomized, double-blind, placebo-controlled, crossover trial. Am. J. Clin. Nutr., 2015, 101(5), 914-921.
[http://dx.doi.org/10.3945/ajcn.114.098590] [PMID: 25934864]
[55]
Esser, D.; Geleijnse, J.M.; Matualatupauw, J.C.; Dower, J.I.; Kromhout, D.; Hollman, P.C.H.; Afman, L.A. Pure flavonoid epicatechin and whole genome gene expression profiles in circulating immune cells in adults with elevated blood pressure: A randomised double-blind, placebo-controlled, crossover trial. PLoS One, 2018, 13(4)e0194229
[http://dx.doi.org/10.1371/journal.pone.0194229] [PMID: 29672527]
[56]
Kirch, N.; Berk, L.; Liegl, Y.; Adelsbach, M.; Zimmermann, B.F.; Stehle, P.; Stoffel-Wagner, B.; Ludwig, N.; Schieber, A.; Helfrich, H.P.; Ellinger, S. A nutritive dose of pure (-)-epicatechin does not beneficially affect increased cardiometabolic risk factors in overweight-to-obese adults-a randomized, placebo-controlled, double-blind crossover study. Am. J. Clin. Nutr., 2018, 107(6), 948-956.
[http://dx.doi.org/10.1093/ajcn/nqy066] [PMID: 29868915]
[57]
Giacosa, A.; Barale, R.; Bavaresco, L.; Faliva, M.A.; Gerbi, V.; La Vecchia, C.; Negri, E.; Opizzi, A.; Perna, S.; Pezzotti, M.; Rondanelli, M. Mediterranean way of drinking and longevity. Crit. Rev. Food Sci. Nutr., 2016, 56(4), 635-640.
[http://dx.doi.org/10.1080/10408398.2012.747484] [PMID: 25207479]
[58]
Godos, J.; Marventano, S.; Mistretta, A.; Galvano, F.; Grosso, G. Dietary sources of polyphenols in the mediterranean healthy eating, aging and lifestyle (MEAL) study cohort. Int. J. Food Sci. Nutr., 2017, 68(6), 750-756.
[http://dx.doi.org/10.1080/09637486.2017.1285870] [PMID: 28276907]
[59]
Messerli, F.H. Chocolate consumption, cognitive function, and Nobel laureates. N. Engl. J. Med., 2012, 367(16), 1562-1564.
[http://dx.doi.org/10.1056/NEJMon1211064] [PMID: 23050509]
[60]
Meier, B.P.; Noll, S.W.; Molokwu, O.J. The sweet life: the effect of mindful chocolate consumption on mood. Appetite, 2017, 108, 21-27.
[http://dx.doi.org/10.1016/j.appet.2016.09.018] [PMID: 27642035]
[61]
Tesauro, M.; Mauriello, A.; Rovella, V.; Annicchiarico-Petruzzelli, M.; Cardillo, C.; Melino, G.; Di Daniele, N. Arterial ageing: from endothelial dysfunction to vascular calcification. J. Intern. Med., 2017, 281(5), 471-482.
[http://dx.doi.org/10.1111/joim.12605] [PMID: 28345303]
[62]
Ding, E.L.; Hutfless, S.M.; Ding, X.; Girotra, S. Chocolate and prevention of cardiovascular disease: a systematic review. Nutr. Metab. (Lond.), 2006, 3, 2.
[http://dx.doi.org/10.1186/1743-7075-3-2] [PMID: 16390538]
[63]
Djoussé, L.; Hopkins, P.N.; Arnett, D.K.; Pankow, J.S.; Borecki, I.; North, K.E.; Curtis Ellison, R. Chocolate consumption is inversely associated with calcified atherosclerotic plaque in the coronary arteries: the NHLBI Family Heart Study. Clin. Nutr., 2011, 30(1), 38-43.
[http://dx.doi.org/10.1016/j.clnu.2010.06.011] [PMID: 20655129]
[64]
Petyaev, I.M.; Klochkov, V.A.; Chalyk, N.E.; Pristensky, D.V.; Chernyshova, M.P.; Kyle, N.H.; Bashmakov, Y.K. Markers of hypoxia and oxidative stress in aging volunteers ingesting lycosomal formulation of dark chocolate containing astaxanthin. J. Nutr. Health Aging, 2018, 22(9), 1092-1098.
[http://dx.doi.org/10.1007/s12603-018-1063-z] [PMID: 30379308]
[65]
Okamoto, T.; Kobayashi, R.; Natsume, M.; Nakazato, K. Habitual cocoa intake reduces arterial stiffness in postmenopausal women regardless of intake frequency: a randomized parallel-group study. Clin. Interv. Aging, 2016, 11, 1645-1652.
[http://dx.doi.org/10.2147/CIA.S118152] [PMID: 27881914]
[66]
Balzer, J.; Rassaf, T.; Heiss, C.; Kleinbongard, P.; Lauer, T.; Merx, M.; Heussen, N.; Gross, H.B.; Keen, C.L.; Schroeter, H.; Kelm, M. Sustained benefits in vascular function through flavanol-containing cocoa in medicated diabetic patients a double-masked, randomized, controlled trial. J. Am. Coll. Cardiol., 2008, 51(22), 2141-2149.
[http://dx.doi.org/10.1016/j.jacc.2008.01.059] [PMID: 18510961]
[67]
Heiss, C.; Sansone, R.; Karimi, H.; Krabbe, M.; Schuler, D.; Rodriguez-Mateos, A.; Kraemer, T.; Cortese-Krott, M.M.; Kuhnle, G.G.; Spencer, J.P.; Schroeter, H.; Merx, M.W.; Kelm, M. FLAVIOLA Consortium. European Union 7th Framework Program. Impact of cocoa flavanol intake on age-dependent vascular stiffness in healthy men: a randomized, controlled, double-masked trial. Age (Dordr.), 2015, 37(3), 9794.
[http://dx.doi.org/10.1007/s11357-015-9794-9] [PMID: 26013912]
[68]
Prince, P.S. A biochemical, electrocardiographic, electrophoretic, histopathological and in vitro study on the protective effects of (-)epicatechin in isoproterenol-induced myocardial infarcted rats. Eur. J. Pharmacol., 2011, 671(1-3), 95-101.
[http://dx.doi.org/10.1016/j.ejphar.2011.09.036] [PMID: 21958876]
[69]
Kumar, N.; Kant, R.; Maurya, P.K. Concentration-dependent effect of (-) epicatechin in hypertensive patients. Phytother. Res., 2010, 24(10), 1433-1436.
[http://dx.doi.org/10.1002/ptr.3119] [PMID: 20127878]
[70]
Esiri, M.M. Ageing and the brain. J. Pathol., 2007, 211(2), 181-187.
[http://dx.doi.org/10.1002/path.2089] [PMID: 17200950]
[71]
Anderton, B.H. Ageing of the brain. Mech. Ageing Dev., 2002, 123(7), 811-817.
[http://dx.doi.org/10.1016/S0047-6374(01)00426-2] [PMID: 11869738]
[72]
Stringer, T.P.; Guerrieri, D.; Vivar, C.; van Praag, H. Plant-derived flavanol (-)epicatechin mitigates anxiety in association with elevated hippocampal monoamine and BDNF levels, but does not influence pattern separation in mice. Transl. Psychiatry, 2015, 5(1)e493
[http://dx.doi.org/10.1038/tp.2014.135] [PMID: 255622843 ]
[73]
Crichton, G.E.; Elias, M.F.; Alkerwi, A. Chocolate intake is associated with better cognitive function: the maine-syracuse longitudinal study. Appetite, 2016, 100, 126-132.
[http://dx.doi.org/10.1016/j.appet.2016.02.010] [PMID: 26873453]
[74]
Sokolov, A.N.; Pavlova, M.A.; Klosterhalfen, S.; Enck, P. Chocolate and the brain: neurobiological impact of cocoa flavanols on cognition and behavior. Neurosci. Biobehav. Rev., 2013, 37(10 Pt 2), 2445-2453.
[http://dx.doi.org/10.1016/j.neubiorev.2013.06.013] [PMID: 23810791]
[75]
Wang, J.; Varghese, M.; Ono, K.; Yamada, M.; Levine, S.; Tzavaras, N.; Gong, B.; Hurst, W.J.; Blitzer, R.D.; Pasinetti, G.M. Cocoa extracts reduce oligomerization of amyloid-β: implications for cognitive improvement in Alzheimer’s disease. J. Alzheimers Dis., 2014, 41(2), 643-650.
[http://dx.doi.org/10.3233/JAD-132231] [PMID: 24957018]
[76]
Cimini, A.; Gentile, R.; D’Angelo, B.; Benedetti, E.; Cristiano, L.; Avantaggiati, M.L.; Giordano, A.; Ferri, C.; Desideri, G. Cocoa powder triggers neuroprotective and preventive effects in a human Alzheimer’s disease model by modulating BDNF signaling pathway. J. Cell. Biochem., 2013, 114(10), 2209-2220.
[http://dx.doi.org/10.1002/jcb.24548] [PMID: 23554028]
[77]
Neshatdoust, S.; Saunders, C.; Castle, S.M.; Vauzour, D.; Williams, C.; Butler, L.; Lovegrove, J.A.; Spencer, J.P. High-flavonoid intake induces cognitive improvements linked to changes in serum brain-derived neurotrophic factor: two randomised, controlled trials. Nutr. Healthy Aging, 2016, 4(1), 81-93.
[http://dx.doi.org/10.3233/NHA-1615] [PMID: 28035345]
[78]
Cunha, C.; Brambilla, R.; Thomas, K.L. A simple role for BDNF in learning and memory? Front. Mol. Neurosci., 2010, 3, 1.
[http://dx.doi.org/10.3389/neuro.02.001.2010] [PMID: 20162032]
[79]
Nair, K.S. Aging muscle. Am. J. Clin. Nutr., 2005, 81(5), 953-963.
[http://dx.doi.org/10.1093/ajcn/81.5.953] [PMID: 15883415]
[80]
Lindle, R.S.; Metter, E.J.; Lynch, N.A.; Fleg, J.L.; Fozard, J.L.; Tobin, J.; Roy, T.A.; Hurley, B.F. Age and gender comparisons of muscle strength in 654 women and men aged 20-93 yr. J. Appl. Physiol., 1997, 83(5), 1581-1587.
[http://dx.doi.org/10.1152/jappl.1997.83.5.1581] [PMID: 9375323]
[81]
Short, K.R.; Bigelow, M.L.; Kahl, J.; Singh, R.; Coenen-Schimke, J.; Raghavakaimal, S.; Nair, K.S. Decline in skeletal muscle mitochondrial function with aging in humans. Proc. Natl. Acad. Sci. USA, 2005, 102(15), 5618-5623.
[http://dx.doi.org/10.1073/pnas.0501559102 ] [PMID: 15800038]
[82]
Gutierrez-Salmean, G.; Ciaraldi, T.P.; Nogueira, L.; Barboza, J.; Taub, P.R.; Hogan, M.C.; Henry, R.R.; Meaney, E.; Villarreal, F.; Ceballos, G.; Ramirez-Sanchez, I. Effects of (-)-epicatechin on molecular modulators of skeletal muscle growth and differentiation. J. Nutr. Biochem., 2014, 25(1), 91-94.
[http://dx.doi.org/10.1016/j.jnutbio.2013.09.007 ] [PMID: 24314870]
[83]
Moreno-Ulloa, A.; Nogueira, L.; Rodriguez, A.; Barboza, J.; Hogan, M.C.; Ceballos, G.; Villarreal, F.; Ramirez-Sanchez, I. Recovery of indicators of mitochondrial biogenesis, oxidative stress, and aging with (-)-epicatechin in senile mice. J. Gerontol. A Biol. Sci. Med. Sci., 2015, 70(11), 1370-1378.
[http://dx.doi.org/10.1093/gerona/glu131] [PMID: 25143004]
[84]
Mafi, F.; Biglari, S.; Ghardashi Afousi, A.; Gaeini, A.A. Improvement in skeletal muscle strength and plasma levels of follistatin and myostatin induced by an 8-week resistance training and epicatechin supplementation in sarcopenic older adults. J. Aging Phys. Act., 2019, 27(3), 384-391.
[http://dx.doi.org/10.1123/japa.2017-0389] [PMID: 30299198]
[85]
Mangiola, F.; Nicoletti, A.; Gasbarrini, A.; Ponziani, F.R. Gut microbiota and aging. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(21), 7404-7413.
[http://dx.doi.org/10.26355/eurrev_201811_16280] [PMID: 30468488]
[86]
O’Toole, P.W.; Jeffery, I.B. Gut microbiota and aging. Science, 2015, 350(6265), 1214-1215.
[http://dx.doi.org/10.1126/science.aac8469] [PMID: 26785481]
[87]
Ticinesi, A.; Lauretani, F.; Milani, C.; Nouvenne, A.; Tana, C.; Del Rio, D.; Maggio, M.; Ventura, M.; Meschi, T. Aging gut microbiota at the cross-road between nutrition, physical frailty, and sarcopenia: is there a gut-muscle axis? Nutrients, 2017, 9(12), 1303.
[http://dx.doi.org/10.3390/nu9121303] [PMID: 29189738]
[88]
Dinan, T.G.; Cryan, J.F. Gut instincts: microbiota as a key regulator of brain development, ageing and neurodegeneration. J. Physiol., 2017, 595(2), 489-503.
[http://dx.doi.org/10.1113/JP273106] [PMID: 27641441]
[89]
Marín, L.; Miguélez, E.M.; Villar, C.J.; Lombó, F. Bioavailability of dietary polyphenols and gut microbiota metabolism: antimicrobial properties. BioMed Res. Int., 2015, 2015905215
[http://dx.doi.org/10.1155/2015/905215] [PMID: 25802870]
[90]
Cardona, F.; Andrés-Lacueva, C.; Tulipani, S.; Tinahones, F.J.; Queipo-Ortuño, M.I. Benefits of polyphenols on gut microbiota and implications in human health. J. Nutr. Biochem., 2013, 24(8), 1415-1422.
[http://dx.doi.org/10.1016/j.jnutbio.2013.05.001] [PMID: 23849454]
[91]
Tzounis, X.; Rodriguez-Mateos, A.; Vulevic, J.; Gibson, G.R.; Kwik-Uribe, C.; Spencer, J.P. Prebiotic evaluation of cocoa-derived flavanols in healthy humans by using a randomized, controlled, double-blind, crossover intervention study. Am. J. Clin. Nutr., 2011, 93(1), 62-72.
[http://dx.doi.org/10.3945/ajcn.110.000075] [PMID: 21068351]
[92]
Jang, S.; Sun, J.; Chen, P.; Lakshman, S.; Molokin, A.; Harnly, J.M.; Vinyard, B.T.; Urban, J.F., Jr; Davis, C.D.; Solano-Aguilar, G. Flavanol-enriched cocoa powder alters the intestinal microbiota, tissue and fluid metabolite profiles, and intestinal gene expression in pigs. J. Nutr., 2016, 146(4), 673-680.
[http://dx.doi.org/10.3945/jn.115.222968] [PMID: 26936136]
[93]
Espley, R.V.; Butts, C.A.; Laing, W.A.; Martell, S.; Smith, H.; McGhie, T.K.; Zhang, J.; Paturi, G.; Hedderley, D.; Bovy, A.; Schouten, H.J.; Putterill, J.; Allan, A.C.; Hellens, R.P. Dietary flavonoids from modified apple reduce inflammation markers and modulate gut microbiota in mice. J. Nutr., 2014, 144(2), 146-154.
[http://dx.doi.org/10.3945/jn.113.182659] [PMID: 24353343]
[94]
Kim, J.E.; Song, D.; Kim, J.; Choi, J.; Kim, J.R.; Yoon, H.S.; Bae, J.S.; Han, M.; Lee, S.; Hong, J.S.; Song, D.; Kim, S.J.; Son, M.J.; Choi, S.W.; Chung, J.H.; Kim, T.A.; Lee, K.W. Oral supplementation with cocoa extract reduces uvb-induced wrinkles in hairless mouse skin. J. Invest. Dermatol., 2016, 136(5), 1012-1021.
[http://dx.doi.org/10.1016/j.jid.2015.11.032] [PMID: 26854493]
[95]
Yoon, H.S.; Kim, J.R.; Park, G.Y.; Kim, J.E.; Lee, D.H.; Lee, K.W.; Chung, J.H. Cocoa flavanol supplementation influences skin conditions of photo-aged women: a 24-week double-blind, randomized, controlled trial. J. Nutr., 2016, 146(1), 46-50.
[http://dx.doi.org/10.3945/jn.115.217711] [PMID: 26581682]
[96]
Heinrich, U.; Neukam, K.; Tronnier, H.; Sies, H.; Stahl, W. Long-term ingestion of high flavanol cocoa provides photoprotection against UV-induced erythema and improves skin condition in women. J. Nutr., 2006, 136(6), 1565-1569.
[http://dx.doi.org/10.1093/jn/136.6.1565] [PMID: 16702322]
[97]
Williams, S.; Tamburic, S.; Lally, C. Eating chocolate can significantly protect the skin from UV light. J. Cosmet. Dermatol., 2009, 8(3), 169-173.
[http://dx.doi.org/10.1111/j.1473-2165.2009.00448.x] [PMID: 19735513]
[98]
Cole, M.A.; Quan, T.; Voorhees, J.J.; Fisher, G.J. Extracellular matrix regulation of fibroblast function: redefining our perspective on skin aging. J. Cell Commun. Signal., 2018, 12(1), 35-43.
[http://dx.doi.org/10.1007/s12079-018-0459-1] [PMID: 29455303]
[99]
Capel, F.; Rimbert, V.; Lioger, D.; Diot, A.; Rousset, P.; Mirand, P.P.; Boirie, Y.; Morio, B.; Mosoni, L. Due to reverse electron transfer, mitochondrial H2O2 release increases with age in human vastus lateralis muscle although oxidative capacity is preserved. Mech. Ageing Dev., 2005, 126(4), 505-511.
[http://dx.doi.org/10.1016/j.mad.2004.11.001] [PMID: 15722109]
[100]
Ou, H.L.; Schumacher, B. DNA damage responses and p53 in the aging process. Blood, 2018, 131(5), 488-495.
[http://dx.doi.org/10.1182/blood-2017-07-746396] [PMID: 29141944]
[101]
Shimura, T.; Koyama, M.; Aono, D.; Kunugita, N. Epicatechin as a promising agent to countermeasure radiation exposure by mitigating mitochondrial damage in human fibroblasts and mouse hematopoietic cells. FASEB J., 2019, 33(6), 6867-6876.
[http://dx.doi.org/10.1096/fj.201802246RR] [PMID: 30840834]
[102]
Zhang, M.; Vervoort, L.; Moalin, M.; Mommers, A.; Douny, C.; den Hartog, G.J.M.; Haenen, G.R.M.M. The chemical reactivity of (-)-epicatechin quinone mainly resides in its B-ring. Free Radic. Biol. Med., 2018, 124, 31-39.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.05.087] [PMID: 29859347]
[103]
Chung, J.Y.; Park, J.O.; Phyu, H.; Dong, Z.; Yang, C.S. Mechanisms of inhibition of the Ras-MAP kinase signaling pathway in 30.7b Ras 12 cells by tea polyphenols (-)-epigallocatechin-3-gallate and theaflavin-3,3′-digallate. FASEB J., 2001, 15(11), 2022-2024.
[http://dx.doi.org/10.1096/fj.01-0031fje] [PMID: 11511526]
[104]
Shin, Y.S.; Shin, H.A.; Kang, S.U.; Kim, J.H.; Oh, Y.T.; Park, K.H.; Kim, C.H. Effect of epicatechin against radiation-induced oral mucositis: in vitro and in vivo study. PLoS One, 2013, 8(7)e69151
[http://dx.doi.org/10.1371/journal.pone.0069151] [PMID: 23874895]
[105]
Wei, F.; Yan, J.; Tang, D. Extracellular signal-regulated kinases modulate DNA damage response - a contributing factor to using MEK inhibitors in cancer therapy. Curr. Med. Chem., 2011, 18(35), 5476-5482.
[http://dx.doi.org/10.2174/092986711798194388] [PMID: 22087839]
[106]
Potapova, O.; Basu, S.; Mercola, D.; Holbrook, N.J. Protective role for c-Jun in the cellular response to DNA damage. J. Biol. Chem., 2001, 276(30), 28546-28553.
[http://dx.doi.org/10.1074/jbc.M102075200] [PMID: 11352915]
[107]
Wood, C.D.; Thornton, T.M.; Sabio, G.; Davis, R.A.; Rincon, M. Nuclear localization of p38 MAPK in response to DNA damage. Int. J. Biol. Sci., 2009, 5(5), 428-437.
[http://dx.doi.org/10.7150/ijbs.5.428] [PMID: 19564926]
[108]
Sasako, T.; Ueki, K. Aging-related frailty and sarcopenia. Frailty/sarcopenia and insulin/IGF-1 signaling. Clin. Calcium, 2018, 28(9), 1221-1228.
[http://dx.doi.org/clica180912211228 ] [PMID: 30146508]
[109]
Ruiz, R.; Pérez-Villegas, E.M.; Manuel Carrión, Á. AMPK function in aging process. Curr. Drug Targets, 2016, 17(8), 932-941.
[http://dx.doi.org/10.2174/1389450116666151102095825] [PMID: 26521771]
[110]
Tokede, O.A.; Ellison, C.R.; Pankow, J.S.; North, K.E.; Hunt, S.C.; Kraja, A.T.; Arnett, D.K.; Djoussé, L. Chocolate consumption and prevalence of metabolic syndrome in the NHLBI family heart study. ESPEN J., 2012, 7(4), e139-e143.
[http://dx.doi.org/10.1016/j.clnme.2012.04.002] [PMID: 25126517]
[111]
Bitner, B.F.; Ray, J.D.; Kener, K.B.; Herring, J.A.; Tueller, J.A.; Johnson, D.K.; Tellez Freitas, C.M.; Fausnacht, D.W.; Allen, M.E.; Thomson, A.H.; Weber, K.S.; McMillan, R.P.; Hulver, M.W.; Brown, D.A.; Tessem, J.S.; Neilson, A.P. Common gut microbial metabolites of dietary flavonoids exert potent protective activities in β-cells and skeletal muscle cells. J. Nutr. Biochem., 2018, 62, 95-107.
[http://dx.doi.org/10.1016/j.jnutbio.2018.09.004] [PMID: 30286378]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy