Generic placeholder image

Current Mechanics and Advanced Materials

Editor-in-Chief

ISSN (Print): 2666-1845
ISSN (Online): 2666-1853

Research Article

Synthesis of Pt-MWCNT Nano Composite in Trioctylmethyl Ammonium Hydrogen Phthalate (TOMAHP) Ionic Liquid Using Ultrasonic Cavitation

Author(s): Sujoy Biswas*, Kinshuk Dasgupta, M.L. Sahu and Amit Srivastave

Volume 1, Issue 1, 2021

Published on: 26 December, 2019

Page: [50 - 57] Pages: 8

DOI: 10.2174/2666184501666191227103755

Abstract

Background: Synthesis of nano composite materials is very important topic in recent times for its wide application as a catalyst in various chemical processes. Among various nano composite platinum-mutliwall Carbone Nano Tubes is of particular interest in recent past due to its unique application in methanol fuel cell as a catalyst. Now the challenge is to make a chemical process for definite size and shape selective platinum-mutliwall Carbone Nano Tubes catalyst/composite with well distribution and easy scale up.

Methods: The aim of the present work is to develop a chemical process for synthesis of platinum- Mutliwall Carbone Nano Tubes nano catalyst/composite with very low size (1-3nm) using reduction of Pt4+ and subsequently deposition to the Mutliwall Carbone Nano Tubes surface using ultrasound technique.

Results: The platinum nano materials synthesized in trioctylmethyl ammonium hydrogen phthalate is characterized using TEM technique. The results show that the particle size of platinum nano are in the range of 1-3 nm. The platinum-mutliwall Carbone Nano Tubes catalyst/composite prepared using ultrasound technique does not change the particle size of the platinum nano particles. The distribution of platinum nano on Functionalized Mutliwall Carbone Nano Tubes surface is uniform compared to Non-functionalized Mutliwall Carbone Nano Tubes.

Conclusion: The preparation of platinum-mutliwall Carbone Nano Tubes nano composite with very low size of platinum (1-3nm) is achieved in trioctylmethyl ammonium hydrogen phthalate as functionalized ionic liquid in presence of ultrasound.

Keywords: Ionic liquids, Pt nano particles, TEM, TOMAHP, ultrasonic cavitation, platinum.

Graphical Abstract
[1]
C.T. Liu, Y.C. Wang, R.X. Dong, C.C. Wang, K.C. Huang, R. Vittal, K.C. Ho, and J.J. Lin, "A dual-functional Pt/CNT TCO-free counter electrode for dye-sensitized solar cell", J. Mater. Chem., vol. 22, pp. 25311-25315, 2012.
[http://dx.doi.org/10.1039/c2jm35102a]
[2]
Z-Z. Jiang, Z-B. Wang, W-L. Qu, H. Rivera, D-M. Gu, and G-P. Yin, "Carbon-riveted Pt catalyst supported on nanocapsule MWCNTs-Al2O3 with ultrahigh stability for high-temperature proton exchange membrane fuel cells", Nanoscale, vol. 4, no. 23, pp. 7411-7418, 2012.
[http://dx.doi.org/10.1039/c2nr32584e] [PMID: 23086074]
[3]
S.P. Amyab, "E. S. Iranizad A. Bayatab “Platinum nanoparticles with superacid-doped polyvinylpyrrolidone coated carbon nanotubes: electrocatalyst for oxygen reduction reaction in high-temperature proton exchange membrane fuel cell”", RSC Advances, vol. 6, pp. 41937-41946, 2016.
[4]
A.M. Prasad, C. Santhosh, and A.N. Grace, "Carbon nanotubes and polyaniline supported Pt nanoparticles for methanol oxidation towards DMFC applications", Appl. Nanosci., vol. 2, no. 4, pp. 457-466, 2012.
[http://dx.doi.org/10.1007/s13204-012-0061-4]
[5]
C.K. Poh, S.H. Lim, H. Pan, J. Lin, and J.Y. Lee, "Citric acid functionalized carbon materials for fuel cell applications", J. Power Sources, vol. 176, pp. 70-75, 2008.
[http://dx.doi.org/10.1016/j.jpowsour.2007.10.049]
[6]
S. Wang, S.P. Jiang, T. White, J. Guo, and X. Wang, "Electrocatalytic Activity and Interconnectivity of Pt Nanoparticles on Multiwalled Carbon Nanotubes for Fuel Cells", J. Phys. Chem. C, vol. 113, p. 18935, 2009.
[http://dx.doi.org/10.1021/jp906923z]
[7]
R. Ramachandran, "George peter Gnanakumar,Shen-Ming Chen", Int. J. Electrochem. Sci., vol. 11, pp. 506-534, 2016.
[8]
PanagiotisTrogadas, "Thomas F. Fuller, and Peter Strasser, “Carbon as catalyst and support for electrochemical energy conversion", Carbon, vol. 75, pp. 5-42, 2014.
[9]
K. Ding, Y. Wang, H. Yang, and C. Zheng, "YanliCao, Huige Wei, Yiran Wang, ZhanhuGuo, “Electrocatalytic activity of multi-walled carbon nanotubes-supported PtxPdy catalysts prepared by a pyrolysis process toward ethanol oxidation reaction", Electrochim. Acta, vol. 100, pp. 147-156, 2013.
[http://dx.doi.org/10.1016/j.electacta.2013.02.130]
[10]
Q. Li, L. Chen, and G. Lu, "Visible-light-induced photocatalytic hydrogen generation on dye-sensitized multiwalled carbon nanotube/Pt catalyst", J. Phys. Chem. C, vol. 111, pp. 11494-11499, 2007.
[http://dx.doi.org/10.1021/jp072520n]
[11]
M. Shi-chung, T. Haolin, P. Mu, and Y. Run-zhang, "“Synthesis and evaluation on performance of hydrogen storage of multi-walled carbon nanotubes decorated with platinum”, J. Wuhan Uni. Tech. –", Mater. Sci. Ed., vol. 18, no. 3, pp. 33-36, 2003.
[12]
P-Y. Olu, N. Job, and M. Chatenet, J. Power Sources, vol. 327, pp. 235-257, 2016.
[http://dx.doi.org/10.1016/j.jpowsour.2016.07.041]
[13]
R.H. Baughman, A.A. Zakhidov, and W.A. de Heer, "Carbon nanotubes--the route toward applications", Sci., vol. 297, no. 5582, pp. 787-792, 2002.
[http://dx.doi.org/10.1126/science.1060928] [PMID: 12161643]
[14]
L. Qu, and L. Dai, "Substrate-enhanced electroless deposition of metal nanoparticles on carbon nanotubes", J. Am. Chem. Soc., vol. 127, no. 31, pp. 10806-10807, 2005.
[http://dx.doi.org/10.1021/ja053479+] [PMID: 16076167]
[15]
N. Mackiewicz, G. Surendran, H. Remita, B. Keita, G. Zhang, and L. Nadjo, "A. Hage’Ge, E. Doris, C. Mioskowski, “Supramolecular self-assembly of amphiphiles on carbon nanotubes: a versatile strategy for the construction of CNT/metal nanohybrids, application to electrocatalysis", J. Am. Chem. Soc., vol. 123, no. 26, pp. 8110-8111, 2008.
[http://dx.doi.org/10.1021/ja8026373] [PMID: 18529054]
[16]
S. Chen, F. Ye, and W. Lin, "Carbon nanotubes-nafion composites as Pt-Ru catalyst support for methanol electro-oxidation in acid media", J. Nat. Gas Chem., vol. 18, p. 199, 2009.
[http://dx.doi.org/10.1016/S1003-9953(08)60108-5]
[17]
S. Wang, S.P. Jiang, T. White, J. Guo, and X. Wang, "Electrocatalytic Activity and Interconnectivity of Pt Nanoparticles on Multiwalled Carbon Nanotubes for Fuel Cells", J. Phys. Chem. C, vol. 113, p. 18935, 2009.
[http://dx.doi.org/10.1021/jp906923z]
[18]
F. Lima, J. Zhang, M. Shao, K. Sasaki, M. Vukmirovic, E. Ticianelli, and R. Adzic, "Catalytic activity-d-band center correlation for the O2 reduction reaction on platinum in alkaline solutions", J. Phys. Chem. C, vol. 111, p. 404, 2007.
[http://dx.doi.org/10.1021/jp065181r]
[19]
P. Yu, Q. Qian, Y. Lin, and L. Mao, "In situ formation of three-dimensional uniform Pt/carbon nanotube nanocomposites from ionic liquid/carbon nanotube gel matrix with enhanced electrocatalytic activity toward methanol oxidation", J. Phys. Chem. C, vol. 114, pp. 3575-3579, 2010.
[http://dx.doi.org/10.1021/jp910251t]
[20]
F. Mafune, J. Kohono, Y. Takeda, and T. Kondow, "Formation of stable platinum nanoparticles by laser ablation in water", J. Phys. Chem. B, vol. 107, pp. 4218-4223, 2003.
[http://dx.doi.org/10.1021/jp021580k]
[21]
A. Esmaeilifar, M. Yazdanpour, S. Rowshanzamir, and M.H. Eikani, "Hydrothermal synthesis of Pt/MWCNTs nanocomposite electrocatalysts for proton exchange membrane fuel cell systems", Intern. J. Hydro. Ener., vol. 36, pp. 5500-5511, 2011.
[http://dx.doi.org/10.1016/j.ijhydene.2011.02.015]
[22]
C.W. Scheeren, G. Machado, S.R. Teixeira, J. Morais, J.B. Domingos, and J. Dupont, "Synthesis and characterization of Pt0 nanoparticles in imidazolium ionic liquids", J. Phys. Chem. B, vol. 110, no. 26, pp. 13011-13020, 2006.
[http://dx.doi.org/10.1021/jp0623037] [PMID: 16805608]
[23]
G. Girishkumar, K. Vinodgopal, and P.V. Kamat, "Carbon nanostructures in portable fuel cells: single-walled carbon nanotube electrodes for methanol oxidation and oxygen reduction", J. Phys. Chem. B, vol. 108, p. 9960, 2004.
[http://dx.doi.org/10.1021/jp046872v]
[24]
I. Oh, A.A. Gewirth, and J. Kwak, "Electrocatalytic dioxygen reduction on underpotentially deposited Pb on Au(111) studied by an active site blocking strategy", J. Catal., vol. 213, p. 17, 2003.
[http://dx.doi.org/10.1016/S0021-9517(02)00011-8]
[25]
J. Luo, P.N. Njoki, Y. Lin, D. Mott, L. Wang, and C.J. Zhong, "Characterization of carbon-supported AuPt nanoparticles for electrocatalytic methanol oxidation reaction", Langmuir, vol. 22, no. 6, pp. 2892-2898, 2006.
[http://dx.doi.org/10.1021/la0529557] [PMID: 16519500]
[26]
E. Sánchez, T. Lopez, R. Gómez, and A. Bokhimi, "Morales, and O. Novaro", J. Solid State Chem., vol. 122, pp. 309-314, 1996.
[27]
E. Frackowiak, G. Lota, T. Cacciaguerra, and F. Beguin, "Carbon nanotubes with Pt-Ru catalyst for methanol fuel cell", Electrochem. Commun., vol. 8, p. 129, 2006.
[http://dx.doi.org/10.1016/j.elecom.2005.10.015]
[28]
M. Yang, Y. Yang, Y. Liu, G. Shen, and R. Yu, "Platinum nanoparticles-doped sol-gel/carbon nanotubes composite electrochemical sensors and biosensors", Biosens. Bioelectron., vol. 21, no. 7, pp. 1125-1131, 2006.
[PMID: 15885999]
[29]
H. Kim, S.J. Lee, and N.J. Jung, "Chemical Vapor Deposition of Pt Nano Particles on Carbon Nanotubes", Solid State Phenom., vol. 124-126, pp. 1769-1772, 2007.
[http://dx.doi.org/10.4028/www.scientific.net/SSP.124-126.1769]
[30]
K. Saminathan, V. Kamavaram, V. Veedu, and A.M. Kannan, "Preparation and evaluation of electrodeposited platinum nanoparticles on in situ carbon nanotubes grown carbon paper for proton exchange membrane fuel cells", Int. J. Hydr. Ener., vol. 34, pp. 3838-3844, 2009.
[http://dx.doi.org/10.1016/j.ijhydene.2009.03.009]
[31]
J. Liu, C. Liu, F. Wang, Y. Song, Z. Li, and J. Ji, "Preparation of Pt nanocrystals on ultrasonic cavitation functionalized pristine carbon nanotubes as electrocatalysts for electrooxidation of methanol", Ind. Eng. Chem. Res., vol. 53, pp. 20099-20106, 2014.
[http://dx.doi.org/10.1021/ie503632s]
[32]
J. Prabhuram, X. Wang, C.L. Hui, and I-M. Hsing, "Synthesis and characterization of surfactant-stabilized PVC nanocatalysts for fuel cell applications", J. Phys. Chem. B, vol. 107, no. 40, pp. 11057-11064, 2003.
[33]
J. Kong, M. Chapline, and H. Dai, "Functionalized carbon nanotubes for molecular hydrogen sensors", Adv. Mater., vol. 13, p. 1384, 2001.
[http://dx.doi.org/10.1002/1521-4095(200109)13:18<1384:AID-ADMA1384>3.0.CO;2-8]
[34]
B.M. Quinn, C. Dekker, and S.G. Lemay, "Electrodeposition of noble metal nanoparticles on carbon nanotubes", J. Am. Chem. Soc., vol. 127, no. 17, pp. 6146-6147, 2005.
[PMID: 15853300]
[35]
Y. Mu, H. Liang, J. Hu, L. Jiang, and L. Wan, "Controllable Pt nanoparticle deposition on carbon nanotubes as an anode catalyst for direct methanol fuel cells", J. Phys. Chem. B, vol. 109, no. 47, pp. 22212-22216, 2005.
[http://dx.doi.org/10.1021/jp0555448] [PMID: 16853891]
[36]
T.P. Lodge, "Materials science. A unique platform for materials design", Science, vol. 321, no. 5885, pp. 50-51, 2008.
[http://dx.doi.org/10.1126/science.1159652] [PMID: 18599764]
[37]
Y. Lin, and S. Dehnen, "[BMIm]4[Sn9Se20]: ionothermal synthesis of a selenidostannate with a 3D open-framework structure", Inorg. Chem., vol. 50, no. 17, pp. 7913-7915, 2011.
[http://dx.doi.org/10.1021/ic200697k] [PMID: 21809815]
[38]
E.R. Cooper, C.D. Andrews, P.S. Wheatley, P.B. Webb, P. Wormald, and R.E. Morris, "Ionic liquids and eutectic mixtures as solvent and template in synthesis of zeolite analogues", Nature, vol. 430, no. 7003, pp. 1012-1016, 2004.
[http://dx.doi.org/10.1038/nature02860] [PMID: 15329717]
[39]
E.R. Parnham, and R.E. Morris, "Ionothermal synthesis of zeolites, metal-organic frameworks, and inorganic-organic hybrids", Acc. Chem. Res., vol. 40, no. 10, pp. 1005-1013, 2007.
[http://dx.doi.org/10.1021/ar700025k] [PMID: 17580979]
[40]
T. Welton, "Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis", Chem. Rev., vol. 99, no. 8, pp. 2071-2084, 1999.
[http://dx.doi.org/10.1021/cr980032t] [PMID: 11849019]
[41]
I. Krossing, J.M. Slattery, C. Daguenet, P.J. Dyson, A. Oleinikova, and H. Weingärtner, "Why are ionic liquids liquid? A simple explanation based on lattice and solvation energies", J. Am. Chem. Soc., vol. 128, no. 41, pp. 13427-13434, 2006.
[http://dx.doi.org/10.1021/ja0619612] [PMID: 17031955]
[42]
G.G. Eshetu, M. Armand, H. Ohno, B. Scrosati, and S. Passerini, "Ionic liquids as tailored media for the synthesis and processing of energy conversion materials", Energy Environ. Sci., vol. 9, pp. 49-61, 2016.
[http://dx.doi.org/10.1039/C5EE02284C]
[43]
J. Dupont, and J.D. Scholten, "On the structural and surface properties of transition-metal nanoparticles in ionic liquids", Chem. Soc. Rev., vol. 39, no. 5, pp. 1780-1804, 2010.
[http://dx.doi.org/10.1039/b822551f] [PMID: 20419219]
[44]
C. Janiak, "Ionic Liquids for the Synthesis and Stabilization of Metal Nanoparticles", Z. Naturforsch., vol. 68b, pp. 1059-1089, 2013.
[45]
S. Biswas, K. Dasgupta, J. Bahadur, and S. Mazumder, "Green chemical approach for synthesis of Pt/MWCNT nano composite in trioctylmethyl ammonium hydrogen phthalate (TOMAHP) ionic liquid", Mater. Chem. Phys., vol. 196, pp. 1-8, 2017.
[http://dx.doi.org/10.1016/j.matchemphys.2017.04.049]
[46]
K. Dasgupta, J.B. Joshi, H. Singh, and S. Banerjee, "Fluidized bed synthesis of carbon nanotubes: reaction mechanism, rate controlling step and overall rate of reaction", AIChE J., vol. 60, no. 8, pp. 2282-2292, 2014.
[47]
K. Dasgupta, D. Sen, S. Mazumder, C.B. Basak, J.B. Joshi, and S. Banerjee, "Optimization of parameters by Taguchi method for controlling purity of carbon nanotubes in chemical vapour deposition technique", J. Nanosci. Nanotechnol., vol. 10, pp. 4030-4037, 2010.
[48]
S. Biswas, V.H. Rupawate, S.B. Roy, and M. Sahu, "Task-specific ionic liquid tetraalkylammonium hydrogen phthalate as an extractant for U(VI) extraction from aqueous media", J. Radioanal. Nucl. Chem., vol. 300, pp. 853-858, 2014.
[http://dx.doi.org/10.1007/s10967-014-3063-8]
[49]
E. Redel, M. Walter, R. Thomann, C. Vollmer, L. Hussein, H. Scherer, M. Krüger, and C. Janiak, "Synthesis, stabilization, functionalization and, DFT calculations of gold nanoparticles in fluorous phases (PTFE and ionic liquids)", Chemistry, vol. 15, no. 39, pp. 10047-10059, 2009.
[http://dx.doi.org/10.1002/chem.200900301] [PMID: 19697371]
[50]
X. Yuan, N. Yan, S.A. Katsyuba, E.E. Zvereva, Y. Kou, and P.J. Dyson, "A remarkable anion effect on palladium nanoparticle formation and stabilization in hydroxyl-functionalized ionic liquids", Phys. Chem. Chem. Phys., vol. 14, no. 17, pp. 6026-6033, 2012.
[http://dx.doi.org/10.1039/c2cp23931k] [PMID: 22446618]
[51]
A.C.F. Mendonça, A.A.H. Pádua, and P. Malfreyt, "Nonequilibrium Molecular Simulations of New Ionic Lubricants at Metallic Surfaces: prediction of the Friction", J. Chem. Theory Comput., vol. 9, no. 3, pp. 1600-1610, 2013.
[http://dx.doi.org/10.1021/ct3008827] [PMID: 26587621]
[52]
F. Bernardi, J.D. Scholten, G.H. Fecher, J. Dupont, and J. Morais, "Probing the chemical interaction between iridium nanoparticles and ionic liquid by XPS analysis", Chem. Phys. Lett., vol. 479, pp. 113-116, 2009.
[http://dx.doi.org/10.1016/j.cplett.2009.07.110]
[53]
J.D. Holbrey, W.M. Reichert, and R.D. Rogers, "Crystal structures of imidazolium bis(trifluoromethanesulfonyl)imide ‘ionic liquid’ salts: the first organic salt with a cis-TFSI anion conformation", Dalton Trans., no. 15, pp. 2267-2271, 2004.
[http://dx.doi.org/10.1039/B405901H] [PMID: 15278117]
[54]
E.J.W. Verwey, and J.T.G. Overbeek, Theory of the Stability of Lyophobic Colloids., New York: Dover Publications, 1999.

© 2024 Bentham Science Publishers | Privacy Policy