Bio-Inspired Strategies against Diabetes and Associated Complications: A Review

Author(s): Shalki Choudhary, Vinni Kalra, Manoj Kumar, Ashok Kumar Tiwary, Jatin Sood, Om Silakari*

Journal Name: Recent Patents on Drug Delivery & Formulation
Continued as Recent Advances in Drug Delivery and Formulation

Volume 13 , Issue 4 , 2019


Graphical Abstract:


Abstract:

Bio-molecules are the most important target to be considered while designing any drug delivery system. The logic lies in using such bio-sensing or bio-mimicking systems in their formulations that can mimic the active site of those receptors to which the drug is going to bind. Polymers mimicking the active site of target enzymes are regarded as bio-inspired polymers and can be used to ameliorate many diseased conditions. Nowadays, this strategy is also being adopted against diabetes and its complications. Under hyperglycemic conditions, many pathways get activated which are responsible for the progression of diabetes-associated secondary complications viz. retinopathy, neuropathy, and nephropathy. The enzymes involved in the progression of these complications can be mimicked for their effective management. For an instance, Aldose Reductase (ALR2), a rate-limiting enzyme of the polyol pathway (downstream pathway) which gets over-activated under hyperglycemic condition is reported to be mimicked by using polymers which are having same functionalities in their structure. This review aims at critically appraising reports in which target mimicking bio-inspired formulations have been envisaged against diabetes and its complications. The information summarized in this review will provide an idea about the bio-sensing approaches utilized to manage blood glucose level and the utility of bio-inspired polymers for the management of diabetic complications (DC). Such type of information may be beneficial to pharmaceutical companies and academia for better development of targeted drug delivery systems with sustained-release property against these diseased conditions.

Keywords: Bio-inspired, diabetes, polymer, retinopathy, neuropathy, nephropathy, ALR2.

[1]
Association, A.D. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care, 2013, 36(Suppl. 1), S67-S74.
[http://dx.doi.org/10.2337/dc13-S067] [PMID: 23264425]
[2]
Cho, N.H.; Shaw, J.E.; Karuranga, S.; Huang, Y.; da Rocha Fernandes, J.D.; Ohlrogge, A.W.; Malanda, B. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract., 2018, 138, 271-281.
[http://dx.doi.org/10.1016/j.diabres.2018.02.023] [PMID: 29496507]
[3]
Reddy, M.A.; Zhang, E.; Natarajan, R. Epigenetic mechanisms in diabetic complications and metabolic memory. Diabetologia, 2015, 58(3), 443-455.
[http://dx.doi.org/10.1007/s00125-014-3462-y] [PMID: 25481708]
[4]
Brownlee, M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes, 2005, 54(6), 1615-1625.
[http://dx.doi.org/10.2337/diabetes.54.6.1615] [PMID: 15919781]
[5]
Brownlee, M. Biochemistry and molecular cell biology of diabetic complications. Nature, 2001, 414(6865), 813-820.
[http://dx.doi.org/10.1038/414813a] [PMID: 11742414]
[6]
Javed, M.H.; Wright, R.W., Jr Determination of pentose phosphate and Embden-Meyerhof pathway activities in bovine embryos. Theriogenology, 1991, 35(5), 1029-1037.
[http://dx.doi.org/10.1016/0093-691X(91)90312-2] [PMID: 16726969]
[7]
Hubinont, C.; Sener, A.; Malaisse, W.J. Sorbitol content of plasma and erythrocytes during induced short-term hyperglycemia. Clin. Biochem., 1981, 14(1), 19-20.
[http://dx.doi.org/10.1016/0009-9120(81)90105-3] [PMID: 7237737]
[8]
Olokoba, A.B.; Obateru, O.A.; Olokoba, L.B. Type 2 diabetes mellitus: a review of current trends. Oman Med. J., 2012, 27(4), 269-273.
[http://dx.doi.org/10.5001/omj.2012.68] [PMID: 23071876]
[9]
Zhu, C. Aldose reductase inhibitors as potential therapeutic drugs of diabetic complications Diabetes mellitus-insights and perspectives; IntechOpen, 2013, pp. 17-46.
[10]
Shende, S.D.; Baig, M.S.; Doifode, S. Evaluation of efficacy and safety of epalrestat (150 mg) compared to epalrestat (50 mg) in patients suffering from diabetic peripheral neuropathy. J. Clin. Diagn. Res., 2018, 12, 15-18.
[http://dx.doi.org/10.7860/JCDR/2018/32716.11444]
[11]
Choudhary, S.; Silakari, O. hCES1 and hCES2 mediated activation of epalrestat-antioxidant mutual prodrugs: Unwinding the hydrolytic mechanism using in silico approaches. J. Mol. Graph. Model., 2019, 91, 148-163.
[http://dx.doi.org/10.1016/j.jmgm.2019.06.012] [PMID: 31252365]
[12]
He, Z.X.; Zhou, Z.W.; Yang, Y.; Yang, T.; Pan, S.Y.; Qiu, J.X.; Zhou, S.F. Overview of clinically approved oral antidiabetic agents for the treatment of type 2 diabetes mellitus. Clin. Exp. Pharmacol. Physiol., 2015, 42(2), 125-138.
[http://dx.doi.org/10.1111/1440-1681.12332] [PMID: 25360831]
[13]
Vyas, B.; Choudhary, S.; Singh, P.K.; Singh, B.; Bahadur, R.; Malik, A.K.; Silakari, O. Identification of 2-benzoxazolinone derivatives as lead against molecular targets of diabetic complications. Chem. Biol. Drug Des., 2018, 92(6), 1981-1987.
[http://dx.doi.org/10.1111/cbdd.13369] [PMID: 30030901]
[14]
Helve, J.; Sund, R.; Arffman, M.; Harjutsalo, V.; Groop, P.H.; Grönhagen-Riska, C.; Finne, P. Incidence of end-stage renal disease in patients with type 1 diabetes. Diabetes Care, 2018, 41(3), 434-439.
[http://dx.doi.org/10.2337/dc17-2364] [PMID: 29263163]
[15]
Pop-Busui, R.; Boulton, A.J.; Feldman, E.L.; Bril, V.; Freeman, R.; Malik, R.A.; Sosenko, J.M.; Ziegler, D. Diabetic neuropathy: A position statement by the American Diabetes Association. Diabetes Care, 2017, 40(1), 136-154.
[http://dx.doi.org/10.2337/dc16-2042] [PMID: 27999003]
[16]
Gnudi, L.; Coward, R.J.M.; Long, D.A. Diabetic nephropathy: Perspective on novel molecular mechanisms. Trends Endocrinol. Metab., 2016, 27(11), 820-830.
[http://dx.doi.org/10.1016/j.tem.2016.07.002] [PMID: 27470431]
[17]
Kwon, E.J.; Lo, J.H.; Bhatia, S.N. Smart nanosystems: Bio-inspired technologies that interact with the host environment. Proc. Natl. Acad. Sci. USA, 2015, 112(47), 14460-14466.
[http://dx.doi.org/10.1073/pnas.1508522112] [PMID: 26598694]
[18]
Haidar, Z.S. Bio-inspired/-functional colloidal core-shell polymeric-based nanosystems: Technology promise in tissue engineering, bioimaging and nanomedicine. Polymers (Basel), 2010, 2, 323-352.
[http://dx.doi.org/10.3390/polym2030323]
[19]
Yang, X.; Wu, S.; Li, Y.; Huang, Y.; Lin, J.; Chang, D.; Ye, S.; Xie, L.; Jiang, Y.; Hou, Z. Integration of an anti-tumor drug into nanocrystalline assemblies for sustained drug release. Chem. Sci. (Camb.), 2015, 6(3), 1650-1654.
[http://dx.doi.org/10.1039/C4SC03392B] [PMID: 28694944]
[20]
Ryu, J.H.; Hong, S.; Lee, H. Bio-inspired adhesive catechol-conjugated chitosan for biomedical applications: A mini review. Acta Biomater., 2015, 27, 101-115.
[http://dx.doi.org/10.1016/j.actbio.2015.08.043] [PMID: 26318801]
[21]
Tu, Y.; Peng, F.; Adawy, A.; Men, Y.; Abdelmohsen, L.K.; Wilson, D.A. Mimicking the cell: Bio-inspired functions of supramolecular assemblies. Chem. Rev., 2016, 116(4), 2023-2078.
[http://dx.doi.org/10.1021/acs.chemrev.5b00344] [PMID: 26583535]
[22]
Kryscio, D.R.; Peppas, N.A. Mimicking biological delivery through feedback-controlled drug release systems based on molecular imprinting. AIChE J., 2009, 55(6), 1311-1324.
[http://dx.doi.org/10.1002/aic.11779] [PMID: 26500352]
[23]
Gupta, P.; Vermani, K.; Garg, S. Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov. Today, 2002, 7(10), 569-579.
[http://dx.doi.org/10.1016/S1359-6446(02)02255-9] [PMID: 12047857]
[24]
Herrero, P.; Georgiou, P.; Oliver, N.; Johnston, D.G.; Toumazou, C. A bio-inspired glucose controller based on pancreatic β-cell physiology. J. Diabetes Sci. Technol., 2012, 6(3), 606-616.
[http://dx.doi.org/10.1177/193229681200600316] [PMID: 22768892]
[25]
Reddy, M.; Herrero, P.; El Sharkawy, M.; Pesl, P.; Jugnee, N.; Thomson, H.; Pavitt, D.; Toumazou, C.; Johnston, D.; Georgiou, P.; Oliver, N. Feasibility study of a bio-inspired artificial pancreas in adults with type 1 diabetes. Diabetes Technol. Ther., 2014, 16(9), 550-557.
[http://dx.doi.org/10.1089/dia.2014.0009] [PMID: 24801544]
[26]
Tai, W.; Mo, R.; Di, J.; Subramanian, V.; Gu, X.; Buse, J.B.; Gu, Z. Bio-inspired synthetic nanovesicles for glucose-responsive release of insulin. Biomacromolecules, 2014, 15(10), 3495-3502.
[http://dx.doi.org/10.1021/bm500364a] [PMID: 25268758]
[27]
Ho, M.; Georgiou, P.; Singhal, S. A bio-inspired closed loop insulin delivery based on the silicon pancreatic beta-cell; IEEE Int Symp Adv Res, 2008, pp. 1052-1055.
[28]
Chen, W.; Wang, G.; Yung, B.C.; Liu, G.; Qian, Z.; Chen, X. Long-acting release formulation of exendin-4 based on biomimetic mineralization for type 2 diabetes therapy. ACS Nano, 2017, 11(5), 5062-5069.
[http://dx.doi.org/10.1021/acsnano.7b01809] [PMID: 28437610]
[29]
Gordijo, C.R.; Koulajian, K.; Shuhendler, A.J. Nanotechnology‐enabled closed loop insulin delivery device: In vitro and in vivo evaluation of glucose‐regulated insulin release for diabetes control. Adv. Funct. Mater., 2011, 21, 73-82.
[http://dx.doi.org/10.1002/adfm.201001762]
[30]
Wu, W.; Mitra, N.; Yan, E.C.; Zhou, S. Multifunctional hybrid nanogel for integration of optical glucose sensing and self-regulated insulin release at physiological pH. ACS Nano, 2010, 4(8), 4831-4839.
[http://dx.doi.org/10.1021/nn1008319] [PMID: 20731458]
[31]
Oliver, N.; Georgiou, P.; Johnston, D.; Toumazou, C. A benchtop closed-loop system controlled by a bio-inspired silicon implementation of the pancreatic β cell. J. Diabetes Sci. Technol., 2009, 3(6), 1419-1424.
[http://dx.doi.org/10.1177/193229680900300623] [PMID: 20144397]
[32]
Chen, W.; Tian, R.; Xu, C.; Yung, B.C.; Wang, G.; Liu, Y.; Ni, Q.; Zhang, F.; Zhou, Z.; Wang, J.; Niu, G.; Ma, Y.; Fu, L.; Chen, X. Microneedle-array patches loaded with dual mineralized protein/peptide particles for type 2 diabetes therapy. Nat. Commun., 2017, 8(1), 1777.
[http://dx.doi.org/10.1038/s41467-017-01764-1] [PMID: 29176623]
[33]
Chen, H.; Fan, G.; Zhao, J. A portable micro glucose sensor based on copper-based nanocomposite structure. New J. Chem., 2019, 43, 7806-7813.
[http://dx.doi.org/10.1039/C9NJ00888H]
[34]
Cunha-Vaz, J. The blood-ocular barriers. Surv. Ophthalmol., 1979, 23(5), 279-296.
[http://dx.doi.org/10.1016/0039-6257(79)90158-9] [PMID: 380030]
[35]
Bucolo, C.; Drago, F.; Salomone, S. Ocular drug delivery: a clue from nanotechnology. Front. Pharmacol., 2012, 3, 188.
[http://dx.doi.org/10.3389/fphar.2012.00188] [PMID: 23125835]
[36]
Krupsky, S.; Zalish, M.; Oliver, M.; Pollack, A. Anterior segment complications in diabetic patients following extracapsular cataract extraction and posterior chamber intraocular lens implantation. Ophthalmic Surg., 1991, 22(9), 526-530.
[PMID: 1945278]
[37]
Janoria, K.G.; Gunda, S.; Boddu, S.H.; Mitra, A.K. Novel approaches to retinal drug delivery. Expert Opin. Drug Deliv., 2007, 4(4), 371-388.
[http://dx.doi.org/10.1517/17425247.4.4.371] [PMID: 17683251]
[38]
Alvarez-Rivera, F.; Concheiro, A.; Alvarez-Lorenzo, C. Epalrestat-loaded silicone hydrogels as contact lenses to address diabetic-eye complications. Eur. J. Pharm. Biopharm., 2018, 122, 126-136.
[http://dx.doi.org/10.1016/j.ejpb.2017.10.016] [PMID: 29079419]
[39]
Eroglu, B.; Dalgakiran, D.; Inan, T.; Kurkcuoglu, O.; Güner, F.S. A computational and experimental approach to develop minocycline-imprinted hydrogels and determination of their drug delivery performances. J. Polym. Res., 2018, 25, 258.
[http://dx.doi.org/10.1007/s10965-018-1647-7]
[40]
Reyes-Martínez, J.E.; Ruiz-Pacheco, J.A.; Flores-Valdéz, M.A.; Elsawy, M.A.; Vallejo-Cardona, A.A.; Castillo-Díaz, L.A. Advanced hydrogels for treatment of diabetes. J. Tissue Eng. Regen. Med., 2019, 13(8), 1375-1393.
[http://dx.doi.org/10.1002/term.2880] [PMID: 31066518]
[41]
Alvarez-Lorenzo, C.; Anguiano-Igea, S.; Varela-García, A.; Vivero-Lopez, M.; Concheiro, A. Bioinspired hydrogels for drug-eluting contact lenses. Acta Biomater., 2019, 84, 49-62.
[http://dx.doi.org/10.1016/j.actbio.2018.11.020] [PMID: 30448434]
[42]
Sen-Britain, S; Hicks, WL, Jr; Hard, R; Gardella, JA, Jr Differential orientation and conformation of surface-bound keratinocyte growth factor on (hydroxyethyl) methacrylate,(hydroxyethyl) methacrylate/ methyl methacrylate, and (hydroxyethyl) methacrylate/ methacrylic acid hydrogel copolymers. Biointerphases 2018; 13(6): (06E406).
[http://dx.doi.org/10.1046/j.1432-1327.1998.2560310.x]
[43]
Hohman, T.C.; El-Kabbani, O.; Malamas, M.S.; Lai, K.; Putilina, T.; McGowan, M.H.; Wane, Y.Q.; Carper, D.A. Probing the inhibitor-binding site of aldose reductase with site-directed mutagenesis. Eur. J. Biochem., 1998, 256(2), 310-316.
[http://dx.doi.org/10.1046/j.1432-1327.1998.2560310.x] [PMID: 9760169]
[44]
Sotriffer, C.A.; Krämer, O.; Klebe, G. Probing flexibility and “induced-fit” phenomena in aldose reductase by comparative crystal structure analysis and molecular dynamics simulations. Proteins, 2004, 56(1), 52-66.
[http://dx.doi.org/10.1002/prot.20021] [PMID: 15162486]
[45]
Harrison, D.H.; Bohren, K.M.; Ringe, D.; Petsko, G.A.; Gabbay, K.H. An anion binding site in human aldose reductase: mechanistic implications for the binding of citrate, cacodylate, and glucose 6-phosphate. Biochemistry, 1994, 33(8), 2011-2020.
[http://dx.doi.org/10.1021/bi00174a006] [PMID: 8117658]
[46]
Quattrini, L.; La Motta, C. Aldose reductase inhibitors: 2013-present. Expert Opin. Ther. Pat., 2019, 29(3), 199-213.
[http://dx.doi.org/10.1080/13543776.2019.1582646] [PMID: 30760060]
[47]
Ahmad, S.; Johnston, B.F.; Mackay, S.P.; Schatzlein, A.G.; Gellert, P.; Sengupta, D.; Uchegbu, I.F. In silico modelling of drug-polymer interactions for pharmaceutical formulations. J. R. Soc. Interface, 2010, 7(Suppl. 4), S423-S433.
[http://dx.doi.org/10.1098/rsif.2010.0190.focus] [PMID: 20519214]
[48]
Metwally, A.A.; Hathout, R.M. Replacing microemulsion formulations experimental solubility studies with in-silico methods comprising molecular dynamics and docking experiments. Chem. Eng. Res. Des., 2015, 104, 453-456.
[http://dx.doi.org/10.1016/j.cherd.2015.09.003]
[49]
Heath, A.P.; Kavraki, L.E.; Clementi, C. From coarse-grain to all-atom: toward multiscale analysis of protein landscapes. Proteins, 2007, 68(3), 646-661.
[http://dx.doi.org/10.1002/prot.21371] [PMID: 17523187]
[50]
Kmiecik, S.; Gront, D.; Kolinski, M.; Wieteska, L.; Dawid, A.E.; Kolinski, A. Coarse-grained protein models and their applications. Chem. Rev., 2016, 116(14), 7898-7936.
[http://dx.doi.org/10.1021/acs.chemrev.6b00163] [PMID: 27333362]
[51]
Shi, Q.; Izvekov, S.; Voth, G.A. Mixed atomistic and coarse-grained molecular dynamics: simulation of a membrane-bound ion channel. J. Phys. Chem. B, 2006, 110(31), 15045-15048.
[http://dx.doi.org/10.1021/jp062700h] [PMID: 16884212]
[52]
Ribeiro, A.; Veiga, F.; Santos, D.; Torres-Labandeira, J.J.; Concheiro, A.; Alvarez-Lorenzo, C. Receptor-based biomimetic NVP/DMA contact lenses for loading/eluting carbonic anhydrase inhibitors. Int J Membrane Sci, 2011, 383, 60-69.
[http://dx.doi.org/10.1016/j.memsci.2011.08.030]
[53]
Houben, R; Larik, V Cell-based biosensors suitable for implantable medical device applications. US6605039B2 2003.
[http://dx.doi.org/10.1016/j.memsci.2011.08.030]
[54]
Chang, JN; Hughes, PM; DeVries, GW Carbonic anhydrase inhibitor sustained release intraocular drug delivery systems. US8591885B2 (2013).
[55]
Zhang, J; Hodge, WG Contact lens integrated with a biosensor for the detection of glucose and other components in tears. US8385998B2 (2013).
[56]
Georgiou, P; Lim, KT; Toumazou, C Glucagon pump controller. US9656020B2 (2017).
[57]
Toumazou, C; Georgiou, P; Vinas, PH; Sim, C Insulin pump. US9283323B2 (2016).


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 13
ISSUE: 4
Year: 2019
Published on: 29 April, 2020
Page: [273 - 282]
Pages: 10
DOI: 10.2174/1872211314666191224120145
Price: $65

Article Metrics

PDF: 17
HTML: 2
EPUB: 1
PRC: 1