Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

Progress in the Synthesis, Angiogenesis Activity and Mechanism of Chalcone Derivatives

Author(s): Jie Chen, Chen-Fu Liu and Guo-Wu Rao*

Volume 17, Issue 7, 2020

Page: [814 - 827] Pages: 14

DOI: 10.2174/1570193X17666191223161941

Price: $65

Abstract

Cancer is a common disease that poses a serious threat to human health. Angiogenesis is essential for the growth and metabolism of tumors, providing oxygen and nutrition for the growth of cells and tissues. However, angiogenesis of tumors depends on the stimulation of growth factors. Vascular Endothelial Growth Factor (VEGFR) is the most unique factor. Therefore, VEGF/VEGFR targeting anticancer drugs are playing an increasingly significant role in clinical trials. In addition, it has been proved that chalcone, the precursor of natural flavonoids, has potential anti-tumor activity, especially anti-angiogenesis activity. This review summarizes the reports about the anti-angiogenesis of chalcone derivatives. Based on the chalcone skeleton, it is divided into substituted chalcones and modified chalcones. The anti-angiogenesis activities of natural or synthetic chalcones, benzene ring modified or connecting bridge modified chalcones are described in this review.

Keywords: Anti-angiogenesis, cancer, chalcone, natural, synthetic, VEGF.

Graphical Abstract
[1]
Abdelhafez, O.M.; Amin, K.M.; Ali, H.I.; Abdalla, M.M.; Ahmed, E.Y. Design, synthesis and anticancer activity of benzofuran derivatives targeting VEGFR-2 tyrosine kinase. RSC Adv., 2014, 4, 11569-11579.
[http://dx.doi.org/10.1039/c4ra00943f]
[2]
Folkman, J. Tumor angiogenesis: Therapeutic implications. N. Engl. J. Med., 1971, 285(21), 1182-1186.
[http://dx.doi.org/10.1056/NEJM197111182852108] [PMID: 4938153]
[3]
Hoeben, A.; Landuyt, B.; Highley, M.S.; Wildiers, H.; Van Oosterom, A.T.; De Bruijn, E.A. Vascular endothelial growth factor and angiogenesis. Pharmacol. Rev., 2004, 56(4), 549-580.
[http://dx.doi.org/10.1124/pr.56.4.3] [PMID: 15602010]
[4]
Karki, R.; Kang, Y.; Kim, C.H.; Kwak, K.; Kim, J-A.; Lee, E-S. Hydroxychalcones as potential antiangiogenic agents Bull Korean. Bull. Korean Chem. Soc., 2012, 33, 2925-2929.
[http://dx.doi.org/10.5012/bkcs.2012.33.9.2925]
[5]
Zhang, J.; Jiang, X.; Jiang, Y.; Guo, M.; Zhang, S.; Li, J.; He, J.; Liu, J.; Wang, J.; Ouyang, L. Recent advances in the development of dual VEGFR and c-Met small molecule inhibitors as anticancer drugs. Eur. J. Med. Chem., 2016, 108, 495-504.
[http://dx.doi.org/10.1016/j.ejmech.2015.12.016] [PMID: 26717201]
[6]
Braicu, C.; Chiorean, R.; Irimie, A.; Chira, S.; Tomuleasa, C.; Neagoe, E.; Paradiso, A.; Achimas-Cadariu, P.; Lazar, V.; Berindan-Neagoe, I. Novel insight into triple-negative breast cancers, the emerging role of angiogenesis, and antiangiogenic therapy. Expert Rev. Mol. Med., 2016., 18e18.
[http://dx.doi.org/10.1017/erm.2016.17] [PMID: 27817751]
[7]
Banerjee, S.; A’Hern, R.; Detre, S.; Littlewood-Evans, A.J.; Evans, D.B.; Dowsett, M.; Martin, L.A. Biological evidence for dual antiangiogenic-antiaromatase activity of the VEGFR inhibitor PTK787/ZK222584 in vivo. Clin. Cancer Res., 2010, 16(16), 4178-4187.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-0456] [PMID: 20682704]
[8]
Chen, J.; Yao, Q.; Li, D.; Zhang, J.; Wang, T.; Yu, M.; Zhou, X.; Huan, Y.; Wang, J.; Wang, L. Neoadjuvant rh-endostatin, docetaxel and epirubicin for breast cancer: Efficacy and safety in a prospective, randomized, phase II study. BMC Cancer, 2013, 13, 248.
[http://dx.doi.org/10.1186/1471-2407-13-248 ] [PMID: 23693018]
[9]
Kane, R.C.; Farrell, A.T.; Saber, H.; Tang, S.; Williams, G.; Jee, J.M.; Liang, C.; Booth, B.; Chidambaram, N.; Morse, D.; Sridhara, R.; Garvey, P.; Justice, R.; Pazdur, R. Sorafenib for the treatment of advanced renal cell carcinoma. Clin. Cancer Res., 2006, 12(24), 7271-7278.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-1249] [PMID: 17189398]
[10]
Li, Y-Y.; Huang, S-S.; Lee, M-M.; Deng, J-S.; Huang, G-J. Anti-inflammatory activities of cardamonin from Alpinia katsumadai through heme oxygenase-1 induction and inhibition of NF-κB and MAPK signaling pathway in the carrageenan-induced paw edema. Int. Immunopharmacol., 2015, 25(2), 332-339.
[http://dx.doi.org/10.1016/j.intimp.2015.02.002] [PMID: 25681284]
[11]
Fang, Q.; Wang, J.; Wang, L.; Zhang, Y.; Yin, H.; Li, Y.; Tong, C.; Liang, G.; Zheng, C. Attenuation of inflammatory response by a novel chalcone protects kidney and heart from hyperglycemia-induced injuries in type 1 diabetic mice. Toxicol. Appl. Pharmacol., 2015, 288(2), 179-191.
[http://dx.doi.org/10.1016/j.taap.2015.07.009] [PMID: 26206226]
[12]
Chen, X.; Yu, W.; Li, W.; Zhang, H.; Huang, W.; Wang, J.; Zhu, W.; Fang, Q.; Chen, C.; Li, X.; Liang, G. An anti-inflammatory chalcone derivative prevents heart and kidney from hyperlipidemia-induced injuries by attenuating inflammation. Toxicol. Appl. Pharmacol., 2018, 338, 43-53.
[http://dx.doi.org/10.1016/j.taap.2017.11.003] [PMID: 29128402]
[13]
Gómez-Rivera, A.; Aguilar-Mariscal, H.; Romero-Ceronio, N.; Roa-de la Fuente, L.F.; Lobato-García, C.E. Synthesis and anti-inflammatory activity of three nitro chalcones. Bioorg. Med. Chem. Lett., 2013, 23(20), 5519-5522.
[http://dx.doi.org/10.1016/j.bmcl.2013.08.061] [PMID: 24012185]
[14]
Li, J.; Li, D.; Xu, Y.; Guo, Z.; Liu, X.; Yang, H.; Wu, L.; Wang, L. Design, synthesis, biological evaluation, and molecular docking of chalcone derivatives as anti-inflammatory agents. Bioorg. Med. Chem. Lett., 2017, 27(3), 602-606.
[http://dx.doi.org/10.1016/j.bmcl.2016.12.008] [PMID: 28011213]
[15]
Wen, R.; Lv, H.N.; Jiang, Y.; Tu, P.F. Anti-inflammatory flavone and chalcone derivatives from the roots of Pongamia pinnata (L.) Pierre. Phytochemistry, 2018, 149, 56-63.
[http://dx.doi.org/10.1016/j.phytochem.2018.02.005] [PMID: 29459216]
[16]
Bano, S.; Javed, K.; Ahmad, S.; Rathish, I.G.; Singh, S.; Chaitanya, M.; Arunasree, K.M.; Alam, M.S. Synthesis of some novel chalcones, flavanones and flavones and evaluation of their anti-inflammatory activity. Eur. J. Med. Chem., 2013, 65, 51-59.
[http://dx.doi.org/10.1016/j.ejmech.2013.04.056] [PMID: 23693150]
[17]
Gan, F.F.; Zhang, R.; Ng, H.L.; Karuppasamy, M.; Seah, W.; Yeap, W.H.; Ong, S.M.; Hadadi, E.; Wong, S.C.; Chui, W.K.; Chew, E.H. Novel dual-targeting anti-proliferative dihydrotriazine-chalcone derivatives display suppression of cancer cell invasion and inflammation by inhibiting the NF-κB signaling pathway. Food Chem. Toxicol., 2018, 116(Pt B), 238-248.
[18]
Goodarzi, M.; Saeys, W.; de Araujo, M.C.U.; Galvão, R.K.H.; Vander Heyden, Y. Binary classification of chalcone derivatives with LDA or KNN based on their antileishmanial activity and molecular descriptors selected using the Successive Projections Algorithm feature-selection technique. Eur. J. Pharm. Sci., 2014, 51, 189-195.
[http://dx.doi.org/10.1016/j.ejps.2013.09.019] [PMID: 24090733]
[19]
Richard, J.V.; Werbovetz, K.A. New antileishmanial candidates and lead compounds. Curr. Opin. Chem. Biol., 2010, 14(4), 447-455.
[http://dx.doi.org/10.1016/j.cbpa.2010.03.023] [PMID: 20400358]
[20]
Jaiswal, A.K.; Rao, K.B.; Kushwaha, P.; Rawat, K.; Modukuri, R.K.; Khare, P.; Joshi, S.; Mishra, S.; Rai, A.; Sashidhara, K.V.; Dube, A. Development of Leishmania donovani stably expressing DsRed for flow cytometry-based drug screening using chalcone thiazolyl-hydrazone as a new antileishmanial target. Int. J. Antimicrob. Agents, 2016, 48(6), 695-702.
[http://dx.doi.org/10.1016/j.ijantimicag.2016.09.018] [PMID: 27876275]
[21]
Ortalli, M.; Ilari, A.; Colotti, G.; De Ionna, I.; Battista, T.; Bisi, A.; Gobbi, S.; Rampa, A.; Di Martino, R.M.C.; Gentilomi, G.A.; Varani, S.; Belluti, F. Identification of chalcone-based antileishmanial agents targeting trypanothione reductase. Eur. J. Med. Chem., 2018, 152, 527-541.
[http://dx.doi.org/10.1016/j.ejmech.2018.04.057] [PMID: 29758517]
[22]
Sousa-Batista, A.J.; Philipon, C.I.M.S.; de Souza Albernaz, M.; Pinto, S.R.; Rossi-Bergmann, B.; Santos-Oliveira, R. New chalcone compound as a promising antileishmanial drug for an old neglected disease: Biological evaluation using radiolabelled biodistribution. J. Glob. Antimicrob. Resist., 2018, 13, 139-142.
[http://dx.doi.org/10.1016/j.jgar.2017.11.012] [PMID: 29196220]
[23]
Liu, M.; Wilairat, P.; Croft, S.L.; Tan, A.L.C.; Go, M.L. Structure-activity relationships of antileishmanial and antimalarial chalcones. Bioorg. Med. Chem., 2003, 11(13), 2729-2738.
[http://dx.doi.org/10.1016/S0968-0896(03)00233-5] [PMID: 12788347]
[24]
Gupta, S.; Shivahare, R.; Korthikunta, V.; Singh, R.; Gupta, S.; Tadigoppula, N. Synthesis and biological evaluation of chalcones as potential antileishmanial agents. Eur. J. Med. Chem., 2014, 81, 359-366.
[http://dx.doi.org/10.1016/j.ejmech.2014.05.034] [PMID: 24858541]
[25]
Boeck, P.; Bandeira Falcão, C.A.; Leal, P.C.; Yunes, R.A.; Filho, V.C.; Torres-Santos, E.C.; Rossi-Bergmann, B. Synthesis of chalcone analogues with increased antileishmanial activity. Bioorg. Med. Chem., 2006, 14(5), 1538-1545.
[http://dx.doi.org/10.1016/j.bmc.2005.10.005] [PMID: 16386424]
[26]
Tajammal, A.; Batool, M.; Ramzan, A.; Samra, M.M.; Mahnoor, I.; Verpoort, F.; Irfan, A.; Al-Sehemi, A.G.; Munawar, M.A.; Basra, M.A.R. Synthesis, antihyperglycemic activity and computational studies of antioxidant chalcones and flavanones derived from 2,5 dihy-droxyacetophenone. J. Mol. Struct., 2017, 1148, 512-520.
[http://dx.doi.org/10.1016/j.molstruc.2017.07.042]
[27]
Venkatachalam, H.; Nayak, Y.; Jayashree, B.S. Synthesis, characterization and antioxidant activities of synthetic chalcones and flavones. APCBEE Procedia, 2012, 3, 209-213.
[http://dx.doi.org/10.1016/j.apcbee.2012.06.071]
[28]
El Sayed Aly, M.R.; Abd El Razek Fodah, H.H.; Saleh, S.Y. Antiobesity, antioxidant and cytotoxicity activities of newly synthesized chalcone derivatives and their metal complexes. Eur. J. Med. Chem., 2014, 76, 517-530.
[http://dx.doi.org/10.1016/j.ejmech.2014.02.021] [PMID: 24602794]
[29]
Wang, G.; Xue, Y.; An, L.; Zheng, Y.; Dou, Y.; Zhang, L.; Liu, Y. Theoretical study on the structural and antioxidant properties of some recently synthesised 2,4,5-trimethoxy chalcones. Food Chem., 2015, 171, 89-97.
[http://dx.doi.org/10.1016/j.foodchem.2014.08.106] [PMID: 25308647]
[30]
Shenvi, S.; Kumar, K.; Hatti, K.S.; Rijesh, K.; Diwakar, L.; Reddy, G.C. Synthesis, anticancer and antioxidant activities of 2,4,5-trimethoxy chalcones and analogues from asaronaldehyde: Structure-activity relationship. Eur. J. Med. Chem., 2013, 62, 435-442.
[http://dx.doi.org/10.1016/j.ejmech.2013.01.018] [PMID: 23395966]
[31]
El-Sayed, Y.S.; Gaber, M. Studies on chalcone derivatives: Complex formation, thermal behavior, stability constant and antioxidant activity. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 137, 423-431.
[http://dx.doi.org/10.1016/j.saa.2014.08.061] [PMID: 25238180]
[32]
Vanangamudi, G.; Subramanian, M.; Thirunarayanan, G. Synthesis, spectral linearity, antimicrobial, antioxidant and insect antifeedant activities of some 2,5-dimethyl-3-thienyl chalcones. Arab. J. Chem., 2017, 10, 1254-1266.
[http://dx.doi.org/10.1016/j.arabjc.2013.03.006]
[33]
Wang, J.; Huang, L.; Cheng, C.; Li, G.; Xie, J.; Shen, M.; Chen, Q.; Li, W.; He, W.; Qiu, P.; Wu, J. Design, synthesis and biological evaluation of chalcone analogues with novel dual antioxidant mechanisms as potential anti-ischemic stroke agents. Acta Pharm. Sin. B, 2019, 9(2), 335-350.
[http://dx.doi.org/10.1016/j.apsb.2019.01.003] [PMID: 30972281]
[34]
Mirzaei, H.; Emami, S. Recent advances of cytotoxic chalconoids targeting tubulin polymerization: Synthesis and biological activity. Eur. J. Med. Chem., 2016, 121, 610-639.
[http://dx.doi.org/10.1016/j.ejmech.2016.05.067] [PMID: 27318983]
[35]
Zhu, X.F.; Xie, B.F.; Zhou, J.M.; Feng, G.K.; Liu, Z.C.; Wei, X.Y.; Zhang, F.X.; Liu, M.F.; Zeng, Y.X. Blockade of vascular endothelial growth factor receptor signal pathway and antitumor activity of ON-III (2′,4′-dihydroxy-6′-methoxy-3′,5′-dimethylchalcone), a component from Chinese herbal medicine. Mol. Pharmacol., 2005, 67(5), 1444-1450.
[http://dx.doi.org/10.1124/mol.104.009894] [PMID: 15703376]
[36]
Wei, H.; Zhang, X.; Wu, G.; Yang, X.; Pan, S.; Wang, Y.; Ruan, J. Chalcone derivatives from the fern Cyclosorus parasiticus and their anti-proliferative activity. Food Chem. Toxicol., 2013, 60, 147-152.
[http://dx.doi.org/10.1016/j.fct.2013.07.045] [PMID: 23891701]
[37]
Wang, Z.; Wang, N.; Han, S.; Wang, D.; Mo, S.; Yu, L.; Huang, H.; Tsui, K.; Shen, J.; Chen, J. Dietary compound isoliquiritigenin inhibits breast cancer neoangiogenesis via VEGF/VEGFR-2 signaling pathway. PLoS One, 2013, 8(7)e68566
[http://dx.doi.org/10.1371/journal.pone.0068566]] [PMID: 23861918]
[38]
Chung, C.H.; Chang, C.H.; Chen, S.S.; Wang, H.H.; Yen, J.Y.; Hsiao, C.J.; Wu, N.L.; Chen, Y.L.; Huang, T.F.; Wang, P.C.; Yeh, H.I.; Wang, S.W. Butein inhibits angiogenesis of human endothelial progenitor cells via the translation dependent signaling pathway. Evid. Based Complement. Alternat. Med., 2013, 2013, 943187-943197.
[http://dx.doi.org/10.1155/2013/943187] [PMID: 23840271]
[39]
Guo, F.; Feng, L.; Huang, C.; Ding, H.; Zhang, X.; Wang, Z.; Li, Y. Prenylflavone derivatives from Broussonetia papyrifera, inhibit the growth of breast cancer cells in vitro and in vivo. Phytochem. Lett., 2013, 6, 331-336.
[http://dx.doi.org/10.1016/j.phytol.2013.03.017]
[40]
Tian, S.S.; Jiang, F.S.; Zhang, K.; Zhu, X.X.; Jin, B.; Lu, J.J.; Ding, Z.S. Flavonoids from the leaves of Carya cathayensis Sarg. inhibit vascular endothelial growth factor-induced angiogenesis. Fitoterapia, 2014, 92, 34-40.
[http://dx.doi.org/10.1016/j.fitote.2013.09.016] [PMID: 24096161]
[41]
Kim, J-A.; Kang, Y.; Thapa, D.; Lee, J.S.; Park, M.A.; Lee, H.H.; Lyoo, W.S.; Lee, Y.R. Anti-invasive and anti-angiogenic effects of xan-thohumol and its synthetic derivatives. Biomol. Ther. (Seoul), 2009, 17, 422-429.
[http://dx.doi.org/10.4062/biomolther.2009.17.4.422]
[42]
Albini, A.; Dell’Eva, R.; Vené, R.; Ferrari, N.; Buhler, D.R.; Noonan, D.M.; Fassina, G. Mechanisms of the antiangiogenic activity by the hop flavonoid xanthohumol: NF-kappaB and Akt as targets. FASEB J., 2006, 20(3), 527-529.
[http://dx.doi.org/10.1096/fj.05-5128fje] [PMID: 16403733]
[43]
Joseph, S.J.; Arulkumaran, R.; Kamalakkannan, D.; Sakthinathan, S.P.; Sundararajan, R.; Suresh, R.; Vijayakumar, S.; Ranganathan, K.; Kalyanasundaram, N.; Vanangamudi, G.; Thirunarayanan, G. Spectral correlation analysis and antimicrobial activities of some 2,4-dimethoxy phenyl chalcones. ILCPA, 2014, 4, 48-65.
[44]
Nielsen, S.F.; Christensen, S.B.; Cruciani, G.; Kharazmi, A.; Liljefors, T. Antileishmanial chalcones: Statistical design, synthesis, and three-dimensional quantitative structure-activity relationship analysis. J. Med. Chem., 1998, 41(24), 4819-4832.
[http://dx.doi.org/10.1021/jm980410m] [PMID: 9822551]
[45]
Kang, J.E.; Cho, J.K.; Curtis-Long, M.J.; Ryu, H.W.; Kim, J.H.; Kim, H.J.; Yuk, H.J.; Kim, D.W.; Park, K.H. Inhibitory evaluation of sulfonamide chalcones on 946-secretase and acylcholinesterase. Molecules, 2012, 18(1), 140-153.
[http://dx.doi.org/10.3390/molecules18010140] [PMID: 23344193]
[46]
Lee, Y.S.; Lim, S.S.; Shin, K.H.; Kim, Y.S.; Ohuchi, K.; Jung, S.H. Anti-angiogenic and anti-tumor activities of 2′-hydroxy-4′-methoxychalcone. Biol. Pharm. Bull., 2006, 29(5), 1028-1031.
[http://dx.doi.org/10.1248/bpb.29.1028] [PMID: 16651739]
[47]
Choi, Y.S.; Kim, D.M.; Kim, Y.J.; Yang, S.; Lee, K.T.; Ryu, J.H.; Jeong, J.H. Synthesis and evaluation of neuroprotective selenofla-vanones. Int. J. Mol. Sci., 2015, 16(12), 29574-29582.
[http://dx.doi.org/10.3390/ijms161226188] [PMID: 26690420]
[48]
Valla, C.; Baeza, A.; Menges, F.; Pfaltz, A. Enantioselective synthesis of chromanes by iridium-catalyzed asymmetric hydrogenation of 4H-chromenes. Synlett, 2008, 20, 3167-3171.
[49]
Bertl, E.; Becker, H.; Eicher, T.; Herhaus, C.; Kapadia, G.; Bartsch, H.; Gerhäuser, C. Inhibition of endothelial cell functions by novel potential cancer chemopreventive agents. Biochem. Biophys. Res. Commun., 2004, 325(1), 287-295.
[http://dx.doi.org/10.1016/j.bbrc.2004.10.032] [PMID: 15522231]
[50]
Dimmock, J.R.; Kandepu, N.M.; Nazarali, A.J.; Kowalchuk, T.P.; Motaganahalli, N.; Quail, J.W.; Mykytiuk, P.A.; Audette, G.F.; Prasad, L.; Perjési, P.; Allen, T.M.; Santos, C.L.; Szydlowski, J.; De Clercq, E.; Balzarini, J. Conformational and quantitative structure-activity relationship study of cytotoxic 2-arylidene-benzocycloalkanones. J. Med. Chem., 1999, 42(8), 1358-1366.
[http://dx.doi.org/10.1021/jm9806695] [PMID: 10212121]
[51]
Varinska, L.; van Wijhe, M.; Belleri, M.; Mitola, S.; Perjesi, P.; Presta, M.; Koolwijk, P.; Ivanova, L.; Mojzis, J. Anti-angiogenic activity of the flavonoid precursor 4-hydroxychalcone. Eur. J. Pharmacol., 2012, 691(1-3), 125-133.
[http://dx.doi.org/10.1016/j.ejphar.2012.06.017] [PMID: 22721615]
[52]
Lange, K.; Kammerer, M.; Saupe, F.; Hegi, M.E.; Grotegut, S.; Fluri, E.; Orend, G. Combined lysophosphatidic acid/platelet-derived growth factor signaling triggers glioma cell migration in a tenascin-C microenvironment. Cancer Res., 2008, 68(17), 6942-6952.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-0347] [PMID: 18757408]
[53]
Howe, A.K. Regulation of actin-based cell migration by cAMP/PKA. Biochim. Biophys. Acta, 2004, 1692(2-3), 159-174.
[http://dx.doi.org/10.1016/j.bbamcr.2004.03.005] [PMID: 15246685]
[54]
Ku, B.M.; Ryu, H.W.; Lee, Y.K.; Ryu, J.; Jeong, J.Y.; Choi, J.; Cho, H.J.; Park, K.H.; Kang, S.S. 4′-Acetoamido-4-hydroxy-chalcone, a chalcone derivative, inhibits glioma growth and invasion through regulation of the tropomyosin 1 gene. Biochem. Biophys. Res. Commun., 2010, 402(3), 525-530.
[http://dx.doi.org/10.1016/j.bbrc.2010.10.068] [PMID: 20971066]
[55]
Tuncel, S.; Trivella, A.; Atilla, D.; Bennis, K.; Savoie, H.; Albrieux, F.; Delort, L.; Billard, H.; Dubois, V.; Ahsen, V.; Caldefie-Chézet, F.; Richard, C.; Boyle, R.W.; Ducki, S.; Dumoulin, F. Assessing the dual activity of a chalcone-phthalocyanine conjugate: Design, synthesis, and antivascular and photodynamic properties. Mol. Pharm., 2013, 10(10), 3706-3716.
[http://dx.doi.org/10.1021/mp400207v] [PMID: 23937202]
[56]
Weber, W.M.; Hunsaker, L.A.; Abcouwer, S.F.; Deck, L.M.; Vander Jagt, D.L. Anti-oxidant activities of curcumin and related enones. Bioorg. Med. Chem., 2005, 13(11), 3811-3820.
[http://dx.doi.org/10.1016/j.bmc.2005.03.035] [PMID: 15863007]
[57]
Kohler, E.P.; Chadwell, H.M. Chalcone. Org. Synth., 1941, 1, 78.
[58]
Shim, J.S.; Kim, J.H.; Cho, H.Y.; Yum, Y.N.; Kim, S.H.; Park, H.J.; Shim, B.S.; Choi, S.H.; Kwon, H.J. Irreversible inhibition of CD13/aminopeptidase N by the antiangiogenic agent curcumin. Chem. Biol., 2003, 10(8), 695-704.
[http://dx.doi.org/10.1016/S1074-5521(03)00169-8] [PMID: 12954328]
[59]
Hahm, E.R.; Gho, Y.S.; Park, S.; Park, C.; Kim, K.W.; Yang, C.H. Synthetic curcumin analogs inhibit activator protein-1 transcription and tumor-induced angiogenesis. Biochem. Biophys. Res. Commun., 2004, 321(2), 337-344.
[http://dx.doi.org/10.1016/j.bbrc.2004.06.119] [PMID: 15358181]
[60]
Ahn, C.M.; Shin, W.S.; Bum Woo, H.; Lee, S.; Lee, H.W. Synthesis of symmetrical bis-alkynyl or alkyl pyridine and thiophene derivatives and their antiangiogenic activities. Bioorg. Med. Chem. Lett., 2004, 14(15), 3893-3896.
[http://dx.doi.org/10.1016/j.bmcl.2004.05.065] [PMID: 15225692]
[61]
Yang, F.; Li, J.; Zhu, J.; Wang, D.; Chen, S.; Bai, X. Hydroxysafflor yellow A inhibits angiogenesis of hepatocellular carcinoma via blocking ERK/MAPK and NF-κB signaling pathway in H22 tumor-bearing mice. Eur. J. Pharmacol., 2015, 754, 105-114.
[http://dx.doi.org/10.1016/j.ejphar.2015.02.015] [PMID: 25720342]
[62]
Ji, D.B.; Zhu, M.C.; Zhu, B.; Zhu, Y.Z.; Li, C.L.; Ye, J.; Zhu, H.B. Hydroxysafflor yellow A enhances survival of vascular endothelial cells under hypoxia via upregulation of the HIF-1 α-VEGF pathway and regulation of Bcl-2/Bax. J. Cardiovasc. Pharmacol., 2008, 52(2), 191-202.
[http://dx.doi.org/10.1097/FJC.0b013e318181fb02] [PMID: 18670359]
[63]
Dat, N.T.; Jin, X.; Lee, K.; Hong, Y.S.; Kim, Y.H.; Lee, J.J. Hypoxia-inducible factor-1 inhibitory benzofurans and chalcone-derived diels-alder adducts from Morus species. J. Nat. Prod., 2009, 72(1), 39-43.
[http://dx.doi.org/10.1021/np800491u] [PMID: 19072214]
[64]
Zhong, H.; Wees, M.A.; Faure, T.D.; Carrillo, C.; Arbiser, J.; Bowen, J.P. The impact of ionization States of matrix metalloproteinase inhibitors on docking-based inhibitor design. ACS Med. Chem. Lett., 2011, 2(6), 455-460.
[http://dx.doi.org/10.1021/ml200031m] [PMID: 24900330]
[65]
Robinson, T.P.; Hubbard, R.B., IV; Ehlers, T.J.; Arbiser, J.L.; Goldsmith, D.J.; Bowen, J.P. Synthesis and biological evaluation of aromatic enones related to curcumin. Bioorg. Med. Chem., 2005, 13(12), 4007-4013.
[http://dx.doi.org/10.1016/j.bmc.2005.03.054] [PMID: 15911313]
[66]
Wang, L.; Chen, G.; Lu, X.; Wang, S.; Han, S.; Li, Y.; Ping, G.; Jiang, X.; Li, H.; Yang, J.; Wu, C. Novel chalcone derivatives as Hypoxia-Inducible Factor (HIF)-1 inhibitor: Synthesis, anti-invasive and anti-angiogenic properties. Eur. J. Med. Chem., 2015, 89, 88-97.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.036] [PMID: 25462229]
[67]
Stanojković, T.; Marković, V.; Matić, I.Z.; Mladenović, M.P.; Petrović, N.; Krivokuća, A.; Petković, M.; Joksović, M.D. Highly selective anthraquinone-chalcone hybrids as potential antileukemia agents. Bioorg. Med. Chem. Lett., 2018, 28(15), 2593-2598.
[http://dx.doi.org/10.1016/j.bmcl.2018.06.048] [PMID: 29970309]
[68]
Nakagawa-Goto, K.; Chen, T-H.; Peng, C-Y.; Bastow, K.F.; Wu, J-H.; Lee, K-H. Antitumor agents 259. Design, syntheses, and structure-activity relationship study of desmosdumotin C analogs. J. Med. Chem., 2007, 50(14), 3354-3358.
[http://dx.doi.org/10.1021/jm0702534] [PMID: 17569518]
[69]
Jahng, Y.; Zhao, L-X.; Moon, Y-S.; Basnet, A.; Kim, E-K.; Chang, H.W.; Ju, H.K.; Jeong, T.C.; Lee, E.S. Simple aromatic compounds containing propenone moiety show considerable dual COX/5-LOX inhibitory activities. Bioorg. Med. Chem. Lett., 2004, 14(10), 2559-2562.
[http://dx.doi.org/10.1016/j.bmcl.2004.02.099] [PMID: 15109651]
[70]
Park, B.C.; Park, S.Y.; Lee, J.S.; Mousa, S.A.; Kim, J.T.; Kwak, M.K.; Kang, K.W.; Lee, E.S.; Choi, H.G.; Yong, C.S.; Kim, J.A. The anti-angiogenic effects of 1-furan-2-yl-3-pyridin-2-yl-propenone are mediated through the suppression of both VEGF production and VEGF-induced signaling. Vascul. Pharmacol., 2009, 50(3-4), 123-131.
[http://dx.doi.org/10.1016/j.vph.2008.11.006] [PMID: 19068239]
[71]
Lee, J-S.; Kang, Y.; Kim, J.T.; Thapa, D.; Lee, E-S.; Kim, J-A. The anti-angiogenic and anti-tumor activity of synthetic phenylpropenone derivatives is mediated through the inhibition of receptor tyrosine kinases. Eur. J. Pharmacol., 2012, 677(1-3), 22-30.
[http://dx.doi.org/10.1016/j.ejphar.2011.12.012] [PMID: 22200628]
[72]
Rizvi, S.U.F.; Siddiqui, H.L.; Nisar, M.; Khan, N.; Khan, I. Discovery and molecular docking of quinolyl-thienyl chalcones as anti-angiogenic agents targeting VEGFR-2 tyrosine kinase. Bioorg. Med. Chem. Lett., 2012, 22(2), 942-944.
[http://dx.doi.org/10.1016/j.bmcl.2011.12.017] [PMID: 22200597]
[73]
Li, W.; Xu, F.; Shuai, W.; Sun, H.; Yao, H.; Ma, C.; Xu, S.; Yao, H.; Zhu, Z.; Yang, D-H.; Chen, Z.S.; Xu, J. Discovery of novel quinoline-chalcone derivatives as potent antitumor agents with microtubule polymerization inhibitory activity. J. Med. Chem., 2019, 62(2), 993-1013.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01755] [PMID: 30525584]
[74]
Ivanova, L.; Varinska, L.; Pilatova, M.; Gal, P.; Solar, P.; Perjesi, P.; Smetana, K., Jr; Ostro, A.; Mojzis, J. Cyclic chalcone analogue KRP6 as a potent modulator of cell proliferation: An in vitro study in HUVECs. Mol. Biol. Rep., 2013, 40(7), 4571-4580.
[http://dx.doi.org/10.1007/s11033-013-2547-x] [PMID: 23666054]
[75]
Pilatova, M.; Varinska, L.; Perjesi, P.; Sarissky, M.; Mirossay, L.; Solar, P.; Ostro, A.; Mojzis, J. In vitro antiproliferative and antiangiogenic effects of synthetic chalcone analogues. Toxicol. In Vitro, 2010, 24(5), 1347-1355.
[http://dx.doi.org/10.1016/j.tiv.2010.04.013] [PMID: 20450969]
[76]
Ducki, S.; Rennison, D.; Woo, M.; Kendall, A.; Chabert, J.F.D.; McGown, A.T.; Lawrence, N.J. Combretastatin-like chalcones as inhibitors of microtubule polymerization. Part 1: Synthesis and biological evaluation of antivascular activity. Bioorg. Med. Chem., 2009, 17(22), 7698-7710.
[http://dx.doi.org/10.1016/j.bmc.2009.09.039] [PMID: 19837593]
[77]
Basavarajappa, H.D.; Lee, B.; Lee, H.; Sulaiman, R.S.; An, H.; Magaña, C.; Shadmand, M.; Vayl, A.; Rajashekhar, G.; Kim, E-Y.; Suh, Y-G.; Lee, K.; Seo, S-Y.; Corson, T.W. Synthesis and biological evaluation of novel homoisoflavonoids for retinal neovascularization. J. Med. Chem., 2015, 58(12), 5015-5027.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00449] [PMID: 26035340]
[78]
Li, W.; Yin, Y.; Yao, H.; Shuai, W.; Sun, H.; Xu, S.; Liu, J.; Yao, H.; Zhu, Z.; Xu, J. Discovery of novel vinyl sulfone derivatives as anti-tumor agents with microtubule polymerization inhibitory and vascular disrupting activities. Eur. J. Med. Chem., 2018, 157, 1068-1080.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.074] [PMID: 30176537]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy