Generic placeholder image

Current Radiopharmaceuticals

Editor-in-Chief

ISSN (Print): 1874-4710
ISSN (Online): 1874-4729

Review Article

Alternative and New Radiopharmaceutical Agents for Lung Cancer

Author(s): Silvi Telo*, Letizia Calderoni, Sara Vichi, Federico Zagni, Paolo Castellucci and Stefano Fanti

Volume 13, Issue 3, 2020

Page: [185 - 194] Pages: 10

DOI: 10.2174/1874471013666191223151402

Abstract

Background: FDG PET/CT imaging has an established role in lung cancer (LC) management. Whilst it is a sensitive technique, FDG PET/CT has a limited specificity in the differentiation between LC and benign conditions and is not capable of defining LC heterogeneity since FDG uptake varies between histotypes.

Objective: To get an overview of new radiopharmaceuticals for the study of cancer biology features beyond glucose metabolism in LC.

Methods: A comprehensive literature review of PubMed/Medline was performed using a combination of the following keywords: “positron emission tomography”, “lung neoplasms”, “non-FDG”, “radiopharmaceuticals”, “tracers”.

Results: Evidences suggest that proliferation markers, such as 18F-Fluorothymidine and 11CMethionine, improve LC staging and are useful in evaluating treatment response and progression free survival. 68Ga-DOTA-peptides are already routinely used in pulmonary neuroendocrine neoplasms (NENs) management and should be firstly performed in suspected NENs. 18F-Fluoromisonidazole and other radiopharmaceuticals show a promising impact on staging, prognosis assessment and therapy response in LC patients, by visualizing hypoxia and perfusion. Radiolabeled RGD-peptides, targeting angiogenesis, may have a role in LC staging, treatment outcome and therapy. PET radiopharmaceuticals tracing a specific oncogene/signal pathway, such as EGFR or ALK, are gaining interest especially for therapeutic implications. Other PET tracers, like 68Ga-PSMA-peptides or radiolabeled FAPIs, need more development in LC, though, they are promising for therapy purposes.

Conclusion: To date, the employment of most of the described tracers is limited to the experimental field, however, research development may offer innovative opportunities to improve LC staging, characterization, stratification and response assessment in an era of increased personalized therapy.

Keywords: Lung cancer, PET/CT, radiopharmaceuticals, non-FDG tracers, tomoscintigraphy, alternative tracers, new radiopharmaceuticals.

Graphical Abstract
[1]
Ferlay, J.; Colombet, M.; Soerjomataram, I.; Dyba, T.; Randi, G.; Bettio, M.; Gavin, A.; Visser, O.; Bray, F. Cancer incidence and mortality patterns in Europe: Estimates for 40 countries and 25 major cancers in 2018. Eur. J. Cancer, 2018, 103, 356-387.
[http://dx.doi.org/10.1016/j.ejca.2018.07.005] [PMID: 30100160]
[2]
Brennan, P.; Hainaut, P.; Boffetta, P. Genetics of lung-cancer susceptibility. Lancet Oncol., 2011, 12(4), 399-408.
[http://dx.doi.org/10.1016/S1470-2045(10)70126-1] [PMID: 20951091]
[3]
Jamal-Hanjani, M.; Wilson, G.A.; McGranahan, N.; Birkbak, N.J.; Watkins, T.B.K.; Veeriah, S.; Shafi, S.; Johnson, D.H.; Mitter, R.; Rosenthal, R.; Salm, M.; Horswell, S.; Escudero, M.; Matthews, N.; Rowan, A.; Chambers, T.; Moore, D.A.; Turajlic, S.; Xu, H.; Lee, S.M.; Forster, M.D.; Ahmad, T.; Hiley, C.T.; Abbosh, C.; Falzon, M.; Borg, E.; Marafioti, T.; Lawrence, D.; Hayward, M.; Kolvekar, S.; Panagiotopoulos, N.; Janes, S.M.; Thakrar, R.; Ahmed, A.; Blackhall, F.; Summers, Y.; Shah, R.; Joseph, L.; Quinn, A.M.; Crosbie, P.A.; Naidu, B.; Middleton, G.; Langman, G.; Trotter, S.; Nicolson, M.; Remmen, H.; Kerr, K.; Chetty, M.; Gomersall, L.; Fennell, D.A.; Nakas, A.; Rathinam, S.; Anand, G.; Khan, S.; Russell, P.; Ezhil, V.; Ismail, B.; Irvin-Sellers, M.; Prakash, V.; Lester, J.F.; Kornaszewska, M.; Attanoos, R.; Adams, H.; Davies, H.; Dentro, S.; Taniere, P.; O’Sullivan, B.; Lowe, H.L.; Hartley, J.A.; Iles, N.; Bell, H.; Ngai, Y.; Shaw, J.A.; Herrero, J.; Szallasi, Z.; Schwarz, R.F.; Stewart, A.; Quezada, S.A.; Le Quesne, J.; Van Loo, P.; Dive, C.; Hackshaw, A.; Swanton, C. TRACERx Consortium Tracking the Evolution of Non-Small-Cell Lung Cancer. N. Engl. J. Med., 2017, 376(22), 2109-2121.
[http://dx.doi.org/10.1056/NEJMoa1616288] [PMID: 28445112]
[4]
Langer, C.J.; Besse, B.; Gualberto, A.; Brambilla, E.; Soria, J-C. The evolving role of histology in the management of advanced non-small-cell lung cancer. J. Clin. Oncol., 2010, 28(36), 5311-5320.
[http://dx.doi.org/10.1200/JCO.2010.28.8126] [PMID: 21079145]
[5]
Fischer, B.M.; Mortensen, J. The future in diagnosis and staging of lung cancer: positron emission tomography. Respiration, 2006, 73(3), 267-276.
[http://dx.doi.org/10.1159/000092080] [PMID: 16679747]
[6]
Basu, S.; Hess, S.; Nielsen Braad, P-E.; Olsen, B.B.; Inglev, S.; Høilund-Carlsen, P.F. The Basic Principles of FDG-PET/CT Imaging. PET Clin., 2014, 9(4), 355-370, v.
[http://dx.doi.org/10.1016/j.cpet.2014.07.006] [PMID: 26050942]
[7]
Deppen, S.A.; Blume, J.D.; Kensinger, C.D.; Morgan, A.M.; Aldrich, M.C.; Massion, P.P.; Walker, R.C.; McPheeters, M.L.; Putnam, J.B., Jr; Grogan, E.L. Accuracy of FDG-PET to diagnose lung cancer in areas with infectious lung disease: a meta-analysis. JAMA, 2014, 312(12), 1227-1236.
[http://dx.doi.org/10.1001/jama.2014.11488] [PMID: 25247519]
[8]
Cuaron, J.; Dunphy, M.; Rimner, A. Role of FDG-PET scans in staging, response assessment, and follow-up care for non-small cell lung cancer. Front. Oncol., 2013, 2, 208.
[http://dx.doi.org/10.3389/fonc.2012.00208] [PMID: 23316478]
[9]
Chakraborty, R.K.; Sharma, S. Cancer, Bronchoalveolar.StatPearls; StatPearls Publishing: Treasure Island, FL, 2018.
[10]
Szyszko, T.A.; Yip, C.; Szlosarek, P.; Goh, V.; Cook, G.J.R. The role of new PET tracers for lung cancer. Lung Cancer, 2016, 94, 7-14.
[http://dx.doi.org/10.1016/j.lungcan.2016.01.010] [PMID: 26973200]
[11]
Cheng, G. Non-Small-Cell Lung Cancer PET Imaging Beyond F18 Fluorodeoxyglucose. PET Clin., 2018, 13(1), 73-81.
[http://dx.doi.org/10.1016/j.cpet.2017.09.006] [PMID: 29157387]
[12]
Buck, A.K.; Halter, G.; Schirrmeister, H.; Kotzerke, J.; Wurziger, I.; Glatting, G.; Mattfeldt, T.; Neumaier, B.; Reske, S.N.; Hetzel, M. Imaging proliferation in lung tumors with PET: 18F-FLT versus 18F-FDG. J. Nucl. Med., 2003, 44(9), 1426-1431.
[PMID: 12960187]
[13]
Yang, W.; Zhang, Y.; Fu, Z.; Sun, X.; Mu, D.; Yu, J. Imaging proliferation of 18F-FLT PET/CT correlated with the expression of microvessel density of tumour tissue in non-small-cell lung cancer. Eur. J. Nucl. Med. Mol. Imaging, 2012, 39(8), 1289-1296.
[http://dx.doi.org/10.1007/s00259-012-2126-8] [PMID: 22581165]
[14]
Buck, A.K.; Hetzel, M.; Schirrmeister, H.; Halter, G.; Möller, P.; Kratochwil, C.; Wahl, A.; Glatting, G.; Mottaghy, F.M.; Mattfeldt, T.; Neumaier, B.; Reske, S.N. Clinical relevance of imaging proliferative activity in lung nodules. Eur. J. Nucl. Med. Mol. Imaging, 2005, 32(5), 525-533.
[http://dx.doi.org/10.1007/s00259-004-1706-7] [PMID: 15599526]
[15]
Tian, J.; Yang, X.; Yu, L.; Chen, P.; Xin, J.; Ma, L.; Feng, H.; Tan, Y.; Zhao, Z.; Wu, W. A multicenter clinical trial on the diagnostic value of dual-tracer PET/CT in pulmonary lesions using 3′-deoxy-3′-18F-fluorothymidine and 18F-FDG. J. Nucl. Med., 2008, 49(2), 186-194.
[http://dx.doi.org/10.2967/jnumed.107.044966] [PMID: 18199618]
[16]
Halter, G.; Buck, A.K.; Schirrmeister, H.; Wurziger, I.; Liewald, F.; Glatting, G.; Neumaier, B.; Sunder-Plassmann, L.; Reske, S.N.; Hetzel, M. [18F] 3-deoxy-3′-fluorothymidine positron emission tomography: alternative or diagnostic adjunct to 2-[18f]-fluoro-2-deoxy-D-glucose positron emission tomography in the workup of suspicious central focal lesions? J. Thorac. Cardiovasc. Surg., 2004, 127(4), 1093-1099.
[http://dx.doi.org/10.1016/j.jtcvs.2003.09.003] [PMID: 15052207]
[17]
Li, X-F.; Dai, D.; Song, X-Y.; Liu, J-J.; Zhu, Y-J.; Xu, W-G. Comparison of the diagnostic performance of 18F-fluorothymidine versus 18F-fluorodeoxyglucose positron emission tomography on pulmonary lesions: A meta analysis. Mol. Clin. Oncol., 2015, 3(1), 101-108.
[http://dx.doi.org/10.3892/mco.2014.440] [PMID: 25469278]
[18]
Yang, W.; Zhang, Y.; Fu, Z.; Yu, J.; Sun, X.; Mu, D.; Han, A. Imaging of proliferation with 18F-FLT PET/CT versus 18F-FDG PET/CT in non-small-cell lung cancer. Eur. J. Nucl. Med. Mol. Imaging, 2010, 37(7), 1291-1299.
[http://dx.doi.org/10.1007/s00259-010-1412-6] [PMID: 20309686]
[19]
Trigonis, I.; Koh, P.K.; Taylor, B.; Tamal, M.; Ryder, D.; Earl, M.; Anton-Rodriguez, J.; Haslett, K.; Young, H.; Faivre-Finn, C.; Blackhall, F.; Jackson, A.; Asselin, M.C. Early reduction in tumour [18F]fluorothymidine (FLT) uptake in patients with non-small cell lung cancer (NSCLC) treated with radiotherapy alone. Eur. J. Nucl. Med. Mol. Imaging, 2014, 41(4), 682-693.
[http://dx.doi.org/10.1007/s00259-013-2632-3] [PMID: 24504503]
[20]
Everitt, S.J.; Ball, D.L.; Hicks, R.J.; Callahan, J.; Plumridge, N.; Collins, M.; Herschtal, A.; Binns, D.; Kron, T.; Schneider, M.; MacManus, M. Differential (18)F-FDG and (18)F-FLT Uptake on Serial PET/CT Imaging Before and During Definitive Chemoradiation for Non-Small Cell Lung Cancer. J. Nucl. Med., 2014, 55(7), 1069-1074.
[http://dx.doi.org/10.2967/jnumed.113.131631] [PMID: 24833494]
[21]
Kobe, C.; Scheffler, M.; Holstein, A.; Zander, T.; Nogova, L.; Lammertsma, A.A.; Boellaard, R.; Neumaier, B.; Ullrich, R.T.; Dietlein, M.; Wolf, J.; Kahraman, D. Predictive value of early and late residual 18F-fluorodeoxyglucose and 18F-fluorothymidine uptake using different SUV measurements in patients with non-small-cell lung cancer treated with erlotinib. Eur. J. Nucl. Med. Mol. Imaging, 2012, 39(7), 1117-1127.
[http://dx.doi.org/10.1007/s00259-012-2118-8] [PMID: 22526960]
[22]
Minamimoto, R.; Saginoya, T.; Kondo, C.; Tomura, N.; Ito, K.; Matsuo, Y.; Matsunaga, S.; Shuto, T.; Akabane, A.; Miyata, Y.; Sakai, S. Differentiation of Brain Tumor Recurrence from Post-Radiotherapy Necrosis with 11C-Methionine PET: Visual Assessment versus Quantitative Assessment. K. PLoS One, 2015, 10(7)e0132515
[23]
Nariai, T.; Tanaka, Y.; Wakimoto, H.; Aoyagi, M.; Tamaki, M.; Ishiwata, K.; Senda, M.; Ishii, K.; Hirakawa, K.; Ohno, K. Usefulness of L-[methyl-11C] methionine-positron emission tomography as a biological monitoring tool in the treatment of glioma. J. Neurosurg., 2005, 103(3), 498-507.
[http://dx.doi.org/10.3171/jns.2005.103.3.0498] [PMID: 16235683]
[24]
Hsieh, H.J.; Lin, S.H.; Lin, K.H.; Lee, C.Y.; Chang, C.P.; Wang, S.J. The feasibility of 11C-methionine-PET in diagnosis of solitary lung nodules/masses when compared with 18F-FDG-PET. Ann. Nucl. Med., 2008, 22(6), 533-538.
[http://dx.doi.org/10.1007/s12149-007-0142-8] [PMID: 18670862]
[25]
Sasaki, M.; Kuwabara, Y.; Yoshida, T.; Nakagawa, M.; Koga, H.; Hayashi, K.; Kaneko, K.; Chen, T.; Ichiya, Y.; Masuda, K. Comparison of MET-PET and FDG-PET for differentiation between benign lesions and malignant tumors of the lung. Ann. Nucl. Med., 2001, 15(5), 425-431.
[http://dx.doi.org/10.1007/BF02988346] [PMID: 11758947]
[26]
Kanegae, K.; Nakano, I.; Kimura, K.; Kaji, H.; Kuge, Y.; Shiga, T.; Zhao, S.; Okamoto, S.; Tamaki, N. Comparison of MET-PET and FDG-PET for differentiation between benign lesions and lung cancer in pneumoconiosis. Ann. Nucl. Med., 2007, 21(6), 331-337.
[http://dx.doi.org/10.1007/s12149-007-0035-x] [PMID: 17705012]
[27]
Calais, J.; Lussato, D.; Merlet, P. Reply to “18F-Choline PET-CT in the Management of Lung Cancer and Mucinous Tumors?”. J. Thorac. Oncol., 2015, 10(6), e49-e50.
[http://dx.doi.org/10.1097/JTO.0000000000000527] [PMID: 26001152]
[28]
Bauman, G.; Belhocine, T.; Kovacs, M.; Ward, A.; Beheshti, M.; Rachinsky, I. 18F-fluorocholine for prostate cancer imaging: a systematic review of the literature. Prostate Cancer Prostatic Dis., 2012, 15(1), 45-55.
[http://dx.doi.org/10.1038/pcan.2011.35] [PMID: 21844889]
[29]
Lockman, P.R.; Allen, D.D. The transport of choline. Drug Dev. Ind. Pharm., 2002, 28(7), 749-771.
[http://dx.doi.org/10.1081/DDC-120005622] [PMID: 12236062]
[30]
Huang, Z.; Rui, J.; Li, X.; Meng, X.; Liu, Q. Use of 11C-Choline positron emission tomography/computed tomography to investigate the mechanism of choline metabolism in lung cancer. Mol. Med. Rep., 2015, 11(5), 3285-3290.
[http://dx.doi.org/10.3892/mmr.2015.3200] [PMID: 25591716]
[31]
Tian, M.; Zhang, H.; Oriuchi, N.; Higuchi, T.; Endo, K. Comparison of 11C-choline PET and FDG PET for the differential diagnosis of malignant tumors. Eur. J. Nucl. Med. Mol. Imaging, 2004, 31(8), 1064-1072.
[http://dx.doi.org/10.1007/s00259-004-1496-y] [PMID: 15014903]
[32]
Konishi, J.; Yamazaki, K.; Tsukamoto, E.; Tamaki, N.; Onodera, Y.; Otake, T.; Morikawa, T.; Kinoshita, I.; Dosaka-Akita, H.; Nishimura, M. Mediastinal lymph node staging by FDG-PET in patients with non-small cell lung cancer: analysis of false-positive FDG-PET findings. Respiration, 2003, 70(5), 500-506.
[http://dx.doi.org/10.1159/000074207] [PMID: 14665776]
[33]
Hara, T.; Kosaka, N.; Suzuki, T.; Kudo, K.; Niino, H. Uptake rates of 18F-fluorodeoxyglucose and 11C-choline in lung cancer and pulmonary tuberculosis: a positron emission tomography study. Chest, 2003, 124(3), 893-901.
[http://dx.doi.org/10.1378/chest.124.3.893] [PMID: 12970014]
[34]
Travis, W.D.; Brambilla, E.; Nicholson, A.G.; Yatabe, Y.; Austin, J.H.M.; Beasley, M.B.; Chirieac, L.R.; Dacic, S.; Duhig, E.; Flieder, D.B.; Geisinger, K.; Hirsch, F.R.; Ishikawa, Y.; Kerr, K.M.; Noguchi, M.; Pelosi, G.; Powell, C.A.; Tsao, M.S.; Wistuba, I.; Panel, W.H.O. WHO Panel. The 2015 World Health Organization Classification of Lung Tumors: Impact of Genetic, Clinical and Radiologic Advances Since the 2004 Classification. J. Thorac. Oncol., 2015, 10(9), 1243-1260.
[http://dx.doi.org/10.1097/JTO.0000000000000630] [PMID: 26291008]
[35]
Baum, R.P.; Kulkarni, H.R.; Carreras, C. Peptides and receptors in image-guided therapy: theranostics for neuroendocrine neoplasms. Semin. Nucl. Med., 2012, 42(3), 190-207.
[http://dx.doi.org/10.1053/j.semnuclmed.2012.01.002] [PMID: 22475428]
[36]
Ambrosini, V.; Nicolini, S.; Caroli, P.; Nanni, C.; Massaro, A.; Marzola, M.C.; Rubello, D.; Fanti, S. PET/CT imaging in different types of lung cancer: an overview. Eur. J. Radiol., 2012, 81(5), 988-1001.
[http://dx.doi.org/10.1016/j.ejrad.2011.03.020] [PMID: 21458181]
[37]
Venkitaraman, B.; Karunanithi, S.; Kumar, A.; Khilnani, G.C.; Kumar, R. Role of 68Ga-DOTATOC PET/CT in initial evaluation of patients with suspected bronchopulmonary carcinoid. Eur. J. Nucl. Med. Mol. Imaging, 2014, 41(5), 856-864.
[http://dx.doi.org/10.1007/s00259-013-2659-5] [PMID: 24435773]
[38]
Walker, R.; Deppen, S.; Smith, G.; Shi, C.; Lehman, J.; Clanton, J.; Moore, B.; Burns, R.; Grogan, E.L.; Massion, P.P. 68Ga-DOTATATE PET/CT imaging of indeterminate pulmonary nodules and lung cancer. PLoS One, 2017, 12(2)e0171301
[http://dx.doi.org/10.1371/journal.pone.0171301] [PMID: 28182730]
[39]
Li, K.; Shen, M.; Geng, H.; Zheng, L.; Cao, Y. Computed Tomographic Studies of Noncalcified Nodules Related to Neuroendocrine Lung Tumor Using 68Gallium-Tagged Somatostatin Variant for Improvement in Diagnosis: A Non-Experimental, Non-Randomized, Cross-Sectional Study. Med. Sci. Monit., 2018, 24, 4501-4509.
[http://dx.doi.org/10.12659/MSM.908545] [PMID: 29959846]
[40]
Treglia, G.; Giovanella, L.; Lococo, F. Evolving role of PET/CT with different tracers in the evaluation of pulmonary neuroendocrine tu-mours. Eur. J. Nucl. Med. Mol. Imaging, 2014, 41(5), 853-855.
[http://dx.doi.org/10.1007/s00259-014-2695-9] [PMID: 24557593]
[41]
Pericleous, M.; Karpathakis, A.; Toumpanakis, C.; Lumgair, H.; Reiner, J.; Marelli, L.; Thirlwell, C.; Caplin, M.E. Well-differentiated bronchial neuroendocrine tumors: Clinical management and outcomes in 105 patients. Clin. Respir. J., 2018, 12(3), 904-914.
[http://dx.doi.org/10.1111/crj.12603] [PMID: 28026127]
[42]
Nordsmark, M.; Overgaard, M.; Overgaard, J. Pretreatment oxygenation predicts radiation response in advanced squamous cell carcinoma of the head and neck. Radiother. Oncol., 1996, 41(1), 31-39.
[http://dx.doi.org/10.1016/S0167-8140(96)91811-3] [PMID: 8961365]
[43]
Yip, C.; Blower, P.J.; Goh, V.; Landau, D.B.; Cook, G.J.R. Molecular imaging of hypoxia in non-small-cell lung cancer. Eur. J. Nucl. Med. Mol. Imaging, 2015, 42(6), 956-976.
[http://dx.doi.org/10.1007/s00259-015-3009-6] [PMID: 25701238]
[44]
Gagel, B.; Reinartz, P.; Demirel, C.; Kaiser, H.J.; Zimny, M.; Piroth, M.; Pinkawa, M.; Stanzel, S.; Asadpour, B.; Hamacher, K.; Coenen, H.H.; Buell, U.; Eble, M.J. [18F] fluoromisonidazole and [18F] fluorodeoxyglucose positron emission tomography in response evaluation after chemo-/radiotherapy of non-small-cell lung cancer: a feasibility study. BMC Cancer, 2006, 6, 51.
[http://dx.doi.org/10.1186/1471-2407-6-51] [PMID: 16515707]
[45]
Vera, P.; Bohn, P.; Edet-Sanson, A.; Salles, A.; Hapdey, S.; Gardin, I.; Ménard, J-F.; Modzelewski, R.; Thiberville, L.; Dubray, B. Simulta-neous positron emission tomography (PET) assessment of metabolism with 18F-fluoro-2-deoxy-d-glucose (FDG), proliferation with 18F-fluoro-thymidine (FLT), and hypoxia with 18fluoro-misonidazole (F-miso) before and during radiotherapy in patients with non-small-cell lung cancer (NSCLC): a pilot study. Radiother. Oncol., 2011, 98(1), 109-116.
[http://dx.doi.org/10.1016/j.radonc.2010.10.011] [PMID: 21056487]
[46]
Arvold, N.D.; Heidari, P.; Kunawudhi, A.; Sequist, L.V.; Mahmood, U. Tumor hypoxia response after targeted therapy in EGFRmutant non-small cell lung cancer: proof of concept for FMISO-PET. Technol. Cancer Res. Treat., 2016, 15(2), 234-242.
[http://dx.doi.org/10.1177/1533034615574386] [PMID: 25759424]
[47]
Kinoshita, T.; Fujii, H.; Hayashi, Y.; Kamiyama, I.; Ohtsuka, T.; Asamura, H. Prognostic significance of hypoxic PET using (18)F-FAZA and (62)Cu-ATSM in non-small-cell lung cancer. Lung Cancer, 2016, 91, 56-66.
[http://dx.doi.org/10.1016/j.lungcan.2015.11.020] [PMID: 26711935]
[48]
Lopci, E.; Grassi, I.; Rubello, D.; Colletti, P.M.; Cambioli, S.; Gamboni, A.; Salvi, F.; Cicoria, G.; Lodi, F.; Dazzi, C.; Mattioli, S.; Fanti, S. Prognostic Evaluation of Disease Outcome in Solid Tumors Investigated With 64Cu-ATSM PET/CT. Clin. Nucl. Med., 2016, 41(2), e87-e92.
[http://dx.doi.org/10.1097/RLU.0000000000001017] [PMID: 26447388]
[49]
Zhang, T.; Das, S.K.; Fels, D.R.; Hansen, K.S.; Wong, T.Z.; Dewhirst, M.W.; Vlahovic, G. PET with 62Cu-ATSM and 62Cu-PTSM is a useful imaging tool for hypoxia and perfusion in pulmonary lesions. AJR Am. J. Roentgenol., 2013, 201(5)W698-706
[http://dx.doi.org/10.2214/AJR.12.9698] [PMID: 24147499]
[50]
Piert, M.; Machulla, H-J.; Picchio, M.; Reischl, G.; Ziegler, S.; Kumar, P.; Wester, H-J.; Beck, R.; McEwan, A.J.B.; Wiebe, L.I.; Schwaiger, M. Hypoxia-specific tumor imaging with 18F-fluoroazomycin arabinoside. J. Nucl. Med., 2005, 46(1), 106-113.
[PMID: 15632040]
[51]
Di Perri, D.; Lee, J.A.; Bol, A.; Hanin, F-X.; Janssens, G.; Labar, D.; Robert, A.; Sterpin, E.; Geets, X. Correlation analysis of [18F]fluorodeoxyglucose and [18F]fluoroazomycin arabinoside uptake distributions in lung tumours during radiation therapy. Acta Oncol., 2017, 56(9), 1181-1188.
[http://dx.doi.org/10.1080/0284186X.2017.1329594] [PMID: 28537761]
[52]
Saga, T.; Inubushi, M.; Koizumi, M.; Yoshikawa, K.; Zhang, M-R.; Tanimoto, K.; Horiike, A.; Yanagitani, N.; Ohyanagi, F.; Nishio, M. Prognostic value of (18) F-fluoroazomycin arabinoside PET/CT in patients with advanced non-small-cell lung cancer. Cancer Sci., 2015, 106(11), 1554-1560.
[http://dx.doi.org/10.1111/cas.12771] [PMID: 26292100]
[53]
Nishida, N.; Yano, H.; Nishida, T.; Kamura, T.; Kojiro, M. Angiogenesis in cancer. Vasc. Health Risk Manag., 2006, 2(3), 213-219.
[http://dx.doi.org/10.2147/vhrm.2006.2.3.213] [PMID: 17326328]
[54]
Chen, H.; Niu, G.; Wu, H.; Chen, X. Clinical Application of Radiolabeled RGD Peptides for PET Imaging of Integrin αvβ3. Theranostics, 2016, 6(1), 78-92.
[http://dx.doi.org/10.7150/thno.13242] [PMID: 26722375]
[55]
Haubner, R.; Weber, W.A.; Beer, A.J.; Vabuliene, E.; Reim, D.; Sarbia, M.; Becker, K-F.; Goebel, M.; Hein, R.; Wester, H-J.; Kessler, H.; Schwaiger, M. Noninvasive visualization of the activated alphavbeta3 integrin in cancer patients by positron emission tomography and [18F]Galacto-RGD. PLoS Med., 2005, 2(3)e70
[http://dx.doi.org/10.1371/journal.pmed.0020070] [PMID: 15783258]
[56]
Beer, A.J.; Lorenzen, S.; Metz, S.; Herrmann, K.; Watzlowik, P.; Wester, H-J.; Peschel, C.; Lordick, F.; Schwaiger, M. Comparison of integrin alphaVbeta3 expression and glucose metabolism in primary and metastatic lesions in cancer patients: a PET study using 18F-galacto-RGD and 18F-FDG. J. Nucl. Med., 2008, 49(1), 22-29.
[http://dx.doi.org/10.2967/jnumed.107.045864] [PMID: 18077538]
[57]
Zheng, K.; Liang, N.; Zhang, J.; Lang, L.; Zhang, W.; Li, S.; Zhao, J.; Niu, G.; Li, F.; Zhu, Z.; Chen, X. 68Ga-NOTA-PRGD2 PET/CT for Integrin Imaging in Patients with Lung Cancer. J. Nucl. Med., 2015, 56(12), 1823-1827.
[http://dx.doi.org/10.2967/jnumed.115.160648] [PMID: 26429958]
[58]
Luan, X.; Huang, Y.; Gao, S.; Sun, X.; Wang, S.; Ma, L.; Teng, X.; Lu, H.; Yu, J.; Yuan, S. 18F-alfatide PET/CT may predict short-term outcome of concurrent chemoradiotherapy in patients with advanced non-small cell lung cancer. Eur. J. Nucl. Med. Mol. Imaging, 2016, 43(13), 2336-2342.
[http://dx.doi.org/10.1007/s00259-016-3505-3] [PMID: 27631310]
[59]
Liang, W.; Wu, X.; Hong, S.; Zhang, Y.; Kang, S.; Fang, W.; Qin, T.; Huang, Y.; Zhao, H.; Zhang, L. Multi-targeted antiangiogenic tyrosine kinase inhibitors in advanced non-small cell lung cancer: meta-analyses of 20 randomized controlled trials and subgroup analyses. PLoS One, 2014, 9(10)e109757
[http://dx.doi.org/10.1371/journal.pone.0109757] [PMID: 25329056]
[60]
Murukesh, N.; Dive, C.; Jayson, G.C. Biomarkers of angiogenesis and their role in the development of VEGF inhibitors. Br. J. Cancer, 2010, 102(1), 8-18.
[http://dx.doi.org/10.1038/sj.bjc.6605483] [PMID: 20010945]
[61]
Luo, H.; England, C.G.; Graves, S.A.; Sun, H.; Liu, G.; Nickles, R.J.; Cai, W. PET Imaging of VEGFR-2 Expression in Lung Cancer with 64Cu-Labeled Ramucirumab. J. Nucl. Med., 2016, 57(2), 285-290.
[http://dx.doi.org/10.2967/jnumed.115.166462] [PMID: 26541778]
[62]
Rossi, S.; Castello, A.; Toschi, L.; Lopci, E. Immunotherapy in non-small-cell lung cancer: potential predictors of response and new strate-gies to assess activity. Immunotherapy, 2018, 10(9), 797-805.
[http://dx.doi.org/10.2217/imt-2017-0187] [PMID: 30008262]
[63]
Natarajan, A.; Mayer, A.T.; Reeves, R.E.; Nagamine, C.M.; Gambhir, S.S. Development of Novel ImmunoPET Tracers to Image Human PD-1 Checkpoint Expression on Tumor-Infiltrating Lymphocytes in a Humanized Mouse Model. Mol. Imaging Biol., 2017, 19(6), 903-914.
[http://dx.doi.org/10.1007/s11307-017-1060-3] [PMID: 28247187]
[64]
England, C.G.; Ehlerding, E.B.; Hernandez, R.; Rekoske, B.T.; Graves, S.A.; Sun, H.; Liu, G.; McNeel, D.G.; Barnhart, T.E.; Cai, W. Preclinical Pharmacokinetics and Biodistribution Studies of 89Zr-Labeled Pembrolizumab. J. Nucl. Med., 2017, 58(1), 162-168.
[http://dx.doi.org/10.2967/jnumed.116.177857] [PMID: 27493273]
[65]
Maute, R.L.; Gordon, S.R.; Mayer, A.T.; McCracken, M.N.; Natarajan, A.; Ring, N.G.; Kimura, R.; Tsai, J.M.; Manglik, A.; Kruse, A.C.; Gambhir, S.S.; Weissman, I.L.; Ring, A.M. Engineering high-affinity PD-1 variants for optimized immunotherapy and immuno-PET imaging. Proc. Natl. Acad. Sci. USA, 2015, 112(47), E6506-E6514.
[66]
Ettinger, D.S.; Wood, D.E.; Aisner, D.L.; Akerley, W.; Bauman, J.; Chirieac, L.R.; D’Amico, T.A.; DeCamp, M.M.; Dilling, T.J.; Dobelbower, M.; Doebele, R.C.; Govindan, R.; Gubens, M.A.; Hennon, M.; Horn, L.; Komaki, R.; Lackner, R.P.; Lanuti, M.; Leal, T.A.; Leisch, L.J.; Lilenbaum, R.; Lin, J.; Loo, B.W., Jr; Martins, R.; Otterson, G.A.; Reckamp, K.; Riely, G.J.; Schild, S.E.; Shapiro, T.A.; Stevenson, J.; Swanson, S.J.; Tauer, K.; Yang, S.C.; Gregory, K.; Hughes, M. Non-Small Cell Lung Cancer, Version 5.2017, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Canc. Netw., 2017, 15(4), 504-535.
[http://dx.doi.org/10.6004/jnccn.2017.0050] [PMID: 28404761]
[67]
Normanno, N.; De Luca, A.; Bianco, C.; Strizzi, L.; Mancino, M.; Maiello, M.R.; Carotenuto, A.; De Feo, G.; Caponigro, F.; Salomon, D.S. Epidermal growth factor receptor (EGFR) signaling in cancer. Gene, 2006, 366(1), 2-16.
[http://dx.doi.org/10.1016/j.gene.2005.10.018] [PMID: 16377102]
[68]
Su, Z. Epidermal growth factor receptor mutation-guided treatment for lung cancers: Where are we now? Thorac. Cancer, 2011, 2(1), 1-6.
[http://dx.doi.org/10.1111/j.1759-7714.2010.00035.x] [PMID: 27755839]
[69]
Liao, B-C.; Lin, C-C.; Yang, J.C-H. Novel EGFR Inhibitors in Non-small Cell Lung Cancer: Current Status of Afatinib. Curr. Oncol. Rep., 2017, 19(1), 4.
[http://dx.doi.org/10.1007/s11912-017-0560-2] [PMID: 28138934]
[70]
Memon, A.A.; Weber, B.; Winterdahl, M.; Jakobsen, S.; Meldgaard, P.; Madsen, H.H.T.; Keiding, S.; Nexo, E.; Sorensen, B.S. PET imaging of patients with non-small cell lung cancer employing an EGF receptor targeting drug as tracer. Br. J. Cancer, 2011, 105(12), 1850-1855.
[http://dx.doi.org/10.1038/bjc.2011.493] [PMID: 22095231]
[71]
Putora, P.M.; Früh, M.; Müller, J. FDG-PET SUV-max values do not correlate with epidermal growth factor receptor mutation status in lung adenocarcinoma. Respirology, 2013, 18(4), 734-735.
[http://dx.doi.org/10.1111/resp.12083] [PMID: 23489365]
[72]
Mak, R.H.; Digumarthy, S.R.; Muzikansky, A.; Engelman, J.A.; Shepard, J-A.O.; Choi, N.C.; Sequist, L.V. Role of 18F-fluorodeoxyglucose positron emission tomography in predicting epidermal growth factor receptor mutations in non-small cell lung cancer. Oncologist, 2011, 16(3), 319-326.
[http://dx.doi.org/10.1634/theoncologist.2010-0300] [PMID: 21339258]
[73]
Huang, C-T.; Yen, R-F.; Cheng, M-F.; Hsu, Y-C.; Wei, P-F.; Tsai, Y-J.; Tsai, M-F.; Shih, J-Y.; Yang, C-H.; Yang, P-C. Correlation of F-18 fluorodeoxyglucose-positron emission tomography maximal standardized uptake value and EGFR mutations in advanced lung adenocarcinoma. Med. Oncol., 2010, 27(1), 9-15.
[http://dx.doi.org/10.1007/s12032-008-9160-1] [PMID: 19130320]
[74]
Meng, X.; Loo, B.W., Jr; Ma, L.; Murphy, J.D.; Sun, X.; Yu, J. Molecular imaging with 11C-PD153035 PET/CT predicts survival in non-small cell lung cancer treated with EGFR-TKI: a pilot study. J. Nucl. Med., 2011, 52(10), 1573-1579.
[http://dx.doi.org/10.2967/jnumed.111.092874] [PMID: 21903741]
[75]
Roskoski, R. Jr Anaplastic lymphoma kinase (ALK) inhibitors in the treatment of ALK-driven lung cancers. Pharmacol. Res., 2017, 117, 343-356.
[http://dx.doi.org/10.1016/j.phrs.2017.01.007] [PMID: 28077299]
[76]
Jeong, C.J.; Lee, H.Y.; Han, J.; Jeong, J.Y.; Lee, K.S.; Choi, Y-L.; Choi, J.Y. Role of imaging biomarkers in predicting anaplastic lymphoma kinase-positive lung adenocarcinoma. Clin. Nucl. Med., 2015, 40(1), e34-e39.
[http://dx.doi.org/10.1097/RLU.0000000000000581] [PMID: 25243942]
[77]
Choi, H.; Paeng, J.C.; Kim, D-W.; Lee, J.K.; Park, C.M.; Kang, K.W.; Chung, J-K.; Lee, D.S. Metabolic and metastatic characteristics of ALK-rearranged lung adenocarcinoma on FDG PET/CT. Lung Cancer, 2013, 79(3), 242-247.
[http://dx.doi.org/10.1016/j.lungcan.2012.11.021] [PMID: 23261227]
[78]
Holla, V.R.; Elamin, Y.Y.; Bailey, A.M.; Johnson, A.M.; Litzenburger, B.C.; Khotskaya, Y.B.; Sanchez, N.S.; Zeng, J.; Shufean, M.A.; Shaw, K.R.; Mendelsohn, J.; Mills, G.B.; Meric-Bernstam, F.; Simon, G.R. ALK: a tyrosine kinase target for cancer therapy. Cold Spring Harb. Mol. Case Stud., 2017, 3(1)a001115
[http://dx.doi.org/10.1101/mcs.a001115] [PMID: 28050598]
[79]
Perera, S.; Piwnica-Worms, D.; Alauddin, M.M. Synthesis of a [(18)F]-labeled ceritinib analogue for positron emission tomography of anaplastic lymphoma kinase, a receptor tyrosine kinase, in lung cancer. J. Labelled Comp. Radiopharm., 2016, 59(3), 103-108.
[http://dx.doi.org/10.1002/jlcr.3373] [PMID: 26853088]
[80]
Foss, C.A.; Mease, R.C.; Cho, S.Y.; Kim, H.J.; Pomper, M.G. GCPII imaging and cancer. Curr. Med. Chem., 2012, 19(9), 1346-1359.
[http://dx.doi.org/10.2174/092986712799462612] [PMID: 22304713]
[81]
Liu, H.; Rajasekaran, A.K.; Moy, P.; Xia, Y.; Kim, S.; Navarro, V.; Rahmati, R.; Bander, N.H. Constitutive and antibody-induced internalization of prostate-specific membrane antigen. Cancer Res., 1998, 58(18), 4055-4060.
[PMID: 9751609]
[82]
Maurer, T.; Eiber, M.; Schwaiger, M.; Gschwend, J.E. Current use of PSMA-PET in prostate cancer management. Nat. Rev. Urol., 2016, 13(4), 226-235.
[http://dx.doi.org/10.1038/nrurol.2016.26] [PMID: 26902337]
[83]
Pillai, M.R.A.; Nanabala, R.; Joy, A.; Sasikumar, A.; Russ Knapp, F.F. Radiolabeled enzyme inhibitors and binding agents targeting PSMA: Effective theranostic tools for imaging and therapy of prostate cancer. Nucl. Med. Biol., 2016, 43(11), 692-720.
[http://dx.doi.org/10.1016/j.nucmedbio.2016.08.006] [PMID: 27589333]
[84]
Afshar-Oromieh, A.; Malcher, A.; Eder, M.; Eisenhut, M.; Linhart, H.G.; Hadaschik, B.A.; Holland-Letz, T.; Giesel, F.L.; Kratochwil, C.; Haufe, S.; Haberkorn, U.; Zechmann, C.M. PET imaging with a [68Ga]gallium-labelled PSMA ligand for the diagnosis of prostate cancer: biodistribution in humans and first evaluation of tumour lesions. Eur. J. Nucl. Med. Mol. Imaging, 2013, 40(4), 486-495.
[http://dx.doi.org/10.1007/s00259-012-2298-2] [PMID: 23179945]
[85]
Afshar-Oromieh, A.; Haberkorn, U.; Eder, M.; Eisenhut, M.; Zechmann, C.M. [68Ga]Gallium-labelled PSMA ligand as superior PET tracer for the diagnosis of prostate cancer: comparison with 18F-FECH. Eur. J. Nucl. Med. Mol. Imaging, 2012, 39(6), 1085-1086.
[http://dx.doi.org/10.1007/s00259-012-2069-0] [PMID: 22310854]
[86]
Afshar-Oromieh, A.; Hetzheim, H.; Kübler, W.; Kratochwil, C.; Giesel, F.L.; Hope, T.A.; Eder, M.; Eisenhut, M.; Kopka, K.; Haberkorn, U. Radiation dosimetry of (68)Ga-PSMA-11 (HBED-CC) and preliminary evaluation of optimal imaging timing. Eur. J. Nucl. Med. Mol. Imaging, 2016, 43(9), 1611-1620.
[http://dx.doi.org/10.1007/s00259-016-3419-0] [PMID: 27260521]
[87]
Kabasakal, L.; Demirci, E.; Ocak, M.; Akyel, R.; Nematyazar, J.; Aygun, A.; Halac, M.; Talat, Z.; Araman, A. Evaluation of PSMA PET/CT imaging using a 68Ga-HBED-CC ligand in patients with prostate cancer and the value of early pelvic imaging. Nucl. Med. Commun., 2015, 36(6), 582-587.
[http://dx.doi.org/10.1097/MNM.0000000000000290] [PMID: 25738559]
[88]
Schmidt, L.H.; Heitkötter, B.; Schulze, A.B.; Schliemann, C.; Steinestel, K.; Trautmann, M.; Marra, A.; Hillejan, L.; Mohr, M.; Evers, G.; Wardelmann, E.; Rahbar, K.; Görlich, D.; Lenz, G.; Berdel, W.E.; Hartmann, W.; Wiewrodt, R.; Huss, S. Prostate specific membrane antigen (PSMA) expression in non-small cell lung cancer. PLoS One, 2017, 12(10)e0186280
[http://dx.doi.org/10.1371/journal.pone.0186280] [PMID: 29077706]
[89]
Pyka, T.; Weirich, G.; Einspieler, I.; Maurer, T.; Theisen, J.; Hatzichristodoulou, G.; Schwamborn, K.; Schwaiger, M.; Eiber, M. 68Ga-PSMA-HBED-CC PET for Differential Diagnosis of Suggestive Lung Lesions in Patients with Prostate Cancer. J. Nucl. Med., 2016, 57(3), 367-371.
[http://dx.doi.org/10.2967/jnumed.115.164442] [PMID: 26585062]
[90]
Shetty, D.; Loh, H.; Bui, C.; Mansberg, R.; Stevanovic, A. Elevated 68Ga Prostate-Specific Membrane Antigen Activity in Metastatic Non-Small Cell Lung Cancer. Clin. Nucl. Med., 2016, 41(5), 414-416.
[http://dx.doi.org/10.1097/RLU.0000000000001139] [PMID: 26828144]
[91]
Jochumsen, M.R.; Gormsen, L.C.; Nielsen, G.L. 68Ga-PSMA Avid Primary Adenocarcinoma of the Lung With Complementary Low 18F-FDG Uptake. Clin. Nucl. Med., 2018, 43(2), 117-119.
[http://dx.doi.org/10.1097/RLU.0000000000001935] [PMID: 29261620]
[92]
Virgolini, I.; Decristoforo, C.; Haug, A.; Fanti, S.; Uprimny, C. Current status of theranostics in prostate cancer. Eur. J. Nucl. Med. Mol. Imaging, 2018, 45(3), 471-495.
[http://dx.doi.org/10.1007/s00259-017-3882-2] [PMID: 29282518]
[93]
Loktev, A.; Lindner, T.; Mier, W.; Debus, J.; Altmann, A.; Jäger, D.; Giesel, F.; Kratochwil, C.; Barthe, P.; Roumestand, C.; Haberkorn, U. A Tumor-Imaging Method Targeting Cancer-Associated Fibroblasts. J. Nucl. Med., 2018, 59(9), 1423-1429.
[http://dx.doi.org/10.2967/jnumed.118.210435] [PMID: 29626120]
[94]
Conti, M.; Eriksson, L. Physics of pure and non-pure positron emitters for PET: a review and a discussion. EJNMMI Phys., 2016, 3(1), 8.
[http://dx.doi.org/10.1186/s40658-016-0144-5] [PMID: 27271304]

© 2024 Bentham Science Publishers | Privacy Policy