Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Alkoxyallenes as Starting Materials for the Syntheses of Natural Products

Author(s): Volker Martin Schmiedel and Hans-Ulrich Reissig*

Volume 23, Issue 27, 2019

Page: [2976 - 3003] Pages: 28

DOI: 10.2174/1385272824666191218115731

Price: $65

Abstract

Alkoxyallenes are easily available and versatile building blocks for the preparation of a variety of natural products (terpenes, polyketides, alkaloids, amino acids, carbohydrates etc.) originating from different classes. The synthetic use of the three allene carbon atoms frequently follows the “normal” reactivity pattern showing that alkoxyallenes can be regarded as special enol ethers. Additions of alcohols or amines to alkoxyallenes form vinyl-substituted O,O- or N,O-acetals that are frequently used in ring-closing metathesis reactions. This methodology delivers crucial heterocyclic units of the target compounds. Enantioselective additions provide products with high enantiopurity.

Alternatively, an “Umpolung” of reactivity of alkoxyallenes is achieved by lithiation at C-1 and subsequent reaction with electrophiles, such as alkyl halides, carbonyl compounds, imines or nitrones. High stereoselectivity of the addition step can be achieved by substrate control or auxiliary control. The high diastereo- or enantioselectivity is transferred to the subsequent acyclic or cyclic products. The cyclization of primary addition products occurs efficiently under mild conditions and provides functionalized dihydrofuran, dihydropyrrole or 1,2-oxazine derivatives. These are valuable intermediates for the synthesis of a variety of heterocyclic natural products. Nazarov cyclizations or gold catalyzed rearrangements allow the synthesis of five- and six-membered carbocyclic compounds that are also used for natural product synthesis.

Keywords: Allenes, furans, lithiation, natural products, ring-closing metathesis, pyrroles, umpolung.

Graphical Abstract
[1]
Baran, P.S. Natural product total synthesis: as exciting as ever and here to stay. J. Am. Chem. Soc., 2018, 140(14), 4751-4755.
[http://dx.doi.org/10.1021/jacs.8b02266] [PMID: 29635919]
[2]
Krause, N.; Hoffmann-Röder, A. Synthesis and properties of allenic natural products and pharmaceuticals. Angew. Chem. Int. Ed.2004, 43, 1196-1216. Angew. Chem., 2004, 116, 1216-1236.
[http://dx.doi.org/10.1002/anie.200300628]
[3]
Brummond, K.M.; Chen, H. Allenes in Natural Product Synthesis. In: Modern Allene Chemistry; Krause, N.; Hashmi, A.S.K., Eds.; Wiley-VCH: Weinheim, 2004; pp. 1041-1089.
[http://dx.doi.org/10.1002/9783527619573.ch19]
[4]
Krause, N.; Winter, C. Gold-catalyzed nucleophilic cyclization of functionalized allenes: a powerful access to carbo- and heterocycles. Chem. Rev., 2011, 111(3), 1994-2009.
[http://dx.doi.org/10.1021/cr1004088] [PMID: 21314182]
[5]
Yu, S.; Ma, S. Allenes in catalytic asymmetric synthesis and natural product syntheses. Angew. Chem. Int. Ed.2012, 51, 3074-3112. Angew. Chem., 2012, 124, 3128-3167.
[http://dx.doi.org/10.1002/anie.201101460]
[6]
Hoff, S.; Brandsma, L.; Arens, J.F. Preparation, metallation and alkylation of allenyl ethers. Recl. Trav. Chim. Pays Bas, 1968, 87, 916-924.
[http://dx.doi.org/10.1002/recl.19680870807]
[7]
Weiberth, F.J.; Hall, S.S. Alkylation-reduction of carbonyl systems. part 14. tandem alkylation-reduction. Highly stereoselective synthesis of (E)-1-hydroxymethyl methyl propenyl ethers from aldehydes using 1-lithio-1-methoxyallene. J. Org. Chem., 1985, 50, 5308-5314.
[http://dx.doi.org/10.1021/jo00225a061]
[8]
Anderson, K.R.; Atkinson, S.L.G.; Giles, M.E.; Matsumoto, T.; Merifield, E.; Singleton, J.T.; Saito, T.; Sotoguchi, T.; Tornos, J.A.; Way, E.L. Routes for the synthesis of (2S)-2-methyltetrahydropyran-4-one from simple optically pure building blocks. Org. Process Res. Dev., 2010, 14, 58-71.
[http://dx.doi.org/10.1021/op900163a]
[9]
Seghers, S.; Heugebaert, T.S.A.; Moens, M.; Sonck, J.; Thybaut, J.W.; Stevens, C.V. Design of a mesoscale continuous-flow route toward lithiated methoxyallene. ChemSusChem, 2018, 11(13), 2248-2254.
[http://dx.doi.org/10.1002/cssc.201800760] [PMID: 29750402]
[10]
Zimmer, R.; Reissig, H-U. Alkoxyallenes as building blocks for organic synthesis. Chem. Soc. Rev., 2014, 43(9), 2888-2903.
[http://dx.doi.org/10.1039/C3CS60429B] [PMID: 24549322]
[11]
Zimmer, R. Alkoxyallenes - Building blocks in organic synthesis. Synthesis, 1993, 165-178.
[http://dx.doi.org/10.1055/s-1993-25823]
[12]
Zimmer, R.; Reissig, H-U. Donor-Substituted Allenes. Modern Allene Chemistry; Krause, N; Hashmi, A.S.K., Ed.; Wiley-VCH: Weinheim, 2004, pp. 425-492.
[http://dx.doi.org/10.1002/9783527619573.ch8]
[13]
Brasholz, M.; Reissig, H-U.; Zimmer, R. Sugars, alkaloids, and heteroaromatics: exploring heterocyclic chemistry with alkoxyallenes. Acc. Chem. Res., 2009, 42(1), 45-56.
[http://dx.doi.org/10.1021/ar800011h] [PMID: 18921986]
[14]
Nedolya, A.; Tarasova, O.; Volostnykh, O.G.; Albanov, A.L.; Klyba, L.V.; Trofimov, B.A. Reactions of lithiated alkynes and allenes with isothiocyanates: a simple and efficient synthesis of new aryl- or hetaryl-substituted 3H-azepines and 4,5-dihydro-3H-azepines. Synthesis, 2011, (14), 2192-2204.
[http://dx.doi.org/10.1055/s-0030-1260084]
[15]
Lechel, T.; Reissig, H-U. Synthesis of heterocycles via alkoxyallenes. Pure Appl. Chem., 2010, 82, 1835-1844.
[http://dx.doi.org/10.1351/PAC-CON-09-09-06]
[16]
Lechel, T.; Reissig, H-U. Synthesis and Reactivity of Pyridin-4-ols Based on the Three-Component Reaction of Alkoxyallenes, Nitriles and Carboxylic Acids. In: Targets in Heterocyclic Systems - Chemistry and Properties; Attanasi, O.A.; Merino, P.; Spinelli, D., Eds.; Italian Society of Chemistry: Rome, 2016; Vol. 20, pp. 1-32.
[17]
Reissig, H-U.; Zimmer, R. Cyclizations of alkoxyallenes: mechanisms, intermediates, products - a personal account on solved and unsolved problems with unique allene building blocks. Synthesis, 2017, 49, 3291-3302.
[http://dx.doi.org/10.1055/s-0036-1588846]
[18]
Zimmer, R.; Reissig, H-U. 1-Methoxyallenyllithium, Second up-date. In: Electronic Encyclopedia of Reagents for Organic Synthesis; John Wiley & Sons: Chichester, 2018.
[19]
Lechel, T.; Kumar, R.; Bera, M-K.; Zimmer, R.; Reissig, H-U. The LANCA three-component reaction to highly substituted β-ketoenamides - versatile intermediates for the synthesis of functionalized pyridine, pyrimidine, oxazole and quinoxaline derivatives. Beilstein J. Org. Chem., 2019, 15, 655-678.
[http://dx.doi.org/10.3762/bjoc.15.61] [PMID: 30931007]
[20]
Held, C.; Fröhlich, R.; Metz, P. Enantioselective synthesis of the molluscicidal furanosesquiterpene lactones ricciocarpin A and ricciocarpin B via ring-closing metathesis. Adv. Synth. Catal., 2002, 344, 720-727.
[http://dx.doi.org/10.1002/1615-4169(200208)344:6/7<720:AID-ADSC720>3.0.CO;2-#]
[21]
Trost, B.M.; Jäkel, C.; Plietker, B. Palladium-catalyzed asymmetric addition of pronucleophiles to allenes. J. Am. Chem. Soc., 2003, 125(15), 4438-4439.
[http://dx.doi.org/10.1021/ja029190z] [PMID: 12683811]
[22]
Lim, W.; Kim, J.; Rhee, Y.H. Pd-catalyzed asymmetric intermolecular hydroalkoxylation of allene: an entry to cyclic acetals with activating group-free and flexible anomeric control. J. Am. Chem. Soc., 2014, 136(39), 13618-13621.
[http://dx.doi.org/10.1021/ja508587f] [PMID: 25238335]
[23]
Kim, M.; Kang, S.; Rhee, Y.H. De Novo synthesis of furanose sugars: catalytic asymmetric synthesis of apiose and apiose-containing oligosaccharides. Angew. Chem. Int. Ed.2016, 55, 9733-9737. Angew. Chem., 2016, 128, 9885-9889.
[http://dx.doi.org/10.1002/anie.201604199]
[24]
Lee, J.; Kang, S.; Kim, J.; Moon, D.; Rhee, Y.H. A convergent synthetic strategy toward oligosaccharides containing 2,3,6-trideoxypyranoglycosides. Angew. Chem. Int. Ed. 2019, 58, 628-631. Angew. Chem., 2019, 131, 638-640.
[http://dx.doi.org/10.1002/anie.201812222]
[25]
Slutskyy, Y.; Jamison, C.R.; Zhao, P.; Lee, J.; Rhee, Y.H.; Overman, L.E. Versatile construction of 6-substituted cis-2,8-dioxabicyclo[3.3.0]octan-3-ones: short enantioselective total syntheses of cheloviolenes A and B and dendrillolide C. J. Am. Chem. Soc., 2017, 139(21), 7192-7195.
[http://dx.doi.org/10.1021/jacs.7b04265] [PMID: 28514145]
[26]
Garnsey, M.R.; Slutskyy, Y.; Jamison, C.R.; Zhao, P.; Lee, J.; Rhee, Y.H.; Overman, L.E. Short enantioselective total syntheses of cheloviolenes A and B and dendrillolide C via convergent fragment coupling using a tertiary carbon radical. J. Org. Chem., 2018, 83(13), 6958-6976.
[http://dx.doi.org/10.1021/acs.joc.7b02458] [PMID: 29130687]
[27]
Kinderman, S.S.; De Gelder, R.; Van Maarseveen, J.H.; Schoemaker, H.E.; Hiemstra, H.; Rutjes, F.P.J.T. Amidopalladation of alkoxyallenes applied in the synthesis of an enantiopure 1-ethylquinolizidine frog alkaloid. J. Am. Chem. Soc., 2004, 126(13), 4100-4101.
[http://dx.doi.org/10.1021/ja039919j] [PMID: 15053587]
[28]
Kim, H.; Lim, W. Im, D.; Kim, D.-G.; Rhee, Y.-H. Synthetic strategy for cyclic amines: a stereodefined cyclic N,O-acetal as a stereocontrol and diversity-generating element. Angew. Chem. Int. Ed.2012, 51, 12055-12058. Angew. Chem., 2012, 124, 12221-12224.http:/dx.doi
[http://dx.doi.org/10.1002/anie.201206967] [PMID: 23109333]
[29]
Kim, H.; Rhee, Y.H. A perspective on the stereodefined N,O-acetals: synthesis and potential application. Synlett, 2012, 23, 2875-2879.
[http://dx.doi.org/10.1055/s-0032-1317478]
[30]
Kang, S.; Jang, S.H.; Lee, J.; Kim, D.G.; Kim, M.; Jeong, W.; Rhee, Y.H. Pd-catalyzed regioselective asymmetric addition reaction of unprotected pyrimidines to alkoxyallene. Org. Lett., 2017, 19(17), 4684-4687.
[http://dx.doi.org/10.1021/acs.orglett.7b02332] [PMID: 28812904]
[31]
Kang, S.; Kim, D.G.; Rhee, Y.H. Access to trans-3,4-dihydroxy-2-alkylpyrrolidines and piperidines by use of stereodefined cyclic N,O-acetals as a diversity-generating element. Chem. Eur. J., 2014, 20(49), 16391-16396.
[http://dx.doi.org/10.1002/chem.201404659] [PMID: 25308717]
[32]
Lim, W.; Rhee, Y.H. A concise synthetic method towards (-)-swainsonine and its 8-epimer by using palladium-catalyzed asymmetric hydroamination of alkoxyallene as the key strategy. Tetrahedron, 2015, 71, 5939-5945.
[http://dx.doi.org/10.1016/j.tet.2015.05.034]
[33]
Lee, S.; Rhee, Y.H. Synthesis of deoxyaminosugar cyclohexyl-l-callipeltose and its diastereomer using Pd-catalyzed asymmetric hydroalkoxylation. J. Org. Chem., 2019, 84(14), 9353-9357.
[http://dx.doi.org/10.1021/acs.joc.9b01059] [PMID: 31185716]
[34]
Hu, N.; Dong, C.; Zhang, C.; Liang, G. Total synthesis of (-)-indoxamycins A and B. Angew. Chem. Int. Ed.2019, 58, 6659-6662. Angew. Chem., 2019, 131, 6731-6734.
[http://dx.doi.org/10.1002/anie.201902043]
[35]
Clinet, J.C.; Linstrumelle, G. A new simple stereoselective synthesis of trans-α,β-unsaturated carbonyl compounds. Tetrahedron Lett., 1978, 19, 1137-1140.
[http://dx.doi.org/10.1016/S0040-4039(01)94481-8]
[36]
Derguini, F.; Linstrumelle, G. 3-alcoxy-allenyllithium reagents as β-acyl vinyl anion equivalents. A new synthesis of pyrenophorin. Tetrahedron Lett., 1984, 25, 5763-5766.
[http://dx.doi.org/10.1016/S0040-4039(01)81680-4]
[37]
Kocienski, P.; Takle, A. A new approach to 1,7-dioxaspiro[5.5]undec-4-enes via metalated allenol ethers - synthesis of lacrimin A. Tetrahedron, 1990, 46, 4503-4516.
[http://dx.doi.org/10.1016/S0040-4020(01)85578-2]
[38]
Whitby, R.; Kocienski, P. A new synthesis of 1,7-dioxaspiro[5.5]undec-4-enes via metallated allenol ethers - A formal synthesis of talaromycins A and B. J. Chem. Soc. Chem. Commun., 1987, (12), 906-907.
[http://dx.doi.org/10.1039/C39870000906]
[39]
Gwaltney, S.L., II; Sakata, S.T.; Shea, K.J. Bridged to fused ring interchange. methodology for the construction of fused cycloheptanes and cyclooctanes. Total syntheses of ledol, ledene, and compressanolide. J. Org. Chem., 1996, 61(21), 7438-7451.
[http://dx.doi.org/10.1021/jo961005a] [PMID: 11667672]
[40]
Dewi-Wülfing, P.; Blechert, S. Enantiospecific synthesis of hyacinthacine A2. Eur. J. Org. Chem., 2006, (8), 1852-1856.
[http://dx.doi.org/10.1002/ejoc.200500914]
[41]
Rochet, P.; Vatèle, J-M.; Goré, J. Use of enantiopure alkoxyallenes in the enantioselective preparation of α-(alkoxy)vinyl ketones. Synlett, 1993, (2), 105-107.
[http://dx.doi.org/10.1055/s-1993-22363]
[42]
Surivet, J-P.; Goré, J.; Vatèle, J-M. Enantioselective synthesis of (+)-goniodiol and of its naturally occurring acetylated analogs. Tetrahedron, 1996, 52, 14877-14890.
[http://dx.doi.org/10.1016/0040-4020(96)00918-0]
[43]
Goldstein, S.W.; Overman, L.E.; Rabinowitz, M.H. The first enantioselective total syntheses of the allopumiliotoxin A alkaloids 267A and 339B. J. Org. Chem., 1992, 57, 1179-1190.
[http://dx.doi.org/10.1021/jo00030a026]
[44]
Ma, N.; Yao, Y.; Zhao, B-X.; Wang, Y.; Ye, W-C.; Jiang, S. Total synthesis of securinega alkaloids (–)-norsecurinine, (–)-niruroidine and (–)-flueggine A. Chem. Commun. (Camb.), 2014, 50(66), 9284-9287.
[http://dx.doi.org/10.1039/C4CC02575J] [PMID: 25000877]
[45]
Review: Brasholz, M.; Sörgel, S.; Azap, C.; Reissig, H-U. Rubromycins: structurally intriguing, biologically valuable, synthetically challenging antitumour antibiotics. Eur. J. Org. Chem., 2007, (23), 3801-3814.
[http://dx.doi.org/10.1002/ejoc.200601054]
[46]
Sörgel, S.; Azap, C.; Reissig, H-U. Synthesis of bisbenzannulated spiroketals-model studies for a modular approach to rubromycins. Org. Lett., 2006, 8(21), 4875-4878.
[http://dx.doi.org/10.1021/ol061932w] [PMID: 17020325]
[47]
Wilsdorf, M.; Lentz, D.; Reissig, H-U. Model studies towards new functionalized bisbenzannulated [5,6]-spiroketals. Eur. J. Org. Chem., 2016, (8), 1555-1561.
[48]
Wilsdorf, M.; Reissig, H-U. Towards γ-rubromycin: model studies, development of a new C3 building block and synthesis of 4´-silyl-γ-rubromycin. Eur. J. Org. Chem., 2016, (34), 5747-5756.
[http://dx.doi.org/10.1002/ejoc.201601224]
[49]
Wilsdorf, M.; Sörgel, S.; Reissig, H-U. Lessons learned during spiroketalization experiments - progress and setbacks in the preparation of oxygenated rubromycins and synthesis of 3´-desoxyheliquinomycinone. Eur. J. Org. Chem., 2016, (34), 5757-5769.
[http://dx.doi.org/10.1002/ejoc.201601225]
[50]
Wilsdorf, M.; Reissig, H-U. A convergent total synthesis of the telomerase inhibitor (±)-γ-rubromycin. Angew. Chem. Int. Ed.2014, 53, 4332-4336. Angew. Chem., 2014, 126, 4420-4424.
[http://dx.doi.org/10.1002/anie.201400315]
[51]
Zhao, N.; Yin, S.; Xie, S.; Yan, H.; Ren, P.; Chen, G.; Chen, F.; Xu, J. Total synthesis of astellatol. Angew. Chem. Int. Ed.2018, 57, 3386-3390. Angew. Chem., 2018, 130, 3444-3448.
[http://dx.doi.org/10.1002/anie.201800167]
[52]
Hormuth, S.; Reissig, H-U.; Dorsch, D. Stereoselective synthesis of (2R,3S)-norstatine derivatives by addition of lithiated methoxyallene to amino aldehydes and subsequent ozonolysis. Liebigs Ann. Chem., 1994, (2), 121-127.
[http://dx.doi.org/10.1002/jlac.199419940204]
[53]
Schade, W.; Reissig, H-U. Stereocontrolled synthesis of the taxol C-13 side chain: methyl (2R,3S)-3-benzoylamino-2-hydroxy-3-phenylpropanoate. J. Prakt. Chem., 1999, 341, 685-686.
[http://dx.doi.org/10.1002/(SICI)1521-3897(199910)341:7<685:AID-PRAC685>3.0.CO;2-L]
[54]
Okala Amombo, M.; Hausherr, A.; Reissig, H-U. An expedient synthesis of pyrrole derivatives by reaction of lithiated methoxyallenes with imines. Synlett, 1999, (12), 1871-1874.
[http://dx.doi.org/10.1055/s-1999-2966]
[55]
Hausherr, A.; Zimmer, R.; Reissig, H-U. Additions of carbohydrate-derived alkoxyallenes to imines and subsequent reactions to enantiopure 2,5-dihydropyrrole derivatives. Synthesis, 2019, 51, 486-499.
[http://dx.doi.org/10.1055/s-0037-1609942]
[56]
Prisyazhnyuk, V.; Jachan, M.; Brüdgam, I.; Zimmer, R.; Reissig, H-U. Addition of lithiated methoxyallene to aziridines - a novel access to enantiopure piperidine and β-amino acid derivatives. Collect. Czech. Chem. Commun., 2009, 74, 1069-1080.
[http://dx.doi.org/10.1135/cccc2009012]
[57]
Schmiedel, V.M.; Stefani, S.; Reissig, H-U. Stereodivergent synthesis of jaspine B and its isomers using a carbohydrate-derived alkoxyallene as C3-building block. Beilstein J. Org. Chem., 2013, 9, 2564-2569.
[http://dx.doi.org/10.3762/bjoc.9.291] [PMID: 24367420]
[58]
Brasholz, M.; Reissig, H-U. Refined protocols for the preparation of 3-alkoxy-2,5-dihydrofurans, allylic oxidation to β-alkoxybutenolides and a short synthesis of (±)-annularin H. Synlett, 2007, (8), 1294-1298.
[http://dx.doi.org/10.1055/s-2007-977456]
[59]
Flögel, O.; Reissig, H-U. Preparation of α,β-unsaturated γ-keto aldehydes and new tetronic acid and pyridazine derivatives by oxidative transformations of alkoxyallene-based dihydrofurans. Eur. J. Org. Chem., 2004, (13), 2797-2904.
[http://dx.doi.org/10.1002/ejoc.200400173]
[60]
Brasholz, M.; Reissig, H-U. Oxidative cleavage of 3-alkoxy-2,5-dihydrofurans and its application to the de novo synthesis of rare monosaccharides as exemplified by L-cymarose. Angew. Chem. Int. Ed.2007, 46, 1634-1637. Angew. Chem., 2007, 119, 1659-1662.
[http://dx.doi.org/10.1002/ejoc.200900450] [PMID: 24623604]
[61]
Brasholz, M.; Reissig, H-U. Alkoxyallene-based de novo synthesis of rare deoxy sugars: rare deoxy sugars: new routes to L-cymarose, L-sarmentose, L-diginose and L-oleandrose. Eur. J. Org. Chem., 2009, (21), 3595-3604.
[http://dx.doi.org/10.1002/ejoc.200900450]
[62]
Okala Amombo, M.G.; Flögel, O.; Kord Daoroun Kalai, S.; Schoder, S.; Warzok, U.; Reissig, H-U. Efficient syntheses of 2,5-dihydropyrroles, pyrrolidin-3-ones and electron-rich pyrroles from N-tosylimines and lithiated alkoxyallenes. Eur. J. Org. Chem., 2017, (14), 1965-1972.
[http://dx.doi.org/10.1002/ejoc.201700073]
[63]
Flögel, O.; Okala Amombo, M.G.; Reissig, H-U.; Zahn, G.; Brüdgam, I.; Hartl, H. A stereoselective and short total synthesis of the polyhydroxylated γ-amino acid (–)-detoxinine, based on stereoselective preparation of dihydropyrrole derivatives from lithiated alkoxyallenes. Chem. Eur. J., 2003, 9(6), 1405-1415.
[http://dx.doi.org/10.1002/chem.200390160] [PMID: 12645030]
[64]
Cumine, F.; Young, A.; Reissig, H-U.; Tuttle, T.; Murphy, J.A. A computational study of anionic alkoxide-allene and amide-allene cyclizations. Eur. J. Org. Chem., 2017, (46), 6867-6871.
[http://dx.doi.org/10.1002/ejoc.201701381]
[65]
Kaden, S.; Brockmann, M.; Reissig, H-U. Synthesis of enantiopure 2-substituted pyrrolidin-3-ones via lithiated alkoxyallenes - an auxilary based synthesis of both enantiomers of the antibiotic anisomycin. Helv. Chim. Acta, 2005, 88, 1826-1838.
[http://dx.doi.org/10.1002/hlca.200590143]
[66]
Hausherr, A.; Orschel, B.; Scherer, S.; Reissig, H-U. Synthesis of enantiopure 1-alkoxyallenes and their 3-alkylated derivatives. Synthesis, 2001, (9), 1377-1385.
[67]
Hausherr, A.; Reissig, H-U. Preparation of 3-alkyl-substituted 1-alkoxyallenes - synthetic and mechanistic aspects. Synthesis, 2018, 50, 2546-2554.
[http://dx.doi.org/10.1055/s-0037-1609688]
[68]
Hausherr, A.; Reissig, H-U. Addition of metallated 3-alkyl-substituted alkoxyallenes to imines: preparation of tetrasubstituted 2,5-dihydropyrroles, pyrrolidin-3-ones, and pyrroles. Eur. J. Org. Chem., 2018, (30), 4071-4080.
[http://dx.doi.org/10.1002/ejoc.201800598]
[69]
Hausherr, A.; Siemeister, G.; Reissig, H-U. Alkoxyallene-based syntheses of preussin and its analogs and their cytotoxicity. Org. Biomol. Chem., 2018, 17(1), 122-134.
[http://dx.doi.org/10.1039/C8OB02645A] [PMID: 30520931]
[70]
Chowdhury, M.A.; Reissig, H-U. Syntheses of highly substituted furan and pyrrole derivatives via lithiated 3-aryl-1-methoxyallenes: application to the synthesis of codonopsinine. Synlett, 2006, 2383-2386.
[71]
Chowdhury, M.A. Research Report; Freie Universität Berlin, 2006.
[72]
Kaden, S.; Reissig, H-U. Efficient approach to the azaspirane core of FR 901483. Org. Lett., 2006, 8(21), 4763-4766.
[http://dx.doi.org/10.1021/ol061538y] [PMID: 17020297]
[73]
Schade, W.; Reissig, H-U. A new diastereoselective synthesis of enantiomerically pure 1,2-oxazine derivatives by addition of lithiated methoxyallene to chiral nitrones. Synlett, 1999, (5), 632-634.
[http://dx.doi.org/10.1055/s-1999-2662]
[74]
Pulz, R.; Cicchi, S.; Brandi, A.; Reissig, H-U. Synthesis of new enantiopure bicyclic 1,2-oxazines by addition of lithiated methoxyallene to chiral cyclic nitrones. Eur. J. Org. Chem., 2003, 1153-1156
[http://dx.doi.org/10.1002/ejoc.200390169]
[75]
Helms, M.; Schade, W.; Pulz, R.; Watanabe, T.; Al-Harrasi, A.; Fišera, L.; Hlobilová, I.; Zahn, G.; Reissig, H-U. Stereodivergent syntheses of highly substituted enantiopure 4-alkoxy-3,6-dihydro-2H-1,2-oxazines by addition of lithiated alkoxyallenes to carbohydrate-derived aldonitrones. Eur. J. Org. Chem., 2005, (6), 1003-1019.
[http://dx.doi.org/10.1002/ejoc.200400627]
[76]
Bouché, L.; Reissig, H-U. Synthesis of novel carbohydrate mimetics via 1,2-oxazines. Pure Appl. Chem., 2012, 84, 23-36.
[http://dx.doi.org/10.1351/PAC-CON-11-09-20]
[77]
Bressel, B.; Reissig, H-U. A new approach to neuraminic acid analogues via 1,2-oxazines. Org. Lett., 2009, 11(3), 527-530.
[http://dx.doi.org/10.1021/ol802514m] [PMID: 19175345]
[78]
Helms, M.; Reissig, H-U. Ozonolyses of enantiopure 4-alkoxy-3,6-dihydro-2H-1,2-oxazines: an expedient route to functionalized α-amino-β-hydroxyesters. Eur. J. Org. Chem., 2005, (6), 998-1001.
[http://dx.doi.org/10.1002/ejoc.200400734]
[79]
Helms, M. Dissertation, Neue Beiträge zur Chemie der 3,6-Dihydro-2H-1,2- Oxazine - Oxidative und Reduktive Funktionalisierungen und ihre Anwendung in der Naturstoffsynthese, Freie Universität Berlin. 2005.
[80]
Parmeggiani, C.; Cardona, F.; Giusti, L.; Reissig, H-U.; Goti, A. Stereocomplementary routes to hydroxylated nitrogen heterocycles: total syntheses of casuarine, australine, and 7-epi-australine. Chem. Eur. J., 2013, 19(32), 10595-10604.
[http://dx.doi.org/10.1002/chem.201301320] [PMID: 23828462]
[81]
Pecchioli, T.; Cardona, F.; Reissig, H-U.; Zimmer, R.; Goti, A. Alkoxyallene-based stereodivergent syntheses of (–)-hyacinthacine B4 and of putative hyacinthacine C5 epimers: proposal of hyacinthacine C5 structure. J. Org. Chem., 2017, 82(11), 5835-5844.
[http://dx.doi.org/10.1021/acs.joc.7b00667] [PMID: 28480707]
[82]
Al-Harrasi, A.; Reissig, H-U. Synthesis of enantiopure carbohydrate mimetics by Lewis acid catalyzed rearrangement of 1,3-dioxolanyl-substituted 1,2-oxazines. Angew. Chem. Int. Ed. 2005, 44, 6227-6231. Angew. Chem., 2005, 117, 6383-6387.
[http://dx.doi.org/10.1002/anie.200501127]
[83]
Al-Harrasi, A.; Pfrengle, F.; Prisyazhnyuk, V.; Yekta, S.; Koós, P.; Reissig, H-U. Enantiopure aminopyrans by a Lewis acid promoted rearrangement of 1,2-oxazines: versatile building blocks for oligosaccharide and sugar amino acid mimetics. Chem. Eur. J., 2009, 15(43), 11632-11641.
[http://dx.doi.org/10.1002/chem.200900996] [PMID: 19780107]
[84]
Pfrengle, F.; Reissig, H-U. Amino sugars and their mimetics via 1,2- oxazines. Chem. Soc. Rev, 2010, 39(2), 549-557.
[http://dx.doi.org/10.1039/B914356D] [PMID: 20111779]
[85]
Pfrengle, F.; Lentz, D.; Reissig, H-U. Stereodivergent de novo synthesis of branched amino sugars by Lewis acid promoted rearrangement of 1,2-oxazines. Angew. Chem. Int. Ed., 2009, 48(17), 3165-3169. Angew. Chem., 2009, 121(17), 3211-3215.
[http://dx.doi.org/10.1002/anie.200805724]
[86]
Pfrengle, F.; Reissig, H-U. Internally protected amino sugar equivalents from enantiopure 1,2-oxazines: synthesis of variably configured carbohydrates with C-branched amino sugar units. Chem. Eur. J., 2010, 16(39), 11915-11925.
[http://dx.doi.org/10.1002/chem.201001060] [PMID: 20839374]
[87]
Tius, M.A. Allene ether Nazarov cyclization. Chem. Soc. Rev., 2014, 43(9), 2979-3002.
[http://dx.doi.org/10.1039/C3CS60333D] [PMID: 24196585]
[88]
Banaag, A.R.; Tius, M.A. Traceless chiral auxiliaries for the allene ether Nazarov cyclization. J. Org. Chem., 2008, 73(21), 8133-8141.
[http://dx.doi.org/10.1021/jo801503c] [PMID: 18808186]
[89]
Harrington, P.E.; Tius, M.A. Synthesis and absolute stereochemistry of roseophilin. J. Am. Chem. Soc., 2001, 123(35), 8509-8514.
[http://dx.doi.org/10.1021/ja011242h] [PMID: 11525658]
[90]
Wan, L.; Tius, M.A. Synthesis of (+)-madindoline A and (+)-madindoline B. Org. Lett., 2007, 9(4), 647-650.
[http://dx.doi.org/10.1021/ol062919e] [PMID: 17286372]
[91]
Dai, J.; Ma, D.; Fu, C.; Ma, S. Gram scale total synthesis of 2-hydroxy-3-methylcarbazole, pyrano[3,2-a]carbazole and prenylcarbazole alkaloids. Eur. J. Org. Chem., 2015, (25), 5655-5662.
[http://dx.doi.org/10.1002/ejoc.201500783]
[92]
Qiu, Y.; Ma, D.; Fu, C.; Ma, S. An efficient Au-catalyzed synthesis of isomukonidine, clausine L, mukonidine, glycosinine, mukonal, and clausine V from propadienyl methyl ether. Org. Biomol. Chem., 2013, 11(10), 1666-1671.
[http://dx.doi.org/10.1039/c2ob27432a] [PMID: 23358535]
[93]
Srinivas, K.; Ramana, C.V. Total synthesis of propolisbenzofuran B. Org. Lett., 2017, 19(24), 6466-6469.
[http://dx.doi.org/10.1021/acs.orglett.7b02732] [PMID: 29200305]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy