Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

A Wide Bandgap Ag/MgO@Fe3O4 Nanocomposite as Magnetic Sorbent for Cd(II) in Water Samples

Author(s): Muddasir Hanif*, Kousar Yasmeen*, Haji Muhammad, Faheem Shah*, Saqib Hussain, Atta-ur-Rehman, Muhammad Masab, Syed Tahir Ali and Iftikhar Ahmad Tahiri

Volume 16, Issue 3, 2020

Page: [332 - 340] Pages: 9

DOI: 10.2174/1573411015666191205102628

Price: $65

Abstract

Background: The magnetic nanocomposites are very important as a reusable sorbents for the extraction of Cd(II) and other toxic metals from water samples.

Methods: The Ag/MgO@Fe3O4 nanocomposite was synthesized by the coprecipitation method and characterized by the XRD, EDX, SEM, UV-vis spectroscopy and FTIR. This nanocomposite was used to extract Cd(II) from water samples prior to its quantitative analysis with FAAS. Different variables, i.e. pH, temperature, amount of nanosorbent, adsorption/desorption and dilution were optimized.

Results: The method was successfully applied to determine Cd(II) in real water samples with excellent recoveries (98%). The present method has lower detection (0.29) and quantification limit (0.97 ng mL-1).

Conclusion: The Ag/MgO@Fe3O4 nanocomposite based magnetic extraction is a simple, fast, reproducible, less expansive and efficient technique for the Cd(II) extraction in water samples. The developed sorbent can be recycled and reused (20 times).

Keywords: Ag/MgO@Fe3O4 nanocomposites, Cd(II), flame atomic absorption spectrometry (FAAS), magnetic sorbent, solidphase extraction, water samples.

Graphical Abstract
[1]
Zwir-Ferene, A.; Biziuk, M. Solid phase extraction technique-trends, opportunities and application. Pol. J. Environ, 2006, 15, 677-690.
[2]
Biziuk, M. Determination of selected anthropogenic compounds in Souther Baltic. Anal. Lett., 2001, 34, 1517-1528.
[http://dx.doi.org/10.1081/AL-100104924]
[3]
Cheng, G.; He, M.; Peng, H.; Hu, B. Dithizone modified magnetic nanoparticles for fast and selective solid phase extraction of trace elements in environmental and biological samples prior to their determination by ICP-OES. Talanta, 2012, 88, 507-515.
[http://dx.doi.org/10.1016/j.talanta.2011.11.025] [PMID: 22265534]
[4]
Yin, J.; Jiang, Z.; Chang, G.; Hu, B. Simultaneous on-line preconcentration and determination of trace metals in environmental samples by flow injection combined with inductively coupled plasma mass spectrometry using nanometer-sized alumina packed micro-column. Anal. Chim. Acta, 2005, 540, 333-339.
[http://dx.doi.org/10.1016/j.aca.2005.03.045]
[5]
Pu, X.; Jiang, Z.; Hu, B.; Wang, H. MPTMS modified nanometer-sized alumina micro-column separation and preconcentration of trace amounts of Hg, Cu, Au and Pd in biological, environmental and geological samples and their determination by inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom., 2004, 19, 984-989.
[http://dx.doi.org/10.1039/B403389B]
[6]
Viñas, P.; López-García, I.; Bravo, M.B.; Hernández-Córdoba, M. Multi-walled carbon nanotubes as solid-phase extraction adsorbents for the speciation of cobalamins in seafoods by liquid chromatography. Anal. Bioanal. Chem., 2011, 401(4), 1393-1399.
[http://dx.doi.org/10.1007/s00216-011-5158-1] [PMID: 21674162]
[7]
Huang, C.; Jiang, Z.; Hu, B. Mesoporous titanium dioxide as a novel solid-phase extraction material for flow injection micro-column preconcentration on-line coupled with ICP-OES determination of trace metals in environmental samples. Talanta, 2007, 73(2), 274-281.
[http://dx.doi.org/10.1016/j.talanta.2007.03.046] [PMID: 19073028]
[8]
Huang, C.; Hu, B. Silica-coated magnetic nanoparticles modified with gamma-mercaptopropyltrimethoxy for fast and selective solid phase extraction of trace amounts of Cd, Cu, Hg and Pb in environmental and biological samples prior to their determination by inductively coupled plasma mass spectrometry. SpectrochimicaActa B., 2008, 63, 437-444.
[http://dx.doi.org/10.1016/j.sab.2007.12.010]
[9]
Zheng, F.; Hu, B. Dual-column capillary microextraction (CME) combined with electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) for the speciation of arsenic in human hair extracts. J. Mass Spectrom., 2010, 45(2), 205-214.
[http://dx.doi.org/10.1002/jms.1705] [PMID: 19950110]
[10]
Ngoomisk, A.F.; Bee, A.; Draye, M.; Cote, G.; Cabuil, V. Magnetic nano- and microparticles for metal removal and environmental application. A review. C. R. Chim., 2005, 8, 963-970.
[http://dx.doi.org/10.1016/j.crci.2005.01.001]
[11]
Safarikova, M.; Safarik, I. Magnetic solid-phase extraction. J. Magn. Magn. Mater., 1999, 194, 108-112.
[http://dx.doi.org/10.1016/S0304-8853(98)00566-6]
[12]
Fernandez-Garcia, M.; Rodriguez, J.A. Metal Oxide Nanoparticles. Encylopedia of Inorganic Chemistry.. Rodriguez, Book (Encyclopedia of Inorganic and Bioinorganic Chemistry),; , 2011, pp. 1-15.
[13]
Nyaba, L.; Matong, J.M.; Nomngongo, P.N. Nanoparticles consisting of magnetite and Al2O3 for ligandlessultrasound-assisted dispersive solid phase microextrection of Sb, Mo and V prior to their determination by ICP-OES. Mikrochim. Acta, 2016, 42, 1289-1297.
[http://dx.doi.org/10.1007/s00604-016-1766-y]
[14]
Loganathan, P.; Vigneswaran, S.; Kandasamy, J.; Nadiu, R. Cadmium sorption and desorption in soils. A review. Crit. Rev. Environ. Sci. Technol., 2012, 42, 489-533.
[http://dx.doi.org/10.1080/10643389.2010.520234]
[15]
Guidelines for Drinking-water Quality: Recommendations, ((3rd ed. ). ) 2008, Vol. 1
[16]
Hossein, A-Z.; Rahimpour, E.A.H. Monireh, Zamluminumani-Kalajahi. Aluminum(III)-doped ZnO@Fe3O4 nanocomposite as a magnetic sorbent for preconcentration of cadmium(II). Mikrochim. Acta, 2017, 184, 1641-1648.
[http://dx.doi.org/10.1007/s00604-017-2166-7]
[17]
Soppimath, K.S.; Aminabhavi, T.M.; Kulkarni, A.R.; Rudzinski, W.E. Biodegradable polymeric nanoparticles as drug delivery devices. J. Control. Release, 2001, 70(1-2), 1-20.
[http://dx.doi.org/10.1016/S0168-3659(00)00339-4] [PMID: 11166403]
[18]
Ubrich, N.; Bouillot, P.; Pellerin, C.; Hoffman, M.; Maincent, P. Preparation and characterization of propranolol hydrochloride nanoparticles: a comparative study. J. Control. Release, 2004, 97(2), 291-300.
[http://dx.doi.org/10.1016/j.jconrel.2004.03.023] [PMID: 15196756]
[19]
Quintanar-Guerrero, D.; Allémann, E.; Fessi, H.; Doelker, E. Preparation techniques and mechanisms of formation of biodegradable nanoparticles from preformed polymers. Drug Dev. Ind. Pharm., 1998, 24(12), 1113-1128.
[http://dx.doi.org/10.3109/03639049809108571] [PMID: 9876569]
[20]
Khodabakhshi, S.; Karami, B.; Eskandari, K.; Jafar Hoseini, S.; Nasrabadi, H. Convenient on water synthesis of novel derivatives of dicoumarol as functional vitamin K depleter by Fe3O4 magnetic nanoparticles. Arab. J. Chem., 2017, 10, S3907-S3912.
[http://dx.doi.org/10.1016/j.arabjc.2014.05.030]
[21]
Shao, H.; Ma, Q.; Dong, X.; Yu, W.; Yang, M.; Yang, Y.; Wang, J.; Liu, G. Electrospun flexible coaxial nanoribbons endowed with tuned and simultaneous fluorescent color-electricity-magnetism trifunctionality. Sci. Rep., 2015, 5, 14052.
[http://dx.doi.org/10.1038/srep14052] [PMID: 26374611]
[22]
Siriwardane, I.W.; Udangawa, R.; de Silva, M.R.; Kumarasinghe, A.R.; Acres, R.G.; Hettiarachchi, A.; Amaratunga, G.A.J.; Nalin de Silva, K.M. Synthesis and characterization of nano magnesium oxide impregnated granular activated carbon composite for H2S removal applications. Mater. Des., 2017, 136, 127-136.
[http://dx.doi.org/10.1016/j.matdes.2017.09.034]
[23]
Nakano, M.; Fujiwara, T.; Koga, N. Thermal decomposition of silver acetate: Physico-geometrical kinetic features and formation of silver nanoparticles. J. Phys. Chem. C, 2016, 120, 8841-8854.
[http://dx.doi.org/10.1021/acs.jpcc.6b02377]
[24]
Hassanien, A.S.; Khatoon, U.T. Synthesis and characterization of stable silver nanoparticles, Ag-NPs: Discussion on the applications of Ag-NPs as antimicrobial agents. Physica B, 2019, 554, 21-30.
[http://dx.doi.org/10.1016/j.physb.2018.11.004]
[25]
Raizada, P.; Singh, P.; Kumar, A.; Sharma, G.; Pare, B.; Jonnalagadda, S.B.; Thakur, P. Solar photocatalytic activity of nano-ZnO supported on activated carbon or brick grain particles: Role of adsorption in dye degradation. Appl. Catal. A., 2014, 486, 159-169.
[http://dx.doi.org/10.1016/j.apcata.2014.08.043]
[26]
Shah, F.; Muhammad, H.; Naeemullah, ; Ullah, A. Multivariate optimization of “In capillary-Schiff’s base functionalized magnetic nanoparticle based microextraction” of Pb(+2): A novel synergistic approach. Talanta, 2016, 154, 228-236.
[http://dx.doi.org/10.1016/j.talanta.2016.03.070] [PMID: 27154669]
[27]
Manikandan, P.N.; Dharuman, V. Electrochemical simultaneous sensing of melatonin, dopamine and acetaminophen at platinum doped and decorated alpha iron oxide. Electroanalysis, 2017, 29, 1524-1531.
[http://dx.doi.org/10.1002/elan.201700054]
[28]
Singh, S.; Barick, K.C.; Bahadur, D. Fe3O4 embedded ZnO nanocomposites for the removal of toxic metal ions, organic dyes and bacterial pathogens. J. Mater. Chem. A Mater. Energy Sustain., 2013, 1, 3325-3333.
[http://dx.doi.org/10.1039/c2ta01045c]
[29]
Bagheri, H.; Afkhami, A.; Saber-Tehrani, M.; Khoshsafar, H. Preparation and characterization of magnetic nanocomposite of Schiff base/silica/magnetite as a preconcentration phase for the trace determination of heavy metal ions in water, food and biological samples using atomic absorption spectrometry. Talanta, 2012, 97, 87-95.
[http://dx.doi.org/10.1016/j.talanta.2012.03.066] [PMID: 22841051]
[30]
Behbahani, M.; Bide, Y.; Bagheri, S.; Salarian, M.; Omidi, F.; Nabid, M.R. A pH responsive nanogel composed of magnetite, silica and poly (4-vinylpyridine) for extraction of Cd(II), Cu(II), Ni(II) and Pb(II). Mikrochim. Acta, 2016, 183, 111-121.
[http://dx.doi.org/10.1007/s00604-015-1603-8]
[31]
Ghorbani-Kalhor, E. A metal-organic framework nanocomposite made from functionalized magnetite nanoparticles and HKUST-1 (MOF-199) for preconcentration of Cd(II), Pb(II), and Ni(II). Mikrochim. Acta, 2016, 183, 2639-2647.
[http://dx.doi.org/10.1007/s00604-016-1896-2]
[32]
Alvand, M.; Shemirani, F. Fabrication of Fe3O4@graphene oxide core-shell nanospheres for ferrofluid-based dispersive solid phase extraction as exemplified for Cd(II) as a model analyte. Mikrochim. Acta, 2016, 183, 1749-1757.
[http://dx.doi.org/10.1007/s00604-016-1805-8]
[33]
Abdolmohammad-Zadeh, H.; Rahimpour, E.; Hosseinzadeh, A.; Zamani-Kalajahi, M. Aluminum (III)-doped ZnO@ Fe3O4 nanocomposite as a magnetic sorbent for preconcentration of cadmium (II). MicrochimicaActa, 2017, 1(184), 1641-1648.
[http://dx.doi.org/10.1007/s00604-017-2166-7]
[34]
Sohrabi, M.R.; Matbouie, Z.; Asgharinezhad, A.A.; Dehghani, A. Solid phase extraction of Cd (II) and Pb (II) using a magnetic metal-organic framework and their determination by FAAS. MicrochimicaActa, 2013, 180, 589-597.
[http://dx.doi.org/10.1007/s00604-013-0952-4]
[35]
Fahimirad, B.; Rangraz, Y.; Elhampour, A.; Nemati, F. Diphenyl diselenide grafted onto a Fe3O4-chitosan composite as a new nanosorbent for separation of metal ions by effervescent salt-assisted dispersive magnetic micro solid-phase extraction. Mikrochim. Acta, 2018, 185(12), 560-567.
[http://dx.doi.org/10.1007/s00604-018-3094-x] [PMID: 30478646]
[36]
Zhang, N.; Peng, H.; Wang, S.; Hu, B. Fast and selective magnetic solid phase extraction of trace Cd, Mn and Pb in environmental and biological samples and their determination by ICP-MS. Mikrochim. Acta, 2011, 175, 121-128.
[http://dx.doi.org/10.1007/s00604-011-0659-3]
[37]
Stolzenburg, P.; Capdevielle, A.; Teychené, S.; Biscans, B. Struvite precipitation with MgO as a precursor: Application to wastewater treatment. Chem. Eng. Sci., 2015, 133, 9-15.
[http://dx.doi.org/10.1016/j.ces.2015.03.008]
[38]
Zhang, L.; Zhu, W.; Zhang, H.; Bi, S.; Zhang, Q. Hydrothermal–thermal conversion synthesis of hierarchical porous MgO microrods as efficient adsorbents for lead(II) and chromium(VI) removal. RSC Advances, 2014, 4, 30542-30550.
[http://dx.doi.org/10.1039/C4RA03971H]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy