Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Mini-Review Article

Anticancer Activity of Natural Flavonoids: Inhibition of HIF-1α Signaling Pathway

Author(s): Xiangping Deng, Yijiao Peng, Jingduo Zhao, Xiaoyong Lei, Xing Zheng, Zhizhong Xie and Guotao Tang*

Volume 23, Issue 26, 2019

Page: [2945 - 2959] Pages: 15

DOI: 10.2174/1385272823666191203122030

Price: $65

Abstract

Rapid tumor growth is dependent on the capability of tumor blood vessels and glycolysis to provide oxygen and nutrients. Tumor hypoxia is a common characteristic of many solid tumors, and it essentially happens when the growth of the tumor exceeds the concomitant angiogenesis. Hypoxia-inducible factor 1 (HIF-1) as the critical transcription factor in hypoxia regulation is activated to adapt to this hypoxia situation. Flavonoids, widely distributed in plants, comprise many polyphenolic secondary metabolites, possessing broadspectrum pharmacological activities, including their potentiality as anticancer agents. Due to their low toxicity, intense efforts have been made for investigating natural flavonoids and their derivatives that can be used as HIF-1α inhibitors for cancer therapy during the past few decades. In this review, we sum up the findings concerning the inhibition of HIF-1α by natural flavonoids in the last few years and propose the idea of designing tumor vascular and glycolytic multi-target inhibitors with HIF-1α as one of the targets.

Keywords: HIF-1α, natural flavonoids, anticancer, inhibition, signaling pathway, hypoxia situation.

Graphical Abstract
[1]
Folkman, J. What is the evidence that tumors are angiogenesis dependent? J. Natl. Cancer Inst., 1990, 82(1), 4-6.
[http://dx.doi.org/10.1093/jnci/82.1.4] [PMID: 1688381]
[2]
Otrock, Z.K.; Hatoum, H.A.; Awada, A.H.; Ishak, R.S.; Shamseddine, A.I. Hypoxia-inducible factor in cancer angiogenesis: structure, regulation and clinical perspectives. Crit. Rev. Oncol. Hematol., 2009, 70(2), 93-102.
[http://dx.doi.org/10.1016/j.critrevonc.2009.01.001] [PMID: 19186072]
[3]
Talks, K.L.; Turley, H.; Gatter, K.C.; Maxwell, P.H.; Pugh, C.W.; Ratcliffe, P.J.; Harris, A.L. The expression and distribution of the hypoxia-inducible factors HIF-1alpha and HIF-2alpha in normal human tissues, cancers, and tumor-associated macrophages. Am. J. Pathol., 2000, 157(2), 411-421.
[http://dx.doi.org/10.1016/S0002-9440(10)64554-3] [PMID: 10934146]
[4]
Wang, R.; Zhou, S.; Li, S. Cancer therapeutic agents targeting hypoxia-inducible factor-1. Curr. Med. Chem., 2011, 18(21), 3168-3189.
[http://dx.doi.org/10.2174/092986711796391606] [PMID: 21671859]
[5]
Semenza, G.L. Development of novel therapeutic strategies that target HIF-1. Expert Opin. Ther. Targets, 2006, 10(2), 267-280.
[http://dx.doi.org/10.1517/14728222.10.2.267] [PMID: 16548775]
[6]
Denko, N.C. Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat. Rev. Cancer, 2008, 8(9), 705-713.
[http://dx.doi.org/10.1038/nrc2468] [PMID: 19143055]
[7]
Giaccia, A.; Siim, B.G.; Johnson, R.S. HIF-1 as a target for drug development. Nat. Rev. Drug Discov., 2003, 2(10), 803-811.
[http://dx.doi.org/10.1038/nrd1199] [PMID: 14526383]
[8]
Melillo, G. Targeting hypoxia cell signaling for cancer therapy. Cancer Metastasis Rev., 2007, 26(2), 341-352.
[http://dx.doi.org/10.1007/s10555-007-9059-x] [PMID: 17415529]
[9]
Yewalkar, N.; Deore, V.; Padgaonkar, A.; Manohar, S.; Sahu, B.; Kumar, P.; Jalota-Badhwar, A.; Joshi, K.S.; Sharma, S.; Kumar, S. Development of novel inhibitors targeting HIF-1α towards anticancer drug discovery. Bioorg. Med. Chem. Lett., 2010, 20(22), 6426-6429.
[http://dx.doi.org/10.1016/j.bmcl.2010.09.083] [PMID: 20932758]
[10]
Semenza, G.L. Evaluation of HIF-1 inhibitors as anticancer agents. Drug Discov. Today, 2007, 12(19-20), 853-859.
[http://dx.doi.org/10.1016/j.drudis.2007.08.006] [PMID: 17933687]
[11]
Xia, Y.; Choi, H.K.; Lee, K. Recent advances in hypoxia-inducible factor (HIF)-1 inhibitors. Eur. J. Med. Chem., 2012, 49, 24-40.
[http://dx.doi.org/10.1016/j.ejmech.2012.01.033] [PMID: 22305612]
[12]
Semenza, G.L. Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol. Sci., 2012, 33(4), 207-214.
[http://dx.doi.org/10.1016/j.tips.2012.01.005] [PMID: 22398146]
[13]
Epstein, A.C.; Gleadle, J.M.; McNeill, L.A.; Hewitson, K.S.; O’Rourke, J.; Mole, D.R.; Mukherji, M.; Metzen, E.; Wilson, M.I.; Dhanda, A.; Tian, Y.M.; Masson, N.; Hamilton, D.L.; Jaakkola, P.; Barstead, R.; Hodgkin, J.; Maxwell, P.H.; Pugh, C.W.; Schofield, C.J. Ratcliffe, P.J. Celegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell, 2001, 107(1), 43-54.
[14]
Huang, L.E.; Gu, J.; Schau, M.; Bunn, H.F. Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc. Natl. Acad. Sci. USA, 1998, 95(14), 7987-7992.
[http://dx.doi.org/10.1073/pnas.95.14.7987] [PMID: 9653127]
[15]
Ivan, M.; Kondo, K.; Yang, H.; Kim, W.; Valiando, J.; Ohh, M.; Salic, A.; Asara, J.M.; Lane, W.S.; Kaelin, W.G., Jr HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science, 2001, 292(5516), 464-468.
[http://dx.doi.org/10.1126/science.1059817] [PMID: 11292862]
[16]
Salceda, S.; Caro, J. Hypoxia-inducible factor 1alpha (HIF-1alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J. Biol. Chem., 1997, 272(36), 22642-22647.
[http://dx.doi.org/10.1074/jbc.272.36.22642] [PMID: 9278421]
[17]
Kim, S.Y.; Yang, E.G. Recent advances in developing inhibitors for hypoxia-inducible factor prolyl hydroxylases and their therapeutic implications. Molecules, 2015, 20(11), 20551-20568.
[http://dx.doi.org/10.3390/molecules201119717] [PMID: 26610437]
[18]
Chahar, M.K.; Sharma, N.; Dobhal, M.P.; Joshi, Y.C. Flavonoids: A versatile source of anticancer drugs. Pharmacogn. Rev., 2011, 5(9), 1-12.
[http://dx.doi.org/10.4103/0973-7847.79093] [PMID: 22096313]
[19]
Nema, R.; Jain, P.; Khare, S.; Pradhan, A. Flavonoid and cancer prevention-mini review. Res Pharm., 2015, 2, 46-50.
[20]
Ververidis, F.; Trantas, E.; Douglas, C.; Vollmer, G.; Kretzschmar, G.; Panopoulos, N. Biotechnology of flavonoids and other phenylpropanoid-derived natural products. Part I: chemical diversity, impacts on plant biology and human health. Biotechnol. J., 2007, 2(10), 1214-1234.
[http://dx.doi.org/10.1002/biot.200700084] [PMID: 17935117]
[21]
Raffa, D.; Maggio, B.; Raimondi, M.V.; Plescia, F.; Daidone, G. Recent discoveries of anticancer flavonoids. Eur. J. Med. Chem., 2017, 142, 213-228.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.034] [PMID: 28793973]
[22]
Marzocchella, L.; Fantini, M.; Benvenuto, M.; Masuelli, L.; Tresoldi, I.; Modesti, A.; Bei, R. Dietary flavonoids: molecular mechanisms of action as anti- inflammatory agents. Recent Pat. Inflamm. Allergy Drug Discov., 2011, 5(3), 200-220.
[http://dx.doi.org/10.2174/187221311797264937] [PMID: 21827399]
[23]
Spagnuolo, C.; Moccia, S.; Russo, G.L. Anti-inflammatory effects of flavonoids in neurodegenerative disorders. Eur. J. Med. Chem., 2018, 153, 105-115.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.001] [PMID: 28923363]
[24]
Antunes-Ricardo, M.; Gutiérrez-Uribe, J.; Serna-Saldívar, S.O. Anti-inflammatory glycosylated flavonoids as therapeutic agents for treatment of diabetes-impaired wounds. Curr. Top. Med. Chem., 2015, 15(23), 2456-2463.
[http://dx.doi.org/10.2174/1568026615666150619141702] [PMID: 26088354]
[25]
Shu, J.; Li, L.; Zhou, M.; Yu, J.; Peng, C.; Shao, F.; Liu, R.; Zhu, G.; Huang, H. Three new flavonoid glycosides from Smilax glabra and their anti-inflammatory activity. Nat. Prod. Res., 2018, 32(15), 1760-1768.
[http://dx.doi.org/10.1080/14786419.2017.1402314] [PMID: 29149807]
[26]
Benavente-García, O.; Castillo, J. Update on uses and properties of citrus flavonoids: new findings in anticancer, cardiovascular, and anti-inflammatory activity. J. Agric. Food Chem., 2008, 56(15), 6185-6205.
[http://dx.doi.org/10.1021/jf8006568] [PMID: 18593176]
[27]
Pietta, P.G. Flavonoids as antioxidants. J. Nat. Prod., 2000, 63(7), 1035-1042.
[http://dx.doi.org/10.1021/np9904509] [PMID: 10924197]
[28]
Agati, G.; Azzarello, E.; Pollastri, S.; Tattini, M. Flavonoids as antioxidants in plants: location and functional significance. Plant Sci., 2012, 196, 67-76.
[http://dx.doi.org/10.1016/j.plantsci.2012.07.014] [PMID: 23017900]
[29]
Min, N.; Leong, P.T.; Lee, R.C.H.; Khuan, J.S.E.; Chu, J.J.H. A flavonoid compound library screen revealed potent antiviral activity of plant-derived flavonoids on human enterovirus A71 replication. Antiviral Res., 2018, 150, 60-68.
[http://dx.doi.org/10.1016/j.antiviral.2017.12.003] [PMID: 29233744]
[30]
Mateeva, N.; Eyunni, S.V.K.; Redda, K.K.; Ononuju, U.; Hansberry, T.D., II; Aikens, C.; Nag, A. Functional evaluation of synthetic flavonoids and chalcones for potential antiviral and anticancer properties. Bioorg. Med. Chem. Lett., 2017, 27(11), 2350-2356.
[http://dx.doi.org/10.1016/j.bmcl.2017.04.034] [PMID: 28442256]
[31]
Xie, Y.; Yang, W.; Tang, F.; Chen, X.; Ren, L. Antibacterial activities of flavonoids: structure-activity relationship and mechanism. Curr. Med. Chem., 2015, 22(1), 132-149.
[http://dx.doi.org/10.2174/0929867321666140916113443] [PMID: 25245513]
[32]
Cushnie, T.P.; Lamb, A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents, 2005, 26(5), 343-356.
[http://dx.doi.org/10.1016/j.ijantimicag.2005.09.002] [PMID: 16323269]
[33]
Cushnie, T.P.; Lamb, A.J. Recent advances in understanding the antibacterial properties of flavonoids. Int. J. Antimicrob. Agents, 2011, 38(2), 99-107.
[http://dx.doi.org/10.1016/j.ijantimicag.2011.02.014] [PMID: 21514796]
[34]
Faggio, C.; Sureda, A.; Morabito, S.; Sanches-Silva, A.; Mocan, A.; Nabavi, S.F.; Nabavi, S.M. Flavonoids and platelet aggregation: a brief review. Eur. J. Pharmacol., 2017, 807, 91-101.
[http://dx.doi.org/10.1016/j.ejphar.2017.04.009] [PMID: 28412372]
[35]
Wright, B.; Spencer, J.P.; Lovegrove, J.A.; Gibbins, J.M. Insights into dietary flavonoids as molecular templates for the design of anti-platelet drugs. Cardiovasc. Res., 2013, 97(1), 13-22.
[http://dx.doi.org/10.1093/cvr/cvs304] [PMID: 23024269]
[36]
Grassi, D.; Desideri, G.; Croce, G.; Tiberti, S.; Aggio, A.; Ferri, C. Flavonoids, vascular function and cardiovascular protection. Curr. Pharm. Des., 2009, 15(10), 1072-1084.
[http://dx.doi.org/10.2174/138161209787846982] [PMID: 19355949]
[37]
Katyal, P.; Bhardwaj, N.; Khajuria, R. Flavonoids and their therapeutic potential as anticancer agents: biosynthesis, metabolism and regulation. World J. Pharm. Pharm. Sci., 2014, 3, 2188-2216.
[38]
Pathak, N.; Khan, S.; Bhargava, A.; Raghuram, G.V.; Jain, D.; Panwar, H.; Samarth, R.M.; Jain, S.K.; Maudar, K.K.; Mishra, D.K.; Mishra, P.K. Cancer chemopreventive effects of the flavonoid-rich fraction isolated from papaya seeds. Nutr. Cancer, 2014, 66(5), 857-871.
[http://dx.doi.org/10.1080/01635581.2014.904912] [PMID: 24820939]
[39]
Batra, P.; Sharma, A.K. Anti-cancer potential of flavonoids: recent trends and future perspectives. 3 Biotech. 2013, 3, 439-459.
[40]
Li, Y.; Fang, H.; Xu, W. Recent advance in the research of flavonoids as anticancer agents. Mini Rev. Med. Chem., 2007, 7(7), 663-678.
[http://dx.doi.org/10.2174/138955707781024463] [PMID: 17627579]
[41]
Neuhouser, M.L. Dietary flavonoids and cancer risk: evidence from human population studies. Nutr. Cancer, 2004, 50(1), 1-7.
[http://dx.doi.org/10.1207/s15327914nc5001_1] [PMID: 15572291]
[42]
Deng, X.; Wang, Z.; Liu, J.; Xiong, S.; Xiong, R.; Cao, X.; Chen, Y.; Zheng, X.; Tang, G. Design, synthesis and biological evaluation of flavonoid salicylate derivatives as potential antitumor agents. RSC Advances, 2017, 7, 38171-38178.
[http://dx.doi.org/10.1039/C7RA07235J]
[43]
Wang, Z.; Deng, X.; Xiong, R.; Xiong, S.; Liu, J.; Cao, X.; Lei, X.; Chen, Y.; Zheng, X.; Tang, G. Design, synthesis and biological evaluation of 3′,4′,5′-trimethoxy flavonoid benzimidazole derivatives as potential anti-tumor agents. MedChemComm, 2017, 9(2), 305-315.
[http://dx.doi.org/10.1039/C7MD00578D] [PMID: 30108924]
[44]
Vue, B.; Zhang, S.; Chen, Q.H. Flavonoids with therapeutic potential in prostate cancer. Anticancer. Agents Med. Chem., 2016, 16(10), 1205-1229.
[http://dx.doi.org/10.2174/1871520615666151008122622] [PMID: 26446382]
[45]
Han, D.; Tachibana, H.; Yamada, K. Inhibition of environmental estrogen-induced proliferation of human breast carcinoma MCF-7 cells by flavonoids. In Vitro Cell. Dev. Biol. Anim., 2001, 37(5), 275-282.
[PMID: 11513082]
[46]
Kandaswami, C.; Lee, L.T.; Lee, P.P.; Hwang, J.J.; Ke, F.C.; Huang, Y.T.; Lee, M.T. The antitumor activities of flavonoids. In Vivo, 2005, 19(5), 895-909.
[PMID: 16097445]
[47]
Hu, Y.; Liu, J.; Huang, H. Recent agents targeting HIF-1α for cancer therapy. J. Cell. Biochem., 2013, 114(3), 498-509.
[http://dx.doi.org/10.1002/jcb.24390] [PMID: 22961911]
[48]
Manolescu, B.; Oprea, E.; Busu, C.; Cercasov, C. Natural compounds and the Hypoxia-inducible Factor (HIF) signalling pathway. Biochimie, 2009, 91(11-12), 1347-1358.
[http://dx.doi.org/10.1016/j.biochi.2009.08.005] [PMID: 19703512]
[49]
Fu, B.; Xue, J.; Li, Z.; Shi, X.; Jiang, B.H.; Fang, J. Chrysin inhibits expression of hypoxia-inducible factor-1alpha through reducing hypoxia-inducible factor-1alpha stability and inhibiting its protein synthesis. Mol. Cancer Ther., 2007, 6(1), 220-226.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0526] [PMID: 17237281]
[50]
Chen, J.; Li, Z.; Chen, A.Y.; Ye, X.; Luo, H.; Rankin, G.O.; Chen, Y.C. Inhibitory effect of baicalin and baicalein on ovarian cancer cells. Int. J. Mol. Sci., 2013, 14(3), 6012-6025.
[http://dx.doi.org/10.3390/ijms14036012] [PMID: 23502466]
[51]
Gade, S.; Gandhi, N.M. Baicalein inhibits MCF-7 cell proliferation in vitro, induces radiosensitivity, and inhibits hypoxia inducible factor. J. Environ. Pathol. Toxicol. Oncol., 2015, 34(4), 299-308.
[http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.2015013806] [PMID: 26756423]
[52]
Chen, F.; Zhuang, M.; Zhong, C.; Peng, J.; Wang, X.; Li, J.; Chen, Z.; Huang, Y. Baicalein reverses hypoxia-induced 5-FU resistance in gastric cancer AGS cells through suppression of glycolysis and the PTEN/Akt/HIF-1α signaling pathway. Oncol. Rep., 2015, 33(1), 457-463.
[http://dx.doi.org/10.3892/or.2014.3550] [PMID: 25333894]
[53]
Wang, F.R.; Jiang, Y.S. Effect of treatment with baicalein on the intracerebral tumor growth and survival of orthotopic glioma models. J. Neurooncol., 2015, 124(1), 5-11.
[http://dx.doi.org/10.1007/s11060-015-1804-3] [PMID: 25968345]
[54]
Melstrom, L.G.; Salabat, M.R.; Ding, X.Z.; Strouch, M.J.; Grippo, P.J.; Mirzoeva, S.; Pelling, J.C.; Bentrem, D.J. Apigenin down-regulates the hypoxia response genes: HIF-1α, GLUT-1, and VEGF in human pancreatic cancer cells. J. Surg. Res., 2011, 167(2), 173-181.
[http://dx.doi.org/10.1016/j.jss.2010.10.041] [PMID: 21227456]
[55]
Osada, M.; Imaoka, S.; Funae, Y. Apigenin suppresses the expression of VEGF, an important factor for angiogenesis, in endothelial cells via degradation of HIF-1alpha protein. FEBS Lett., 2004, 575(1-3), 59-63.
[http://dx.doi.org/10.1016/j.febslet.2004.08.036] [PMID: 15388333]
[56]
Fang, J.; Zhou, Q.; Liu, L.Z.; Xia, C.; Hu, X.; Shi, X.; Jiang, B.H. Apigenin inhibits tumor angiogenesis through decreasing HIF-1alpha and VEGF expression. Carcinogenesis, 2007, 28(4), 858-864.
[http://dx.doi.org/10.1093/carcin/bgl205] [PMID: 17071632]
[57]
Mirzoeva, S.; Kim, N.D.; Chiu, K.; Franzen, C.A.; Bergan, R.C.; Pelling, J.C. Inhibition of HIF-1 alpha and VEGF expression by the chemopreventive bioflavonoid apigenin is accompanied by Akt inhibition in human prostate carcinoma PC3-M cells. Mol. Carcinog., 2008, 47(9), 686-700.
[http://dx.doi.org/10.1002/mc.20421] [PMID: 18240292]
[58]
Fang, J.; Xia, C.; Cao, Z.; Zheng, J.Z.; Reed, E.; Jiang, B.H. Apigenin inhibits VEGF and HIF-1 expression via PI3K/AKT/p70S6K1 and HDM2/p53 pathways. FASEB J., 2005, 19(3), 342-353.
[http://dx.doi.org/10.1096/fj.04-2175com] [PMID: 15746177]
[59]
Fang, B.; Chen, X.; Wu, M.; Kong, H.; Chu, G.; Zhou, Z.; Zhang, C.; Chen, B. Luteolin inhibits angiogenesis of the M2 like TAMs via the downregulation of hypoxia inducible factor 1α and the STAT3 signalling pathway under hypoxia. Mol. Med. Rep., 2018, 18(3), 2914-2922.
[http://dx.doi.org/10.3892/mmr.2018.9250] [PMID: 30015852]
[60]
Li, C.; Wang, Q.; Shen, S.; Wei, X.; Li, G. HIF-1α/VEGF signaling-mediated epithelial-mesenchymal transition and angiogenesis is critically involved in anti-metastasis effect of luteolin in melanoma cells. Phytother. Res., 2019, 33(3), 798-807.
[http://dx.doi.org/10.1002/ptr.6273] [PMID: 30653763]
[61]
Zhang, Q.; Wan, L.; Guo, Y.; Cheng, N.; Cheng, W.; Sun, Q.; Zhu, J. Radiosensitization effect of luteolin on human gastric cancer SGC-7901 cells. J. Biol. Regul. Homeost. Agents, 2009, 23(2), 71-78.
[PMID: 19589287]
[62]
Wang, S.J.; Zhao, J.K.; Ren, S.; Sun, W.W.; Zhang, W.J.; Zhang, J.N. Wogonin affects proliferation and the energy metabolism of SGC-7901 and A549 cells. Exp. Ther. Med., 2019, 17(1), 911-918.
[PMID: 30651880]
[63]
Khalmuratova, R.; Lee, M.; Mo, J.H.; Jung, Y.; Park, J.W.; Shin, H.W. Wogonin attenuates nasal polyp formation by inducing eosinophil apoptosis through HIF-1α and survivin suppression. Sci. Rep., 2018, 8(1), 6201.
[http://dx.doi.org/10.1038/s41598-018-24356-5] [PMID: 29670184]
[64]
Wang, H.; Zhao, L.; Zhu, L.T.; Wang, Y.; Pan, D.; Yao, J.; You, Q.D.; Guo, Q.L. Wogonin reverses hypoxia resistance of human colon cancer HCT116 cells via downregulation of HIF-1α and glycolysis, by inhibiting PI3K/Akt signaling pathway. Mol. Carcinog., 2014, 53(Suppl. 1), E107-E118.
[http://dx.doi.org/10.1002/mc.22052] [PMID: 23761018]
[65]
Fu, R.; Chen, Y.; Wang, X.P.; An, T.; Tao, L.; Zhou, Y.X.; Huang, Y.J.; Chen, B.A.; Li, Z.Y.; You, Q.D.; Guo, Q.L.; Wu, Z.Q. Wogonin inhibits multiple myeloma-stimulated angiogenesis via c-Myc/VHL/HIF-1α signaling axis. Oncotarget, 2016, 7(5), 5715-5727.
[http://dx.doi.org/10.18632/oncotarget.6796] [PMID: 26735336]
[66]
Liu, L.Z.; Jing, Y.; Jiang, L.L.; Jiang, X.E.; Jiang, Y.; Rojanasakul, Y.; Jiang, B.H. Acacetin inhibits VEGF expression, tumor angiogenesis and growth through AKT/HIF-1α pathway. Biochem. Biophys. Res. Commun., 2011, 413(2), 299-305.
[http://dx.doi.org/10.1016/j.bbrc.2011.08.091] [PMID: 21893035]
[67]
Choi, H.J.; Eun, J.S.; Kim, B.G.; Kim, S.Y.; Jeon, H.; Soh, Y. Vitexin, an HIF-1alpha inhibitor, has anti-metastatic potential in PC12 cells. Mol. Cells, 2006, 22(3), 291-299.
[PMID: 17202857]
[68]
Scarpa, E.S.; Antonini, E.; Palma, F.; Mari, M.; Ninfali, P. Antiproliferative activity of vitexin-2-O-xyloside and avenanthramides on CaCo-2 and HepG2 cancer cells occurs through apoptosis induction and reduction of pro-survival mechanisms. Eur. J. Nutr., 2018, 57(4), 1381-1395.
[http://dx.doi.org/10.1007/s00394-017-1418-y] [PMID: 28283822]
[69]
Epstein Shochet, G.; Drucker, L.; Pasmanik-Chor, M.; Pomeranz, M.; Fishman, A.; Tartakover Matalon, S.; Lishner, M. First trimester human placental factors induce breast cancer cell autophagy. Breast Cancer Res. Treat., 2015, 149(3), 645-654.
[http://dx.doi.org/10.1007/s10549-015-3266-x] [PMID: 25656679]
[70]
Triantafyllou, A.; Mylonis, I.; Simos, G.; Bonanou, S.; Tsakalof, A. Flavonoids induce HIF-1alpha but impair its nuclear accumulation and activity. Free Radic. Biol. Med., 2008, 44(4), 657-670.
[http://dx.doi.org/10.1016/j.freeradbiomed.2007.10.050] [PMID: 18061585]
[71]
Du, G.; Han, G.; Zhang, S.; Lin, H.; Wu, X.; Wang, M.; Ji, L.; Lu, L.; Yu, L.; Liang, W. Baicalin suppresses lung carcinoma and lung metastasis by SOD mimic and HIF-1alpha inhibition. Eur. J. Pharmacol., 2010, 630(1-3), 121-130.
[http://dx.doi.org/10.1016/j.ejphar.2009.12.014] [PMID: 20036231]
[72]
Liu, L.L.; Gong, L.K.; Wang, H.; Xiao, Y.; Wu, X.F.; Zhang, Y.H.; Xue, X.; Qi, X.M.; Ren, J. Baicalin inhibits macrophage activation by lipopolysaccharide and protects mice from endotoxin shock. Biochem. Pharmacol., 2008, 75(4), 914-922.
[http://dx.doi.org/10.1016/j.bcp.2007.10.009] [PMID: 18191816]
[73]
Huang, H.; Chen, A.Y.; Rojanasakul, Y.; Ye, X.; Rankin, G.O.; Chen, Y.C. Dietary compounds galangin and myricetin suppress ovarian cancer cell angiogenesis. J. Funct. Foods, 2015, 15, 464-475.
[http://dx.doi.org/10.1016/j.jff.2015.03.051] [PMID: 26113875]
[74]
Mylonis, I.; Lakka, A.; Tsakalof, A.; Simos, G. The dietary flavonoid kaempferol effectively inhibits HIF-1 activity and hepatoma cancer cell viability under hypoxic conditions. Biochem. Biophys. Res. Commun., 2010, 398(1), 74-78.
[http://dx.doi.org/10.1016/j.bbrc.2010.06.038] [PMID: 20558139]
[75]
Luo, H.; Rankin, G.O.; Liu, L.; Daddysman, M.K.; Jiang, B.H.; Chen, Y.C. Kaempferol inhibits angiogenesis and VEGF expression through both HIF dependent and independent pathways in human ovarian cancer cells. Nutr. Cancer, 2009, 61(4), 554-563.
[http://dx.doi.org/10.1080/01635580802666281] [PMID: 19838928]
[76]
Kim, H.S.; Wannatung, T.; Lee, S.; Yang, W.K.; Chung, S.H.; Lim, J.S.; Choe, W.; Kang, I.; Kim, S.S.; Ha, J. Quercetin enhances hypoxia-mediated apoptosis via direct inhibition of AMPK activity in HCT116 colon cancer. Apoptosis, 2012, 17(9), 938-949.
[http://dx.doi.org/10.1007/s10495-012-0719-0] [PMID: 22684842]
[77]
Li, S.Z.; Li, K.; Zhang, J.H.; Dong, Z. The effect of quercetin on doxorubicin cytotoxicity in human breast cancer cells. Anticancer. Agents Med. Chem., 2013, 13(2), 352-355.
[http://dx.doi.org/10.2174/1871520611313020020] [PMID: 22721393]
[78]
Du, G.; Lin, H.; Wang, M.; Zhang, S.; Wu, X.; Lu, L.; Ji, L.; Yu, L. Quercetin greatly improved therapeutic index of doxorubicin against 4T1 breast cancer by its opposing effects on HIF-1α in tumor and normal cells. Cancer Chemother. Pharmacol., 2010, 65(2), 277-287.
[http://dx.doi.org/10.1007/s00280-009-1032-7] [PMID: 19466611]
[79]
Lee, D.H.; Lee, Y.J. Quercetin suppresses hypoxia-induced accumulation of hypoxia-inducible factor-1alpha (HIF-1alpha) through inhibiting protein synthesis. J. Cell. Biochem., 2008, 105(2), 546-553.
[http://dx.doi.org/10.1002/jcb.21851] [PMID: 18655183]
[80]
Baek, S.H.; Lee, U.Y.; Park, E.M.; Han, M.Y.; Lee, Y.S.; Park, Y.M. Role of protein kinase Cdelta in transmitting hypoxia signal to HSF and HIF-1. J. Cell. Physiol., 2001, 188(2), 223-235.
[http://dx.doi.org/10.1002/jcp.1117] [PMID: 11424089]
[81]
Roshanzamir, F.; Yazdanparast, R. Quercetin attenuates cell apoptosis of oxidant-stressed SK-N-MC cells while suppressing up-regulation of the defensive element, HIF-1α. Neuroscience, 2014, 277, 780-793.
[http://dx.doi.org/10.1016/j.neuroscience.2014.07.036] [PMID: 25108166]
[82]
Devi, K.P.; Rajavel, T.; Habtemariam, S.; Nabavi, S.F.; Nabavi, S.M. Molecular mechanisms underlying anticancer effects of myricetin. Life Sci., 2015, 142, 19-25.
[http://dx.doi.org/10.1016/j.lfs.2015.10.004] [PMID: 26455550]
[83]
Mondal, S.; Jana, J.; Sengupta, P.; Jana, S.; Chatterjee, S. Myricetin arrests human telomeric G-quadruplex structure: a new mechanistic approach as an anticancer agent. Mol. Biosyst., 2016, 12(8), 2506-2518.
[http://dx.doi.org/10.1039/C6MB00218H] [PMID: 27249025]
[84]
Jung, S.K.; Lee, K.W.; Byun, S.; Lee, E.J.; Kim, J.E.; Bode, A.M.; Dong, Z.; Lee, H.J. Myricetin inhibits UVB-induced angiogenesis by regulating PI-3 kinase in vivo. Carcinogenesis, 2010, 31(5), 911-917.
[http://dx.doi.org/10.1093/carcin/bgp221] [PMID: 20008033]
[85]
Seo, S.; Seo, K.; Ki, S.H.; Shin, S.M. Isorhamnetin inhibits reactive oxygen species-dependent hypoxia inducible factor (HIF)-1α accumulation. Biol. Pharm. Bull., 2016, 39(11), 1830-1838.
[http://dx.doi.org/10.1248/bpb.b16-00414] [PMID: 27803454]
[86]
Wang, Z.; Wang, N.; Han, S.; Wang, D.; Mo, S.; Yu, L.; Huang, H.; Tsui, K.; Shen, J.; Chen, J. Dietary compound isoliquiritigenin inhibits breast cancer neoangiogenesis via VEGF/VEGFR-2 signaling pathway. PLoS One, 2013, 8(7)e68566
[http://dx.doi.org/10.1371/journal.pone.0068566] [PMID: 23861918]
[87]
Xie, S.R.; Wang, Y.; Liu, C.W.; Luo, K.; Cai, Y.Q. Liquiritigenin inhibits serum-induced HIF-1α and VEGF expression via the AKT/mTOR-p70S6K signalling pathway in HeLa cells. Phytother. Res., 2012, 26(8), 1133-1141.
[http://dx.doi.org/10.1002/ptr.3696] [PMID: 22170854]
[88]
Mohamed, E.A.; Abu Hashim, I.I.; Yusif, R.M.; Shaaban, A.A.A.; El-Sheakh, A.R.; Hamed, M.F.; Badria, F.A.E. Polymeric micelles for potentiated antiulcer and anticancer activities of naringin. Int. J. Nanomedicine, 2018, 13, 1009-1027.
[http://dx.doi.org/10.2147/IJN.S154325] [PMID: 29497294]
[89]
Bharti, S.; Rani, N.; Krishnamurthy, B.; Arya, D.S. Preclinical evidence for the pharmacological actions of naringin: a review. Planta Med., 2014, 80(6), 437-451.
[http://dx.doi.org/10.1055/s-0034-1368351] [PMID: 24710903]
[90]
Guo, B.; Zhang, Y.; Hui, Q.; Wang, H.; Tao, K. Naringin suppresses the metabolism of A375 cells by inhibiting the phosphorylation of c-Src. Tumour Biol., 2016, 37(3), 3841-3850.
[http://dx.doi.org/10.1007/s13277-015-4235-z] [PMID: 26476533]
[91]
Wang, Z.; Wang, D.; Han, S.; Wang, N.; Mo, F.; Loo, T.Y.; Shen, J.; Huang, H.; Chen, J. Bioactivity-guided identification and cell signaling technology to delineate the lactate dehydrogenase A inhibition effects of Spatholobus suberectus on breast cancer. PLoS One, 2013, 8(2)e56631
[http://dx.doi.org/10.1371/journal.pone.0056631] [PMID: 23457597]
[92]
Luo, H.Q.; Xu, M.; Zhong, W.T.; Cui, Z.Y.; Liu, F.M.; Zhou, K.Y.; Li, X.Y. EGCG decreases the expression of HIF-1α and VEGF and cell growth in MCF-7 breast cancer cells. J. BUON, 2014, 19(2), 435-439.
[PMID: 24965403]
[93]
Li, X.; Feng, Y.; Liu, J.; Feng, X.; Zhou, K.; Tang, X. Epigallocatechin-3-gallate inhibits IGF-I-stimulated lung cancer angiogenesis through downregulation of HIF-1α and VEGF expression. J. Nutrigenet. Nutrigenomics, 2013, 6(3), 169-178.
[http://dx.doi.org/10.1159/000354402] [PMID: 24008975]
[94]
He, L.; Zhang, E.; Shi, J.; Li, X.; Zhou, K.; Zhang, Q.; Le, A.D.; Tang, X. (-)-Epigallocatechin-3-gallate inhibits human papillomavirus (HPV)-16 oncoprotein-induced angiogenesis in non-small cell lung cancer cells by targeting HIF-1α. Cancer Chemother. Pharmacol., 2013, 71(3), 713-725.
[http://dx.doi.org/10.1007/s00280-012-2063-z] [PMID: 23292117]
[95]
Tang, X.D.; Zhou, X.; Zhang, Q.Z.; Le, A.D.; Zhou, K.Y. Effects of green tea extract on expression of human papillomavirus type 16 oncoproteins-induced hypoxia-inducible factor-1alpha and vascular endothelial growth factor in human cervical carcinoma cells. Zhonghua Yi Xue Za Zhi, 2008, 88(40), 2872-2877.
[PMID: 19080502]
[96]
Zhu, Z.; Wang, Y.; Liu, Z.; Wang, F.; Zhao, Q. Inhibitory effects of epigallocatechin-3-gallate on cell proliferation and the expression of HIF-1α and P-gp in the human pancreatic carcinoma cell line PANC-1. Oncol. Rep., 2012, 27(5), 1567-1572.
[http://dx.doi.org/10.3892/or.2012.1697] [PMID: 22367292]
[97]
Zhang, Q.; Tang, X.; Lu, Q.; Zhang, Z.; Rao, J.; Le, A.D. Green tea extract and (-)-epigallocatechin-3-gallate inhibit hypoxia- and serum-induced HIF-1alpha protein accumulation and VEGF expression in human cervical carcinoma and hepatoma cells. Mol. Cancer Ther., 2006, 5(5), 1227-1238.
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0490] [PMID: 16731755]
[98]
Lu, J.; Zhang, K.; Chen, S.; Wen, W. Grape seed extract inhibits VEGF expression via reducing HIF-1alpha protein expression. Carcinogenesis, 2009, 30(4), 636-644.
[http://dx.doi.org/10.1093/carcin/bgp009] [PMID: 19131542]
[99]
Gao, Y.; Rankin, G.O.; Tu, Y.; Chen, Y.C. Theaflavin-3, 3′-digallate decreases human ovarian carcinoma OVCAR-3 cell-induced angiogenesis via Akt and Notch-1 pathways, not via MAPK pathways. Int. J. Oncol., 2016, 48(1), 281-292.
[http://dx.doi.org/10.3892/ijo.2015.3257] [PMID: 26648098]
[100]
Pal, H.C.; Sharma, S.; Strickland, L.R.; Agarwal, J.; Athar, M.; Elmets, C.A.; Afaq, F. Delphinidin reduces cell proliferation and induces apoptosis of non-small-cell lung cancer cells by targeting EGFR/VEGFR2 signaling pathways. PLoS One, 2013, 8(10)e77270
[http://dx.doi.org/10.1371/journal.pone.0077270] [PMID: 24124611]
[101]
Tsai, T.C.; Huang, H.P.; Chang, K.T.; Wang, C.J.; Chang, Y.C. Anthocyanins from roselle extract arrest cell cycle G2/M phase transition via ATM/Chk pathway in p53-deficient leukemia HL-60 cells. Environ. Toxicol., 2017, 32(4), 1290-1304.
[http://dx.doi.org/10.1002/tox.22324] [PMID: 27444805]
[102]
Martin, S.; Favot, L.; Matz, R.; Lugnier, C.; Andriantsitohaina, R. Delphinidin inhibits endothelial cell proliferation and cell cycle progression through a transient activation of ERK-1/-2. biochem Pharmacol, 2003, 65, 669-675.
[103]
Kim, M.H.; Jeong, Y.J.; Cho, H.J.; Hoe, H.S.; Park, K.K.; Park, Y.Y.; Choi, Y.H.; Kim, C.H.; Chang, H.W.; Park, Y.J.; Chung, I.K.; Chang, Y.C. Delphinidin inhibits angiogenesis through the suppression of HIF-1α and VEGF expression in A549 lung cancer cells. Oncol. Rep., 2017, 37(2), 777-784.
[http://dx.doi.org/10.3892/or.2016.5296] [PMID: 27959445]
[104]
Quintos, L.; Lee, I.A.; Kim, H.J.; Lim, J.S.; Park, J.; Sung, M.K.; Seo, Y.R.; Kim, J.S. Significance of p27 as potential biomarker for intracellular oxidative status. Nutr. Res. Pract., 2010, 4(5), 351-355.
[http://dx.doi.org/10.4162/nrp.2010.4.5.351] [PMID: 21103079]
[105]
Singh-Gupta, V.; Zhang, H.; Yunker, C.K.; Ahmad, Z.; Zwier, D.; Sarkar, F.H.; Hillman, G.G. Daidzein effect on hormone refractory prostate cancer in vitro and in vivo compared to genistein and soy extract: potentiation of radiotherapy. Pharm. Res., 2010, 27(6), 1115-1127.
[http://dx.doi.org/10.1007/s11095-010-0107-9] [PMID: 20309614]
[106]
Raffoul, J.J.; Banerjee, S.; Che, M.; Knoll, Z.E.; Doerge, D.R.; Abrams, J.; Kucuk, O.; Sarkar, F.H.; Hillman, G.G. Soy isoflavones enhance radiotherapy in a metastatic prostate cancer model. Int. J. Cancer, 2007, 120(11), 2491-2498.
[http://dx.doi.org/10.1002/ijc.22548] [PMID: 17304503]
[107]
Hillman, G.G.; Wang, Y.; Kucuk, O.; Che, M.; Doerge, D.R.; Yudelev, M.; Joiner, M.C.; Marples, B.; Forman, J.D.; Sarkar, F.H. Genistein potentiates inhibition of tumor growth by radiation in a prostate cancer orthotopic model. Mol. Cancer Ther., 2004, 3(10), 1271-1279.
[PMID: 15486194]
[108]
Singh-Gupta, V.; Zhang, H.; Banerjee, S.; Kong, D.; Raffoul, J.J.; Sarkar, F.H.; Hillman, G.G. Radiation-induced HIF-1alpha cell survival pathway is inhibited by soy isoflavones in prostate cancer cells. Int. J. Cancer, 2009, 124(7), 1675-1684.
[http://dx.doi.org/10.1002/ijc.24015] [PMID: 19101986]
[109]
Jiang, C.Q.; Fan, L.F.; Liu, Z.S.; Qian, Q.; Xia, D.; Diao, L.M.; He, Y.M.; Ai, Z.L. Expression levels and significance of hypoxia inducible factor-1 alpha and vascular endothelial growth factor in human colorectal adenocarcinoma. Chin. Med. J. (Engl.), 2004, 117(10), 1541-1546.
[PMID: 15498380]
[110]
Fan, L.F.; Diao, L.M.; Jiang, C.Q.; Tang, Z.J.; Xia, D.; Liu, M.Q.; Liu, Z.S.; Ai, Z.L. [Expression and pathobiological implication of hypoxia-inducible factor-1alpha in human colorectal carcinoma Zhonghua Bing Li Xue Za Zhi, 2004, 33(3), 242-246.
[PMID: 15256117]
[111]
Büchler, P.; Reber, H.A.; Büchler, M.W.; Friess, H.; Lavey, R.S.; Hines, O.J. Antiangiogenic activity of genistein in pancreatic carcinoma cells is mediated by the inhibition of hypoxia-inducible factor-1 and the down-regulation of VEGF gene expression. Cancer, 2004, 100(1), 201-210.
[http://dx.doi.org/10.1002/cncr.11873] [PMID: 14692041]
[112]
Li, G.Q.; Zhang, Y.; Shen, W.G.; Zhou, W.; Gao, N.; Gu, J. Inhibitory effect of genistein on hypoxia-inducible factor-1alpha expression induced by cobalt chloride in leukemia cell line K562. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 2008, 16(1), 38-43.
[PMID: 18315897]
[113]
Li, S.; Li, J.; Dai, W.; Zhang, Q.; Feng, J.; Wu, L.; Liu, T.; Yu, Q.; Xu, S.; Wang, W.; Lu, X.; Chen, K.; Xia, Y.; Lu, J.; Zhou, Y.; Fan, X.; Mo, W.; Xu, L.; Guo, C. Genistein suppresses aerobic glycolysis and induces hepatocellular carcinoma cell death. Br. J. Cancer, 2017, 117(10), 1518-1528.
[http://dx.doi.org/10.1038/bjc.2017.323] [PMID: 28926527]
[114]
Wang, G.L.; Jiang, B.H.; Semenza, G.L. Effect of protein kinase and phosphatase inhibitors on expression of hypoxia-inducible factor 1. Biochem. Biophys. Res. Commun., 1995, 216(2), 669-675.
[http://dx.doi.org/10.1006/bbrc.1995.2674] [PMID: 7488163]
[115]
Jain, A.; Lai, J.C.; Bhushan, A. Biochanin A inhibits endothelial cell functions and proangiogenic pathways: implications in glioma therapy. Anticancer Drugs, 2015, 26(3), 323-330.
[http://dx.doi.org/10.1097/CAD.0000000000000189] [PMID: 25501542]
[116]
Liu, Y.; Veena, C.K.; Morgan, J.B.; Mohammed, K.A.; Jekabsons, M.B.; Nagle, D.G.; Zhou, Y.D. Methylalpinumisoflavone inhibits hypoxia-inducible factor-1 (HIF-1) activation by simultaneously targeting multiple pathways. J. Biol. Chem., 2009, 284(9), 5859-5868.
[http://dx.doi.org/10.1074/jbc.M806744200] [PMID: 19091749]
[117]
Oh, S.H.; Woo, J.K.; Jin, Q.; Kang, H.J.; Jeong, J.W.; Kim, K.W.; Hong, W.K.; Lee, H.Y. Identification of novel antiangiogenic anticancer activities of deguelin targeting hypoxia-inducible factor-1 alpha. Int. J. Cancer, 2008, 122(1), 5-14.
[http://dx.doi.org/10.1002/ijc.23075] [PMID: 17764071]
[118]
Wang, Y.; Ma, W.; Zheng, W. Deguelin, a novel anti-tumorigenic agent targeting apoptosis, cell cycle arrest and anti-angiogenesis for cancer chemoprevention. Mol. Clin. Oncol., 2013, 1(2), 215-219.
[http://dx.doi.org/10.3892/mco.2012.36] [PMID: 24649149]
[119]
Oh, S.H.; Woo, J.K.; Yazici, Y.D.; Myers, J.N.; Kim, W.Y.; Jin, Q.; Hong, S.S.; Park, H.J.; Suh, Y.G.; Kim, K.W.; Hong, W.K.; Lee, H.Y. Structural basis for depletion of heat shock protein 90 client proteins by deguelin. J. Natl. Cancer Inst., 2007, 99(12), 949-961.
[http://dx.doi.org/10.1093/jnci/djm007] [PMID: 17565155]
[120]
Kim, W.Y.; Oh, S.H.; Woo, J.K.; Hong, W.K.; Lee, H.Y. Targeting heat shock protein 90 overrides the resistance of lung cancer cells by blocking radiation-induced stabilization of hypoxia-inducible factor-1alpha. Cancer Res., 2009, 69(4), 1624-1632.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-0505] [PMID: 19176399]
[121]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: the next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[122]
Semenza, G.L. Regulation of metabolism by hypoxia-inducible factor 1. Cold Spring Harb. Symp. Quant. Biol., 2011, 76, 347-353.
[http://dx.doi.org/10.1101/sqb.2011.76.010678] [PMID: 21785006]
[123]
Harris, S.R.; Panaro, N.J.; Thorgeirsson, U.P. Oxidative stress contributes to the anti-proliferative effects of flavone acetic acid on endothelial cells. Anticancer Res., 2000, 20(4), 2249-2254.
[PMID: 10953282]
[124]
Conesa-Milián, L.; Falomir, E.; Murga, J.; Carda, M.; Meyen, E.; Liekens, S.; Alberto Marco, J. Synthesis and biological evaluation of carbamates derived from aminocombretastatin A-4 as vascular disrupting agents. Eur. J. Med. Chem., 2018, 147, 183-193.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.058] [PMID: 29432949]
[125]
Mita, M.M.; Sargsyan, L.; Mita, A.C.; Spear, M. Vascular-disrupting agents in oncology. Expert Opin. Investig. Drugs, 2013, 22(3), 317-328.
[http://dx.doi.org/10.1517/13543784.2013.759557] [PMID: 23316880]
[126]
Pérez-Pérez, M.J.; Priego, E.M.; Bueno, O.; Martins, M.S.; Canela, M.D.; Liekens, S. Blocking blood flow to solid tumors by destabilizing tubulin: an approach to targeting tumor growth. J. Med. Chem., 2016, 59(19), 8685-8711.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00463] [PMID: 27348355]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy