Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Comparison of Profiling of Hairy Root of Two Tibetan Medicinal Plants Przewalskia tangutica Maxim. and Anisodus tanguticus Maxim

Author(s): Tianxiang Lei, Huan Wang, Songling Li, Xiaojian Cai, Shilong Chen, Tingfeng Cheng, Jianwei Shen, Shengbo Shi and Dangwei Zhou*

Volume 21, Issue 6, 2020

Page: [516 - 527] Pages: 12

DOI: 10.2174/1389201020666191127125842

Price: $65

Abstract

Background: Tropane Alkaloids (TAs) are important drugs for curing many diseases in the medical industry.

Methods: To sustainably exploit TA resources in endangered traditional Tibetan herbs, the hairy root (HR) systems of Przewalskia tangutica Maxim. and Anisodus tanguticus Maxim. were compared under the same culture conditions.

Results: The results indicated that both the Agrobacterium rhizogenes strains and explants affected the HR induction frequency, MSU440, A4 and LBA9402 strains could induce hairy roots following infection of cotyledon and hypocotyl of A. tanguticus while LBA9402 could not induce HR on either explants of P. tangutica. The efficiency of LBA9402 was higher than A4 and MSU440 on A. tanguticus and A4 was better strain than MSU440 on P. tangutica. The hypocotyl explant was more suitable for P.tangutica and cotyledon explant was better for A.tangutica with a transformation frequency of 33.3% (P. tangutica) and 82.5% (A. tanguticus), respectively. In a flask reactor system, both the growth curves of HR for two species both appeared to be “S” curve; however, the HR of P. tangutica grew more rapidly than that of A. tanguticus, and the latter accumulated more biomass than the former. As the culture volume increased, the HR proliferation coefficient of both the species increased. HPLC analysis results showed that the content of TAs in the HR of P. tangutica was 257.24mg/100g·DW, which was more than that of A. tanguticus HR (251.08mg/100g·DW), and the anisodamine in the Pt- HR was significantly higher than that in At-HR. Moreover, tropane alkaloids in the HR of the two species were all significantly higher than that of the roots of aseptic seedlings.

Conclusion: Our results suggest that HR of P. tangutica and A. tanguticus both could provide a useful platform for sustainable utilization of two Tibetan medicinal plants in the Qinghai-Tibetan Plateau in the future.

Keywords: Przewalskia tangutica Maxim., Anisodus tanguticus Maxim., Agrobacterium rhizogenes, growth curve, hairy roots, tropane alkaloids.

Graphical Abstract
[1]
Zhang, L.; Ding, R.; Chai, Y.; Bonfill, M.; Moyano, E.; Oksman-Caldentey, K-M.; Xu, T.; Pi, Y.; Wang, Z.; Zhang, H.; Kai, G.; Liao, Z.; Sun, X.; Tang, K. Engineering tropane biosynthetic pathway in Hyoscyamus niger hairy root cultures. Proc. Natl. Acad. Sci. USA, 2004, 101(17), 6786-6791.
[http://dx.doi.org/10.1073/pnas.0401391101] [PMID: 15084741]
[2]
Zayed, R.; Wink, M. Induction of tropane alkaloid formation in transformed root cultures of Brugmansia suaveolens (Solanaceae). Z. Natforsch. C J. Biosci., 2004, 59(11-12), 863-867.
[http://dx.doi.org/10.1515/znc-2004-11-1216] [PMID: 15666547]
[3]
Kai, G.; Zhang, Y.; Chen, J.; Li, L.; Yan, X.; Zhang, R.; Liao, P.; Lu, X.; Wang, W.; Zhou, G. Molecular characterization and expression analysis of two distinct putrescine N-methyltransferases from roots of Anisodus acutangulus. Physiol. Plant., 2009, 135(2), 121-129.
[http://dx.doi.org/10.1111/j.1399-3054.2008.01178.x] [PMID: 19055544]
[4]
Hashimoto, T.; Yun, D.J.; Yamada, Y. Production of tropane alkaloids in genetically engineered root cultures. Phytochemistry, 1993, 32, 713-718.
[http://dx.doi.org/10.1016/S0031-9422(00)95159-8]
[5]
Oksman-Caldentey, K.M. Tropane and nicotine alkaloid biosynthesis-novel approaches towards biotechnological production of plant-derived pharmaceuticals. Curr. Pharm. Biotechnol., 2007, 8(4), 203-210.
[http://dx.doi.org/10.2174/138920107781387401] [PMID: 17691989]
[6]
Wang, X.; Chen, M.; Yang, C.; Liu, X.; Zhang, L.; Lan, X.; Tang, K.; Liao, Z. Enhancing the scopolamine production in transgenic plants of Atropa belladonna by overexpressing pmt and h6h genes. Physiol. Plant., 2011, 143(4), 309-315.
[http://dx.doi.org/10.1111/j.1399-3054.2011.01506.x] [PMID: 21883248]
[7]
Jouhikainen, K.; Lindgren, L.; Jokelainen, T.; Hiltunen, R.; Teeri, T.H.; Oksman-Caldentey, K.M. Enhancement of scopolamine production in Hyoscyamus muticus L. hairy root cultures by genetic engineering. Planta, 1999, 208, 545-551.
[http://dx.doi.org/10.1007/s004250050592]
[8]
Cardillo, A.B.; Otálvaro, A.Á.M.; Busto, V.D.; Talou, J.R.; Velásquez, L.M.E.; Giulietti, A.M. Scopolamine, anisodamine and hyoscyamine production by Brugmansia candida hairy root cultures in bioreactors. Process Biochem., 2010, 45, 1577-1581.
[http://dx.doi.org/10.1016/j.procbio.2010.06.002]
[9]
Besher, S.; Al-Ammouri, Y.; Murshed, R. Production of tropan alkaloids in the in vitro and callus cultures of Hyoscyamus aureus and their genetic stability assessment using ISSR markers. Physiol. Mol. Biol. Plants, 2014, 20(3), 343-349.
[http://dx.doi.org/10.1007/s12298-014-0242-6] [PMID: 25049461]
[10]
Li, L.; Wang, J.; Wang, W.; Lu, Y.; Wang, Y.; Zhou, G.; Kai, G.Y. Optimization of induction and culture conditions and tropane alkaloid production in hairy roots of Anisodus acutangulus. Biotechnol Bioproc E., 2008, 13, 606-612.
[http://dx.doi.org/10.1007/s12257-008-0035-2]
[11]
Yang, C.; Chen, M.; Zeng, L.; Zhang, L.; Liu, X.X.; Lan, X.; Liao, Z. Improvement of tropane alkaloids production in hairy root cultures of Atropa belladonna by overexpressing pmt and h6h genes. Plant Omics J., 2011, 4, 29-33.
[12]
Dehghan, E.; Häkkinen, S.T.; Oksman-Caldentey, K.M.; Ahmadi, F.S. Production of tropane alkaloids in diploid and tetraploid plants and in vitro hairy root cultures of Egyptian henbane (Hyoscyamus muticus L.). Plant Cell Tiss. Org. Cul., 2012, 110, 35-44.
[http://dx.doi.org/10.1007/s11240-012-0127-8]
[13]
Murthy, H.N.E.J.; Lee, E.J.; Paek, K.Y. Production of secondary metabolites from cell and organ cultures: Strategies and approaches for biomass improvement and metabolite accumulation. Plant Cell Tissue Organ Cult., 2014, 118, 1-16.
[http://dx.doi.org/10.1007/s11240-014-0467-7]
[14]
Young, J.M.; Kuykendall, L.D.; Martínez-Romero, E.; Kerr, A.; Sawada, H. A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. vitis. Int. J. Syst. Evol. Microbiol., 2001, 51(Pt 1), 89-103.
[http://dx.doi.org/10.1099/00207713-51-1-89] [PMID: 11211278]
[15]
Bahramnejad, B.; Naji, M.; Bose, R.; Jha, S. A critical review on use of Agrobacterium rhizogenes and their associated binary vectors for plant transformation. Biotechnol. Adv., 2019, 37(7)107405
[http://dx.doi.org/10.1016/j.biotechadv.2019.06.004] [PMID: 31185263]
[16]
Cardarelli, M.; Spanò, L.; De Paolis, A.; Mauro, M.L.; Vitali, G.; Costantino, P. Identification of the genetic locus responsible for non-polar root induction by Agrobacterium rhizogenes 1855. Plant Mol. Biol., 1985, 5(6), 385-391.
[http://dx.doi.org/10.1007/BF00037559] [PMID: 24306992]
[17]
Cardarelli, M.; Mariotti, D.; Pomponi, M.; Spanò, L.; Capone, I.; Costantino, P. Agrobacterium rhizogenes T-DNA genes capable of inducing hairy root phenotype. Mol. Gen. Genet., 1987, 209(3), 475-480.
[http://dx.doi.org/10.1007/BF00331152] [PMID: 17193709]
[18]
Hansen, G.; Larribe, M.; Vaubert, D.; Tempé, J.; Biermann, B.J.; Montoya, A.L.; Chilton, M-D.; Brevet, J. Agrobacterium rhizogenes pRi8196 T-DNA: mapping and DNA sequence of functions involved in mannopine synthesis and hairy root differentiation. Proc. Natl. Acad. Sci. USA, 1991, 88(17), 7763-7767.
[http://dx.doi.org/10.1073/pnas.88.17.7763] [PMID: 1909028]
[19]
Jouanin, L. Restriction map of an agropine-type Ri plasmid and its homologies with Ti plasmids. Plasmid, 1984, 12(2), 91-102.
[http://dx.doi.org/10.1016/0147-619X(84)90055-6] [PMID: 6095353]
[20]
Hosseini, S.M.; Bahramnejad, B.; Douleti Baneh, H.; Emamifar, A.; Goodwin, P.H. Hairy root culture optimization and resveratrol production from Vitis vinifera subsp. sylvesteris. World J. Microbiol. Biotechnol., 2017, 33(4), 67.
[http://dx.doi.org/10.1007/s11274-017-2235-4] [PMID: 28271384]
[21]
Mukherjee, S.; Ghosh, B.; Jha, T.B.; Jha, S. Genetic transformation of Artemisia annua by Agrobacterium rhizogenes. Indian J. Exp. Biol., 1995, 33, 868-871.
[22]
Petit, A.; David, C.; Dahl, G.A.; Ellis, J.G.; Guyon, P.; Casse-Delbart, F.; Tempé, J. Further extension of the opine concept: plasmids in Agrobacterium rhizogenes cooperate for opine degradation. Mol. Gen. Genet., 1983, 190, 204-214.
[http://dx.doi.org/10.1007/BF00330641]
[23]
Gong, Z.; Song, X.; Chen, G.; Zhu, J.; Yu, G.; Zou, H. Molecular studies of the Medicago truncatula MtAnn3 gene involved in root hair deformation. Chin. Sci. Bull., 2012, 57, 1803-1809.
[http://dx.doi.org/10.1007/s11434-011-4937-6]
[24]
Sonti, R.V.; Chiurazzi, M.; Wong, D.; Davies, C.S.; Harlow, G.R.; Mount, D.W.; Signer, E.R. Arabidopsis mutants deficient in T-DNA integration. Proc. Natl. Acad. Sci. USA, 1995, 92(25), 11786-11790.
[http://dx.doi.org/10.1073/pnas.92.25.11786] [PMID: 8524849]
[25]
Yoshikawa, T.; Furuya, T. Saponin production by cultures of Panax ginseng transformed with Agrobacterium rhizogenes. Plant Cell Rep., 1987, 6(6), 449-453.
[PMID: 24248930]
[26]
Zhang, H.L.; Xue, S.H.; Pu, F.; Tiwari, R.K.; Wang, X.Y. Establishment of hairy root lines and analysis of gentiopicroside in the medicinal plant Gentiana macrophylla. Russ. J. Plant Physiol., 2010, 57, 110-117.
[http://dx.doi.org/10.1134/S1021443710010152]
[27]
Christen, P.; Roberts, M.F.; Phillipson, J.D.; Evans, W.C. High-yield production of tropane alkaloids by hairy-root cultures of aDatura candida hybrid. Plant Cell Rep., 1989, 8(2), 75-77.
[http://dx.doi.org/10.1007/BF00716842] [PMID: 24232988]
[28]
Xiao, P.; Xia, G.; He, L. The occurrence of some important tropane alkakoids in Chinese solanaceous plants. Acta Bot. Sin., 1973, 15, 187-194.
[29]
Yang, Y.C.; Ho, T.N.; Lu, S.L.; Huang, R.F.; Wang, Z.X. Tibetan medicines; Qinghai People’s Press: Xining, China, 1991.
[30]
Xu, W.H.; Chen, G.C.; Zhou, G.Y.; Sun, J.; Lu, X.F. Rapid propagation in a Tibetan medicine-Przewalskia tangutica. Chin. Tradit. Herbal Drugs, 2009, 40, 297-298.
[31]
Lei, T.; Cai, X.; Zhou, D.; Li, S.; Wang, H.; Shen, J. Preliminary establishment of in vitro seed aseptic culture of three Solanaceae plant. Zhong Yao Cai, 2015, 38, 447-450.
[32]
Kamada, H.; Okamura, N.; Satake, M.; Harada, H.; Shimomura, K. Alkaloid production by hairy root cultures in Atropa belladonna. Plant Cell Rep., 1986, 5(4), 239-242.
[http://dx.doi.org/10.1007/BF00269811] [PMID: 24248236]
[33]
Zhang, X.; Wang, H. The variation of the contents of four tropane akaloids in Anisodus tanguticus. Acta Bot. Boreali-occid. Sin., 2001, 22, 630-634.
[34]
Wang, H.L.; Pan, L.; Zhang, X. Quantitative analysis of three kinds of tropane alkalids in Hyoscyamus niger L. and Przewalskia tangutica Maxim. by HPLC. Xibei Yaoxue Zazhi, 2002, 17, 9-10.
[35]
Liu, J.; Tian, B. Origin, evolution, and systematics of Himalaya endemic genera. Newslett. Himalayan Bot., 2007, 2007(40), 20-27.
[36]
Swain, S.S.; Sahu, L.; Pal, A.; Barik, D.P.; Pradhan, C.; Chand, P.K. Hairy root cultures of butterfly pea (Clitoria ternatea L.): Agrobacterium × plant factors influencing transformation. World J. Microbiol. Biotechnol., 2012, 28(2), 729-739.
[http://dx.doi.org/10.1007/s11274-011-0869-1] [PMID: 22806869]
[37]
Bansal, M.; Kumar, A.A.; Reddy, M.S. Influence of Agrobacterium rhizogenes strains on hairy root induction and ‘bacoside A’production from Bacopa monnieri (L.). Wettst. Acta Physiol. Plant, 2014, 36, 2793-2801.
[http://dx.doi.org/10.1007/s11738-014-1650-5]
[38]
Tiwari, R.K.; Trivedi, M.; Guang, Z.C.; Guo, G.Q.; Zheng, G.C. Genetic transformation of Gentiana macrophylla with Agrobacterium rhizogenes: growth and production of secoiridoid glucoside gentiopicroside in transformed hairy root cultures. Plant Cell Rep., 2007, 26(2), 199-210.
[http://dx.doi.org/10.1007/s00299-006-0236-0] [PMID: 16972092]
[39]
Pranati, N.; Mukesh, S.; Sailesh, N.B.T.; Manikkannan, T.; Pradeep, K.C. High-performance liqiud chromatographic quantification of Plumbago zeylanica L.: Inter-clonal variation in biomass growth and plumbagin production. Appl. Biochem. Biotechnol., 2015, 175, 1745-1770.
[http://dx.doi.org/10.1007/s12010-014-1392-2] [PMID: 25424284]
[40]
Farkya, S.; Bisaria, V.S. Exogenous hormones affecting morphology and biosynthetic potential of hairy root line (LYR2i) of Linum album. J. Biosci. Bioeng., 2008, 105(2), 140-146.
[http://dx.doi.org/10.1263/jbb.105.140] [PMID: 18343341]
[41]
Tisserant, L.P.; Aziz, A.; Jullian, N.; Jeandet, P.; Clément, C.; Courot, E.; Boitel-Conti, M. Enhanced stilbene production and excretion in Vitis vinifera cv Pinot noir hairy root cultures. Molecules, 2016, 21(12)E1703
[http://dx.doi.org/10.3390/molecules21121703] [PMID: 27973421]
[42]
Ooi, C.T.; Syahida, A.; Stanslas, J.; Maziah, M. Efficiency of different Agrobacterium rhizogenes strains on hairy roots induction in Solanum mammosum. World J. Microbiol. Biotechnol., 2013, 29(3), 421-430.
[http://dx.doi.org/10.1007/s11274-012-1194-z] [PMID: 23090845]
[43]
Christensen, B.; Muller, R. The use of Agrobacterium rhizogenes and its rol-genes for quality improvement in ornamentals. Eur. J. Hortic. Sci., 2009, 74, 275-287.
[44]
Patra, N.; Srivastava, A.K. Enhanced production of artemisinin by hairy root cultivation of Artemisia annua in a modified stirred tank reactor. Appl. Biochem. Biotechnol., 2014, 174(6), 2209-2222.
[http://dx.doi.org/10.1007/s12010-014-1176-8] [PMID: 25172060]
[45]
Liu, C.Z.; Guo, C.; Wang, Y.C.; Ouyang, F. Effect of light irradiation on hairy root growth and artemisinin biosynthesis of Artemisia annua L. Process Biochem., 2002, 38, 581-585.
[http://dx.doi.org/10.1016/S0032-9592(02)00165-6]
[46]
Shin, K.S.; Murthy, H.N.; Heo, J.W.; Paek, K.Y. Induction of betalain pigmentation in hairy roots of red beet under different radiation sources. Biol. Plant., 2003, 47, 149-152.
[http://dx.doi.org/10.1023/A:1027313805930]
[47]
Kang, S.M.; Jung, H.Y.; Kang, Y.M.; Yun, D.J.; Bahk, J.D.; Yang, J.K.; Choi, M.S. Effects of methyl jasmonate and salicylic acid on the production of tropane alkaloids and the expression of PMT and H6H in adventitious root cultures of Scopolia parviflora. Plant Sci., 2004, 166, 745-751.
[http://dx.doi.org/10.1016/j.plantsci.2003.11.022]
[48]
Spollansky, T.C.; Pitta-Alvarez, S.I.; Giulietti, A.M. Effect of jasmonic acid and aluminium on production of tropane alkaloids in hairy root cultures of Brugmansia candida. Electron. J. Biotechnol., 2000, 3, 31-32.
[49]
Qin, B.; Ma, L.; Wang, Y.; Chen, M.; Lan, X.; Wu, N.; Liao, Z. Effects of acetylsalicylic acid and UV-B on gene expression and tropane alkaloid biosynthesis in hairy root cultures of Anisodus luridus. Plant Cell Tissue Organ Cult., 2014, 117, 483-490.
[http://dx.doi.org/10.1007/s11240-014-0454-z]
[50]
Mohn, T.; Potterat, O.; Hamburger, M. Quantification of active principles and pigments in leaf extracts of Isatis tinctoria by HPLC/UV/MS. Planta Med., 2007, 73(2), 151-156.
[http://dx.doi.org/10.1055/s-2007-967105] [PMID: 17236114]
[51]
Mohn, T.; Suter, K.; Hamburger, M. Seasonal changes and effect of harvest on glucosinolates in Isatis leaves. Planta Med., 2008, 74(5), 582-587.
[http://dx.doi.org/10.1055/s-2008-1074504] [PMID: 18543155]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy