Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Inter-band Transition in Citrate Capped Marks Dodecahedral Colloidal Gold Nanoparticles

Author(s): Debasish Aich, Pijus Kanti Samanta, Satyajit Saha and Tapanendu Kamilya*

Volume 16, Issue 5, 2020

Page: [829 - 836] Pages: 8

DOI: 10.2174/1573413715666191127115509

Price: $65

Abstract

Background: Optical properties of citrate capped dodecahedral gold nanoparticles have immense applications in a large variety of fields. The interband transition has a role in determining the optical behaviour of gold nanoparticles. Interband transition in citrate capped colloidal gold nanoparticles in the size range above ~5 nm has been left unattended for a long time.

Objective: The present work is aimed at studying interband transition in citrate capped colloidal gold nanoparticles of size between ~5 nm and several tens of nanometres.

Methods: Turkevich method and modified Brust method were used to prepare citrate capped colloidal gold nanoparticles. Transmission electron microscopy was used to determine their size and shape and their formation was explained with simulated figure obtained by Gnuplot programming. Interband transition was studied with the help of UV-Visible absorption spectroscopy.

Results: Dodecahedral citrate capped colloidal gold nanoparticles of mean diameters 31.5 nm, 12.87 nm and 4.69 nm with LSPR peak positions at 528 nm, 524 nm and 509 nm were prepared. The interband peak of nanoparticles of all three sizes was found to be located at about 260 nm.

Conclusion: Interband transition between Fermi level and 5d bands of the larger density of states in citrate capped dodecahedral colloidal gold nanoparticles of size above ~5nm leads to absorbance peak at ~260 nm, indicating a gap of ~4.77 eV between the Fermi level and closely spaced 5d bands. For smaller nanoparticles, absorption due to interband transition becomes more prominent relative to surface plasmon resonance absorption.

Keywords: Gold nanoparticles, inter-band transition, pentagonal, marks dodecahedrons, quantum confinement, surface plasmon resonance absorption.

Graphical Abstract
[1]
Gholipourmalekabadi, M.; Mobaraki, M.; Ghaffari, M.; Zarebkohan, A.; Omrani, V.F.; Urbanska, A.M.; Seifalian, A. Targeted drug delivery based on gold nanoparticle derivatives. Curr. Pharm. Des., 2017, 23(20), 2918-2929.
[http://dx.doi.org/10.2174/1381612823666170419105413] [PMID: 28425863]
[2]
Matthew, M.M.; Doiron, A.L. Gold nanoparticles as X-Ray, CT, and multimodal imaging contrast agents: Formulation, targeting, and methodology. J. Nanomater., 2018, 2018, 5837276.
[http://dx.doi.org/10.1155/2018/5837276]
[3]
Saha, K.; Agasti, S.S.; Kim, C.; Li, X.; Rotello, V.M. Gold nanoparticles in chemical and biological sensing. Chem. Rev., 2012, 112(5), 2739-2779.
[http://dx.doi.org/10.1021/cr2001178] [PMID: 22295941]
[4]
Sheikholeslami, M.; Haq, R.; Shafee, A.; Li, Z.; Elaraki, Y.G.; Tlili, I. Heat transfer simulation of heat storage unit with nanoparticles and fins through a heat exchanger. Int. J. Heat Mass Transf., 2019, 135, 470-478.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2019.02.003]
[5]
Sheikholeslami, M.; Gerdroodbary, M.B.; Moradi, R.; Shafee, A.; Li, Z. Application of Neural network for estimation of heat transfer treatment of Al2O3-H2O nanofluid through a channel. Comput. Methods Appl. Mech. Eng., 2019, 344, 1-12.
[http://dx.doi.org/10.1016/j.cma.2018.09.025]
[6]
Moreira, L.M.; Carvalho, E.A.; Bell, M.J.V.; Anjos, V.; Sant’Ana, A.C.; Alves, A.P.P.; Fragneaud, B.; Sena, L.A.; Archanjo, B.S.; Achete, C.A. Thermo-optical properties of silver and gold nanofluids. J. Therm. Anal. Calorim., 2013, 114, 557-564.
[http://dx.doi.org/10.1007/s10973-013-3021-7]
[7]
Sheikholeslami, M.; Arabkoohsar, A.; Khan, I.; Shafee, A.; Li, Z. Impact of Lorentz forces on Fe3O4-water ferrofluid entropy and exergy treatment within a permeable semi annulus. J. Clean. Prod., 2019, 221, 885-898.
[http://dx.doi.org/10.1016/j.jclepro.2019.02.075]
[8]
Sheikholeslami, M.; Shafee, A.; Zareei, A.; Haq, R.; Li, Z. Heat transfer of magnetic nanoparticles through porous media including exergy analysis. J. Mol. Liq., 2019, 279, 719-732.
[http://dx.doi.org/10.1016/j.molliq.2019.01.128]
[9]
Frederix, F.; Friedt, J-M.; Choi, K-H.; Laureyn, W.; Campitelli, A.; Mondelaers, D.; Maes, G.; Borghs, G. Biosensing based on light absorption of nanoscaled gold and silver particles. Anal. Chem., 2003, 75(24), 6894-6900.
[http://dx.doi.org/10.1021/ac0346609] [PMID: 14670050]
[10]
Kreibig, U.; Vollmer, M. Optical Properties of Metal Clusters, Springer Series in Materials Science. Vol. 25; Springer-Verlag: Heidelberg, Germany, 1995.
[http://dx.doi.org/10.1007/978-3-662-09109-8]
[11]
Dulkeith, E.; Niedereichholz, T.; Klar, T.A.; Feldmann, J. Plasmon emission in photoexcited gold nanoparticles. Phys. Rev. B Condens. Matter Mater. Phys., 2004, 70, 205424.
[http://dx.doi.org/10.1103/PhysRevB.70.205424]
[12]
Shahbazyan, T.V. Perakis, I.E.; Bigot, J-Y. Size-dependent surface plasmon dynamics in metal nanoparticles. Phys. Rev. Lett., 1998, 81, 3120-3123.
[http://dx.doi.org/10.1103/PhysRevLett.81.3120]
[13]
Zhang, X.; Huang, C.; Wang, M.; Huang, P.; He, X.; Wei, Z. Transient localized surface plasmon induced by femtosecond interband excitation in gold nanoparticles. Sci. Rep., 2018, 8(1), 10499.
[http://dx.doi.org/10.1038/s41598-018-28909-6] [PMID: 30002475]
[14]
Zargar, B.; Hatamie, A. Localized surface plasmon resonance of gold nanoparticles as colorimetric probes for determination of Isoniazid in pharmacological formulation. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2013, 106, 185-189.
[http://dx.doi.org/10.1016/j.saa.2013.01.003] [PMID: 23380146]
[15]
Jensen, T.R.; Malinsky, M.D.; Haynes, C.L.; Van Duyne, R.P. Nanosphere lithography: Tunable localized surface plasmon resonance spectra of silver nanoparticles. J. Phys. Chem. B, 2000, 104, 10549-10556.
[http://dx.doi.org/10.1021/jp002435e]
[16]
Sherry, L.J.; Chang, S-H.; Schatz, G.C.; Van Duyne, R.P.; Wiley, B.J.; Xia, Y. Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Lett., 2005, 5(10), 2034-2038.
[http://dx.doi.org/10.1021/nl0515753] [PMID: 16218733]
[17]
Shahbazyan, T.V.; Perakis, I.E. Surface collective excitations in ultrafast pump-probe spectroscopy of metal nanoparticles. Chem. Phys., 2000, 251, 37-49.
[http://dx.doi.org/10.1016/S0301-0104(99)00311-0]
[18]
Derkachova, A.; Kolwas, K.; Demchenko, I. Dielectric function for gold in plasmonics applications: size dependence of plasmon resonance frequencies and damping rates for nanospheres. Plasmonics, 2016, 11, 941-951.
[http://dx.doi.org/10.1007/s11468-015-0128-7] [PMID: 27340380]
[19]
Ramchandani, M.G. Energy band structure of gold. J. Phys. C Solid State Phys., 1970, 3, S1-S9.
[http://dx.doi.org/10.1088/0022-3719/3/1S/301]
[20]
Hajisalem, G.; Hore, D.K.; Gordon, R. Interband transition enhanced third harmonic generation from nanoplasmonic gold. Opt. Mater. Express, 2015, 5, 2217-2224.
[http://dx.doi.org/10.1364/OME.5.002217]
[21]
Kiyonaga, T.; Fujii, M.; Akita, T.; Kobayashi, H.; Tada, H. Size-dependence of Fermi energy of gold nanoparticles loaded on titanium(iv) dioxide at photostationary state. Phys. Chem. Chem. Phys., 2008, 10(43), 6553-6561.
[http://dx.doi.org/10.1039/b809681c] [PMID: 18979040]
[22]
Balamurugan, B.; Maruyama, T. Evidence of an enhanced interband absorption in Au nanoparticles: Size dependent electronic structure and optical properties. Appl. Phys. Lett., 2005, 87, 143105.
[http://dx.doi.org/10.1063/1.2077834]
[23]
Alvarez, M.M.; Khoury, J.T.; Schaaff, T.G.; Shafigullin, M.N.; Vezmar, I.; Whetten, R.L. Optical absorption spectra of nanocrystal gold molecules. J. Phys. Chem. B, 1997, 101, 3706-3712.
[http://dx.doi.org/10.1021/jp962922n]
[24]
Balamurugan, B.; Maruyama, T. Size-modified d bands and associated interband absorption of Ag nanoparticles. J. Appl. Phys., 2007, 102, 034306.
[http://dx.doi.org/10.1063/1.2767837]
[25]
See, K.C.; Spicer, J.B.; Brupbacher, J.; Zhang, D.; Vargo, T.G. Modeling interband transitions in silver nanoparticle-fluoropolymer composites. J. Phys. Chem. B, 2005, 109(7), 2693-2698.
[http://dx.doi.org/10.1021/jp046687h] [PMID: 16851276]
[26]
Voisin, C.; Christofilos, D.; Vallee, F.; Prevel, B.; Cottancin, E.; Lerme, J.; Pellarin, M.; Broyer, M.; Broyer, M. Size-dependent electron-electron interactions in metal nanoparticles. Phys. Rev. Lett., 2000, 85(10), 2200-2203.
[http://dx.doi.org/10.1103/PhysRevLett.85.2200] [PMID: 10970497]
[27]
Sharma, A.; Singh, P.S.; Gathania, A.K. Synthesis and characterisation of dodecanerhiol-stabilised gold nanoparticles. Indian J. Pure Appl. Phy., 2014, 52, 93-100.
[28]
Li, X.; Tamada, K.; Baba, A.; Knoll, W.; Hara, M. Estimation of dielectric function of biotin-capped gold nanoparticles via signal enhancement on surface plasmon resonance. J. Phys. Chem. B, 2006, 110(32), 15755-15762.
[http://dx.doi.org/10.1021/jp062004h] [PMID: 16898722]
[29]
Turkevich, J.; Stevenson, P.C.; Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc., 1951, 11, 55-75.
[http://dx.doi.org/10.1039/df9511100055]
[30]
Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D.J.; Whyman, R. Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. J. Chem. Soc. Chem. Commun., 1994, 0, 801-802.
[http://dx.doi.org/10.1039/C39940000801]
[31]
Hostetler, M.J.; Wingate, J.E.; Zhong, C-J.; Harris, J.E.; Vachet, R.W.; Clark, M.R.; Londono, J.D.; Green, S.J.; Stokes, J.J.; Wignall, G.D.; Glish, G.L.; Porter, M.D.; Evans, N.D.; Murray, R.W. Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: Core and monolayer properties as a function of core size. Langmuir, 1998, 14, 17-30.
[http://dx.doi.org/10.1021/la970588w]
[32]
Jana, N.R.; Gearheart, L.; Murphy, C.J. Seeding growth for size control of 5-40 nm diameter gold nanoparticles. Langmuir, 2001, 17, 6782-6786.
[http://dx.doi.org/10.1021/la0104323]
[33]
Ino, S. Stability of multiply-twinned particles. J. Phys. Soc. Jpn., 1969, 27, 941-953.
[http://dx.doi.org/10.1143/JPSJ.27.941]
[34]
Marks, L.D. Surface structure and energetics of multiply twinned particles. Philos. Mag. A Phys. Condens. Matter Defects Mech. Prop., 1984, 49, 81-93.
[http://dx.doi.org/10.1080/01418618408233431]
[35]
Muller, M.; Albe, K. Structural stability of multiply twinned FePt nanoparticles. Acta Mater., 2007, 55, 6617-6626.
[http://dx.doi.org/10.1016/j.actamat.2007.08.030]
[36]
Available from: www.gnuplotting.org [Accessed on: November 10, 2018]
[37]
Perenboom, J.A.A.J.; Wyder, P.; Meier, F. Electronic properties of small metallic particles. Phys. Rep., 1981, 78, 173-292.
[http://dx.doi.org/10.1016/0370-1573(81)90194-0]
[38]
Varnavski, O.; Ramakrishna, G.; Kim, J.; Lee, D.; Goodson, T. Critical size for the observation of quantum confinement in optically excited gold clusters. J. Am. Chem. Soc., 2010, 132(1), 16-17.
[http://dx.doi.org/10.1021/ja907984r] [PMID: 20000663]
[39]
Link, S.; El-Sayed, M.A. Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int. Rev. Phys. Chem., 2000, 19, 409-453.
[http://dx.doi.org/10.1080/01442350050034180]
[40]
Link, S.; El-Sayed, M.A. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B, 1999, 103, 8410-8426.
[http://dx.doi.org/10.1021/jp9917648]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy