Generic placeholder image

Drug Metabolism Letters

Editor-in-Chief

ISSN (Print): 1872-3128
ISSN (Online): 1874-0758

Research Article

Carbon-carbon Bond Cleavage Catalyzed by Human Cytochrome P450 Enzymes: α-ketol as the Key Intermediate Metabolite in Sequential Metabolism of Olanexidine

Author(s): Yiding Hu*, Yi Xiao, Zhesui Rao, Vasant Kumar, Hanlan Liu and Chuang Lu

Volume 14, Issue 1, 2021

Published on: 25 November, 2019

Page: [41 - 53] Pages: 13

DOI: 10.2174/1872312813666191125095818

Price: $65

Abstract

Background: Carbon-carbon bond cleavage of a saturated aliphatic moiety is rarely seen in xenobiotic metabolism. Olanexidine (Olanedine®), containing an n-octyl (C8) side chain, was mainly metabolized to various shortened side chain (C4 to C6) acid-containing metabolites in vivo in preclinical species. In liver microsomes and S9, the major metabolites of olanexidine were from multi-oxidation on its n-octyl (C8) side chain. However, the carbon-carbon bond cleavage mechanism of n-octyl (C8) side chain, and enzyme(s) responsible for its metabolism in human remained unknown.

Methods: A pair of regioisomers of α-ketol-containing C8 side chain olanexidine analogs (3,2-ketol olanexidine and 2,3-ketol olanexidine) were synthesized, followed by incubation in human liver microsomes, recombinant human cytochrome P450 enzymes or human hepatocytes, and subsequent metabolite identification using LC/UV/MS.

Results: Multiple shortened side chain (C4 to C6) metabolites were identified, including C4, C5 and C6- acid and C6-hydroxyl metabolites. Among 19 cytochrome P450 enzymes tested, CYP2D6, CYP3A4 and CYP3A5 were identified to catalyze carbon-carbon bond cleavage.

Conclusion: 3,2-ketol olanexidine and 2,3-ketol olanexidine were confirmed as the key intermediates in carbon-carbon bond cleavage. Its mechanism is proposed that a nucleophilic addition of iron-peroxo species, generated by CYP2D6 and CYP3A4/5, to the carbonyl group caused the carbon-carbon bond cleavage between the adjacent hydroxyl and ketone groups. As results, 2,3-ketol olanexidine formed a C6 side chain acid metabolite. While, 3,2-ketol olanexidine formed a C6 side chain aldehyde intermediate, which was either oxidized to a C6 side chain acid metabolite or reduced to a C6 side chain hydroxyl metabolite.

Keywords: Carbon-carbon bond cleavage, metabolism, cytochrome P450 enzyme, metabolic pathway, Olanexidine, ketol.

Graphical Abstract
[1]
Shikita, M.; Hall, P.F. The stoichiometry of the conversion of cholesterol and hydroxycholesterols to pregnenolone (3beta-hydroxypregn-5-en-20-one) catalysed by adrenal cytochrome P-450. Proc. Natl. Acad. Sci. USA, 1974, 71(4), 1441-1445.
[http://dx.doi.org/10.1073/pnas.71.4.1441 ] [PMID: 4151518]
[2]
Byon, C.Y.; Gut, M. Steric considerations regarding the biodegradation of cholesterol to pregnenolone.-exclusion of (22S)-22-hydroxycholesterol and 22-ketocholesterol as intermediates. Biochem. Biophys. Res. Commun., 1980, 94(2), 549-552.
[http://dx.doi.org/10.1016/0006-291X(80)91266-8 ] [PMID: 7396918]
[3]
Dewick, P.M. Medicinal natural products: a biosynthetic approach, 2nd ed; John Wiley & Sons: New York, 2002, pp. 243-244.
[4]
Pikuleva, I.A. Cholesterol-metabolizing cytochromes P450. Drug Metab. Dispos., 2006, 34(4), 513-520.
[http://dx.doi.org/10.1124/dmd.105.008789 ] [PMID: 16434543]
[5]
Corina, D.L.; Miller, S.L.; Wright, J.N.; Akhtar, M. The mechanism of cytochrome P-450 dependent C-C bond cleavage: Studies on 17α-hydroxylase-17,20-lyase. J. Chem. Soc. Chem. Commun., 1991, 782-783.
[http://dx.doi.org/10.1039/C39910000782]
[6]
Miller, S.L.; Wright, J.N.; Corina, D.L.; Akhtar, M. Mechanistic studies on pregnene side-chain cleavage enzyme (17α-hydroxylase-17,20-lyase) using 18O. J. Chem. Soc. Chem. Commun., 1991, 157-159.
[http://dx.doi.org/10.1039/C39910000157]
[7]
Akhtar, M.; Corina, D.L.; Miller, S.L.; Shyadehi, A.Z.; Wright, J.N. Incorporation of label from 18O2 into acetate during side-chain cleavage catalysed by cytochrome P-450(17)α (17α-hydroxylase-17,20-lyase). J. Chem. Soc., Perkin Trans. 1, 1994, 263-267.
[http://dx.doi.org/10.1039/P19940000263]
[8]
Akhtar, M.; Corina, D.; Miller, S.; Shyadehi, A.Z.; Wright, J.N. Mechanism of the acyl-carbon cleavage and related reactions catalyzed by multifunctional P-450s: Studies on cytochrome P-450(17)α. Biochemistry, 1994, 33(14), 4410-4418.
[http://dx.doi.org/10.1021/bi00180a039 ] [PMID: 8155659]
[9]
Akhtar, M.; Wright, J.N.; Lee-Robichaud, P. A review of mechanistic studies on aromatase (CYP19) and 17α-hydroxylase-17,20-lyase (CYP17). J. Steroid Biochem. Mol. Biol., 2011, 125(1-2), 2-12.
[http://dx.doi.org/10.1016/j.jsbmb.2010.11.003 ] [PMID: 21094255]
[10]
Gilep, A.A.; Sushko, T.A.; Usanov, S.A. At the crossroads of steroid hormone biosynthesis: The role, substrate specificity and evolutionary development of CYP17. Biochim. Biophys. Acta, 2011, 1814(1), 200-209.
[http://dx.doi.org/10.1016/j.bbapap.2010.06.021 ] [PMID: 20619364]
[11]
Wright, J.N.; Akhtar, M. Studies on estrogen biosynthesis using radioactive and stable isotopes. Steroids, 1990, 55(4), 142-151.
[http://dx.doi.org/10.1016/0039-128X(90)90102-H ] [PMID: 2187283]
[12]
Akhtar, M.; Njar, V.C.; Wright, J.N. Mechanistic studies on aromatase and related C-C bond cleaving P-450 enzymes. J. Steroid Biochem. Mol. Biol., 1993, 44(4-6), 375-387.
[http://dx.doi.org/10.1016/0960-0760(93)90241-N ] [PMID: 8476751]
[13]
Haddock, R.E.; Jeffery, D.J.; Lloyd, J.A.; Thawley, A.R. Metabolism of nabumetone (BRL 14777) by various species including man. Xenobiotica, 1984, 14(4), 327-337.
[http://dx.doi.org/10.3109/00498258409151419 ] [PMID: 6464502]
[14]
Tsuchiya, T.; Ishibashi, K.; Asano, H.; Hirano, K.; Noguchi, H. Pharmacokinetics of nabumetone and its metabolic pathways in rats. Xenobiotic Metab. Dispos., 1988, 3, 67-74.
[15]
Turpeinen, M.; Hofmann, U.; Klein, K.; Mürdter, T.; Schwab, M.; Zanger, U.M. A predominate role of CYP1A2 for the metabolism of nabumetone to the active metabolite, 6-methoxy-2-naphthylacetic acid, in human liver microsomes. Drug Metab. Dispos., 2009, 37(5), 1017-1024.
[http://dx.doi.org/10.1124/dmd.108.025700 ] [PMID: 19204080]
[16]
Nobilis, M.; Mikušek, J.; Szotáková, B.; Jirásko, R.; Holčapek, M.; Chamseddin, C.; Jira, T.; Kučera, R.; Kuneš, J.; Pour, M. Analytical power of LLE-HPLC-PDA-MS/MS in drug metabolism studies: Identification of new nabumetone metabolites. J. Pharm. Biomed. Anal., 2013, 80, 164-172.
[http://dx.doi.org/10.1016/j.jpba.2013.03.006 ] [PMID: 23584048]
[17]
Varfaj, F.; Zulkifli, S.N.A.; Park, H.G.; Challinor, V.L.; De Voss, J.J.; Ortiz de Montellano, P.R. Carbon-carbon bond cleavage in activation of the prodrug nabumetone. Drug Metab. Dispos., 2014, 42(5), 828-838.
[http://dx.doi.org/10.1124/dmd.114.056903 ] [PMID: 24584631]
[18]
Tsubouchi, H.; Ohguro, K.; Yasumura, K.; Ishikawa, H.; Kikuchi, M. Synthesis and structure-activity relationships of novel antiseptics. Bioorg. Med. Chem. Lett., 1997, 7, 1721-1724.
[http://dx.doi.org/10.1016/S0960-894X(97)00297-7]
[19]
Sakagami, Y.; Mimura, M.; Kajimura, K.; Yokoyama, H.; Nishimura, H. Electron-microscopic study of the bactericidal effect of OPB-2045, a new mono-biguanide disinfectant produced from biguanide group compounds, against Pseudomonas aeruginosa. J. Pharm. Pharmacol., 1999, 51(2), 201-206.
[http://dx.doi.org/10.1211/0022357991772141 ] [PMID: 10217320]
[20]
Sakagami, Y.; Kajimura, K.; Nishimura, H. Electron-microscopic study of the bactericidal effect of OPB-2045, a new disinfectant produced from biguanide group compounds, against methicillin-resistant Staphylococcus aureus. J. Pharm. Pharmacol., 2000, 52(12), 1547-1552.
[http://dx.doi.org/10.1211/0022357001777603 ] [PMID: 11197085]
[21]
Hagi, A.; Iwata, K.; Nii, T.; Nakata, H.; Tsubotani, Y.; Inoue, Y. Bactericidal effects and mechanism of action of olanexidine gluconate, a new antiseptic. Antimicrob. Agents Chemother., 2015, 59(8), 4551-4559.
[http://dx.doi.org/10.1128/AAC.05048-14 ] [PMID: 25987609]
[22]
Nakaminami, H.; Takadama, S.; Okita, M.; Sasaki, M.; Noguchi, N. Fast-acting bactericidal activity of olanexidine gluconate against qacA/B-positive methicillin-resistant Staphylococcus aureus. J. Med. Microbiol., 2019, 68(6), 957-960.
[http://dx.doi.org/10.1099/jmm.0.000979 ] [PMID: 31050633]
[23]
Seyama, S.; Nishioka, H.; Nakaminami, H.; Nakase, K.; Wajima, T.; Hagi, A.; Noguchi, N. Evaluation of in vitro bactericidal activity of 1.5% olanexidine gluconate, a novel biguanide antiseptic agent. Biol. Pharm. Bull., 2019, 42(3), 512-515.
[http://dx.doi.org/10.1248/bpb.b18-00821 ] [PMID: 30568106]
[24]
Kudo, S.; Iwasaki, M.; Sugimoto, K.; Kodama, R.; Odomi, M. Absorption, distribution and excretion of OPB-2045 following a single subcutaneous administration to rats. Xenobiotic Metab. Dispos., 1998, 13, 1-7.
[http://dx.doi.org/10.2133/dmpk.13.1]
[25]
Kudo, S.; Iwasaki, M.; Sugimoto, K.; Kodama, R.; Odomi, M. Absorption, distribution and excretion of OPB-2045 following a single subcutaneous administration to beagle dogs. Xenobiotic Metab. Dispos., 1998, 13, 8-12.
[http://dx.doi.org/10.2133/dmpk.13.8]
[26]
Kudo, S.; Umehara, K.; Morita, S.; Uchida, M.; Miyamoto, G.; Odomi, M. Metabolism of 1-(3,4-dichlorobenzyl)-5-octylbiguanide in the dog. Xenobiotica, 1998, 28(5), 507-514.
[http://dx.doi.org/10.1080/004982598239425 ] [PMID: 9622852]
[27]
Kudo, S.; Umehara, K.; Odomi, M.; Miyamoto, G. Pharmacokinetics of OPB-2045 in rats: Systemic exposure following oral, subcutaneous, and intravenous administration. Xenobiotic Metab. Dispos., 1998, 13, 330-334.
[http://dx.doi.org/10.2133/dmpk.13.330]
[28]
Kudo, S.; Umehara, K.; Odomi, M.; Miyamoto, G. Metabolism of a new bactericidal antiseptic, OPB-2045, in rats following subcutaneous administration. Xenobiotic Metab. Dispos., 1998, 13, 346-350.
[http://dx.doi.org/10.2133/dmpk.13.346]
[29]
Umehara, K.; Kudo, S.; Hirao, Y.; Morita, S.; Ohtani, T.; Uchida, M.; Miyamoto, G. In vitro characterization of the oxidative cleavage of the octyl side chain of olanexidine, a novel antimicrobial agent, in dog liver microsomes. Drug Metab. Dispos., 2000, 28(12), 1417-1424.
[PMID: 11095578]
[30]
Umehara, K.; Kudo, S.; Hirao, Y.; Morita, S.; Uchida, M.; Odomi, M.; Miyamoto, G. Oxidative cleavage of the octyl side chain of 1-(3,4-dichlorobenzyl)-5-octylbiguanide (OPB-2045) in rat and dog liver preparations. Drug Metab. Dispos., 2000, 28(8), 887-894.
[PMID: 10901696]
[31]
Umehara, K.; Shimokawa, Y.; Koga, T.; Ohtani, T.; Miyamoto, G. Oxidative one-carbon cleavage of the octyl side chain of olanexidine, a novel antimicrobial agent, in dog liver microsomes. Xenobiotica, 2004, 34(1), 61-71.
[http://dx.doi.org/10.1080/00498250310001646335 ] [PMID: 14742137]
[32]
Strushkevich, N.; MacKenzie, F.; Cherkesova, T.; Grabovec, I.; Usanov, S.; Park, H.W. Structural basis for pregnenolone biosynthesis by the mitochondrial monooxygenase system. Proc. Natl. Acad. Sci. USA, 2011, 108(25), 10139-10143.
[http://dx.doi.org/10.1073/pnas.1019441108 ] [PMID: 21636783]
[33]
Rosemond, M.J.C.; Walsh, J.S. Human carbonyl reduction pathways and a strategy for their study in vitro. Drug Metab. Rev., 2004, 36(2), 335-361.
[http://dx.doi.org/10.1081/DMR-120034154 ] [PMID: 15237858]
[34]
Skarydová, L.; Wsól, V. Human microsomal carbonyl reducing enzymes in the metabolism of xenobiotics: Well-known and promising members of the SDR superfamily. Drug Metab. Rev., 2012, 44(2), 173-191.
[http://dx.doi.org/10.3109/03602532.2011.638304 ] [PMID: 22181347]
[35]
Skarydova, L.; Nobilis, M.; Wsól, V. Role of carbonyl reducing enzymes in the phase I biotransformation of the non-steroidal anti-inflammatory drug nabumetone in vitro. Xenobiotica, 2013, 43(4), 346-354.
[http://dx.doi.org/10.3109/00498254.2012.720048 ] [PMID: 23020786]
[36]
Matsumoto, K.; Hasegawa, T.; Koyanagi, J.; Takahashi, T.; Akimoto, M.; Sugibayashi, K. Reductive metabolism of nabumetone by human liver microsomal and cytosolic fractions: Exploratory prediction using inhibitors and substrates as marker probes. Eur. J. Drug Metab. Pharmacokinet., 2015, 40(2), 127-135.
[http://dx.doi.org/10.1007/s13318-014-0190-0 ] [PMID: 24659525]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy