Generic placeholder image

Drug Metabolism Letters

Editor-in-Chief

ISSN (Print): 1872-3128
ISSN (Online): 1874-0758

Research Article

Assessment of Inhibition of Bovine Hepatic Cytochrome P450 by 43 Commercial Bovine Medicines Using a Combination of In Vitro Assays and Pharmacokinetic Data from the Literature

Author(s): Steven X. Hu*, Chase A. Mazur and Kenneth L. Feenstra

Volume 13, Issue 2, 2019

Page: [123 - 131] Pages: 9

DOI: 10.2174/1872312813666191120094649

Abstract

Background: There has been a lack of information about the inhibition of bovine medicines on bovine hepatic CYP450 at their commercial doses and dosing routes.

Objective: The aim of this work was to assess the inhibition of 43 bovine medicines on bovine hepatic CYP450 using a combination of in vitro assay and Cmax values from pharmacokinetic studies with their commercial doses and dosing routes in the literature.

Methods: Those drugs were first evaluated through a single point inhibitory assay at 3 μM in bovine liver microsomes for six specific CYP450 metabolisms, phenacetin o-deethylation, coumarin 7- hydroxylation, tolbutamide 4-hydroxylation, bufuralol 1-hydroxylation, chlorzoxazone 6-hydroxylation and midazolam 1’-hydroxylation. When the inhibition was greater than 20% in the assay, IC50 values were then determined. The potential in vivo bovine hepatic CYP450 inhibition by those drugs was assessed using a combination of the IC50 values and in vivo Cmax values from pharmacokinetic studies at their commercial doses and administration routes in the literature.

Results: Fifteen bovine medicines or metabolites showed in vitro inhibition on one or more bovine hepatic CYP450 metabolisms with different IC50 values. Desfuroylceftiour (active metabolite of ceftiofur), nitroxinil and flunixin have the potential to inhibit one of the bovine hepatic CYP450 isoforms in vivo at their commercial doses and administration routes. The rest of the bovine medicines had low risks of in vivo bovine hepatic CYP450 inhibition.

Conclusion: This combination of in vitro assay and in vivo Cmax data provides a good approach to assess the inhibition of bovine medicines on bovine hepatic CYP450.

Keywords: Bovine medicines, bovine hepatic CYP450, inhibition, drug interactions, nitroxinil, flunixin.

Graphical Abstract
[1]
Blanchard, N.; Richert, L.; Coassolo, P.; Lavé, T. Qualitative and quantitative assessment of drug-drug interaction potential in man, based on Ki, IC50 and inhibitor concentration. Curr. Drug Metab., 2004, 5(2), 147-156.
[http://dx.doi.org/10.2174/1389200043489072] [PMID: 15078192]
[2]
Brown, H.S.; Galetin, A.; Hallifax, D.; Houston, J.B. Prediction of in vivo drug-drug interactions from in vitro data: factors affecting prototypic drug-drug interactions involving CYP2C9, CYP2D6 and CYP3A4. Clin. Pharmacokinet., 2006, 45(10), 1035-1050.
[http://dx.doi.org/10.2165/00003088-200645100-00006] [PMID: 16984215]
[3]
Brown, H.S.; Ito, K.; Galetin, A.; Houston, J.B. Prediction of in vivo drug-drug interactions from in vitro data: impact of incorporat-ing parallel pathways of drug elimination and inhibitor absorption rate constant. Br. J. Clin. Pharmacol., 2005, 60(5), 508-518.
[http://dx.doi.org/10.1111/j.1365-2125.2005.02483.x] [PMID: 16236041]
[4]
Venkatakrishnan, K.; Obach, R.S. Drug-drug interactions via mechanism-based cytochrome P450 inactivation: points to consider for risk assessment from in vitro data and clinical pharmacologic evaluation. Curr. Drug Metab., 2007, 8(5), 449-462.
[http://dx.doi.org/10.2174/138920007780866861] [PMID: 17584016]
[5]
Youdim, K.A.; Zayed, A.; Dickins, M.; Phipps, A.; Griffiths, M.; Darekar, A.; Hyland, R.; Fahmi, O.; Hurst, S.; Plowchalk, D.R.; Cook, J.; Guo, F.; Obach, R.S. Application of CYP3A4 in vitro data to predict clinical drug-drug interactions; predictions of com-pounds as objects of interaction. Br. J. Clin. Pharmacol., 2008, 65(5), 680-692.
[http://dx.doi.org/10.1111/j.1365-2125.2007.03070.x] [PMID: 18279465]
[6]
Fahmi, O.A.; Maurer, T.S.; Kish, M.; Cardenas, E.; Boldt, S.; Net-tleton, D. A combined model for predicting CYP3A4 clinical net drug-drug interaction based on CYP3A4 inhibition, inactivation, and induction determined in vitro. Drug Metab. Dispos., 2008, 36(8), 1698-1708.
[http://dx.doi.org/10.1124/dmd.107.018663] [PMID: 18490437]
[7]
Madan, A.; Usuki, E.; Burton, L.A.; Ogilvie, B.W.; Parkinson, A. In vitro approaches for studying the inhibition of drug-metabolizing enzymes and identifying the drug metabolizing enzymes responsible for the metabolism of drugsRodrigus, A. D; Interactions, D-D., Ed.; Marcel Dekker: New York, USA,, 2002, pp. 217-294.
[8]
Bachmann, K.A. Inhibition constants, inhibitor concentrations and the prediction of inhibitory drug-drug interactions: pitfalls, progress and promise. Curr. Drug Metab., 2006, 7(1), 1-14.
[http://dx.doi.org/10.2174/138920006774832541] [PMID: 16454689]
[9]
Bachmann, K.A.; Lewis, J.D. Predicting inhibitory drug-drug inter-actions and evaluating drug interaction reports using inhibition constants. Ann. Pharmacother., 2005, 39(6), 1064-1072.
[http://dx.doi.org/10.1345/aph.1E508] [PMID: 15886285]
[10]
Ito, K.; Brown, H.S.; Houston, J.B. Database analyses for the pre-diction of in vivo drug-drug interactions from in vitro data. Br. J. Clin. Pharmacol., 2004, 57(4), 473-486.
[http://dx.doi.org/10.1111/j.1365-2125.2003.02041.x] [PMID: 15025746]
[11]
Gao, F.; Johnson, D.L.; Ekins, S.; Janiszewski, J.; Kelly, K.G.; Meyer, R.D.; West, M. Optimizing higher throughput methods to assess drug-drug interactions for CYP1A2, CYP2C9, CYP2C19, CYP2D6, rCYP2D6, and CYP3A4 in vitro using a single point IC(50). J. Biomol. Screen., 2002, 7(4), 373-382.
[http://dx.doi.org/10.1177/108705710200700410] [PMID: 12230892]
[12]
Hu, S.X.; Mazur, C.A.; Feenstra, K.L.; Lorenz, J.K.; Merritt, D.A. Assessment of inhibition of porcine hepatic cytochrome P450 en-zymes by 48 commercial drugs. Vet. J., 2016, 211, 26-31.
[http://dx.doi.org/10.1016/j.tvjl.2016.03.011] [PMID: 27053015]
[13]
Dhamankar, V.; Assem, M.; Donovan, M.D. Gene expression and immunochemical localization of major cytochrome P450 drug-metabolizing enzymes in bovine nasal olfactory and respiratory mucosa. Inhal. Toxicol., 2015, 27(14), 767-777.
[http://dx.doi.org/10.3109/08958378.2015.1066903] [PMID: 26572092]
[14]
Zancanella, V.; Giantin, M.; Lopparelli, R.M.; Patarnello, T.; Dacasto, M.; Negrisolo, E. Proposed new nomenclature for Bos taurus cytochromes P450 involved in xenobiotic drug metabolism. J. Vet. Pharmacol. Ther., 2010, 33(6), 528-536.
[http://dx.doi.org/10.1111/j.1365-2885.2010.01173.x] [PMID: 21062304]
[15]
Antonovic, L.; Martinez, M. Role of the cytochrome P450 enzyme system in veterinary pharmacokinetics: where are we now? Where are we going? Future Med. Chem., 2011, 3(7), 855-879.
[http://dx.doi.org/10.4155/fmc.11.37] [PMID: 21644832]
[16]
Brentnall, C.; Cheng, Z.; McKellar, Q.A.; Lees, P. Pharmacoki-netic-pharmacodynamic integration and modelling of Oxytetracy-cline administered alone and in combination with Carprofen in calves. Res. Vet. Sci., 2013, 94(3), 687-694.
[http://dx.doi.org/10.1016/j.rvsc.2013.01.012] [PMID: 23415880]
[17]
Mestorino, N.; Marchetti, M.L.; Lucas, M.F.; Modamio, P.; Zein-steger, P.; Fernández Lastra, C.; Segarra, I.; Mariño, E.L. Bioe-quivalence study of two long-acting formulations of Oxytetracy-cline following intramuscular administration in bovines. Front. Vet. Sci., 2016, 3, 50.
[http://dx.doi.org/10.3389/fvets.2016.00050] [PMID: 27446938]
[18]
Olson, S.C.; Beconi-Barker, M.G.; Smith, E.B.; Martin, R.A.; Vidmar, T.J.; Adams, L.D. In vitro metabolism of ceftiofur in bo-vine tissues. J. Vet. Pharmacol. Ther., 1998, 21(2), 112-120.
[http://dx.doi.org/10.1046/j.1365-2885.1998.00118.x] [PMID: 9597648]
[19]
Jacobson, G.A.; Martinod, S.; Cunningham, C.P. Determination of ceftiofur in bovine plasma by HPLC-DAD. J. Pharm. Biomed. Anal., 2006, 40(5), 1249-1252.
[http://dx.doi.org/10.1016/j.jpba.2005.09.010] [PMID: 16242891]
[20]
Jaglan, P.S.; Kubicek, M.F.; Arnold, T.S.; Cox, B.L.; Robins, R.H.; Johnson, D.B.; Gilbertson, T.J. Metabolism of ceftiofur. nature of urinary and plasma metabolites in rats and cattle. J. Agric. Food Chem., 1989, 37, 1112-1118.
[http://dx.doi.org/10.1021/jf00088a066]
[21]
Gorden, P.J.; Kleinhenz, M.D.; Wulf, L.W.; Kukanich, B.; Lee, C.J.; Wang, C.; Coetzee, J.F. Altered plasma phamarcokinetics of ceftiofur hydrochloride in cows affected with severe clinical masti-tis. J. Dairy Sci., 2016, 99, 5050-5514.
[http://dx.doi.org/10.3168/jds.2015-10239]
[22]
Gorden, P.J.; Ydstie, J.A.; Kleinhenz, M.D.; Brick, T.A.; Smith, J.S.; Griffith, R.W.; Wulf, L.W.; Rajewski, S.M.; Zhang, M.; Sidhu, P.K.; Mochel, J.P.; Coetzee, J.F. Comparative plasma and interstitial fluid pharmacokinetics and tissue residues of ceftiofur crystalline-free acid in cattle with induced coliform mastitis. J. Vet. Pharmacol. Ther., 2018, 41(6), 848-860.
[http://dx.doi.org/10.1111/jvp.12688] [PMID: 29971798]
[23]
Rahman, M.M.; Kabir, A.; Ahmed, S.; Islam, M.K.; Rahman, M.S.; Alam, M.; Mubeen, A.A.; Yasmin, M.S.; Hossain, S.S.; Haque, M.W.U.; Mia, M.T. Nitroxynil uncouples oxidative phosphoryla-tion in the cell mitochondria and a drug wherever injectables are preferred over drenches. Bangl. J. Vet. Med., 2017, 15, 45-49.
[http://dx.doi.org/10.3329/bjvm.v15i1.34054]
[25]
Pyörälä, S.; Laurila, T.; Lehtonen, S.; Leppä, S.; Kaartinen, L. Local tissue damage in cows after intramuscular administration of preparations containing phenylbutazone, flunixin, ketoprofen and metamizole. Acta Vet. Scand., 1999, 40(2), 145-150.
[PMID: 10605130]
[26]
Anderson, K.L.; Neff-Davis, C.A.; Davis, L.E.; Bass, V.D. Phar-macokinetics of flunixin meglumine in lactating cattle after single and multiple intramuscular and intravenous administrations. Am. J. Vet. Res., 1990, 51(9), 1464-1467.
[PMID: 2396794]
[27]
DeLay, R.L.; Lacoste, E.; Mezzasalma, T.; Blond-Riou, F. Phar-macokinetics of metaflumizone and amitraz in the plasma and hair of dogs following topical application. Vet. Parasitol., 2007, 150(3), 251-257.
[http://dx.doi.org/10.1016/j.vetpar.2007.08.045] [PMID: 17942231]
[28]
Nyberg, A.G.; Cassel, G.; Jeneskog, T.; Karlsson, L.; Larsson, R.; Lundström, M.; Palmer, L.; Persson, S.A. Pharmacokinetics of HI-6 and atropine in anaesthetized pigs after administration by a new autoinjector. Biopharm. Drug Dispos., 1995, 16(8), 635-651.
[http://dx.doi.org/10.1002/bdd.2510160804] [PMID: 8573684]
[29]
Thiermann, H.; Radtke, M.; Spöhrer, U.; Klimmek, R.; Eyer, P. Pharmacokinetics of atropine in dogs after i.m. injection with newly developed dry/wet combination autoinjectors containing HI 6 or HLö 7. Arch. Toxicol., 1996, 70(5), 293-299.
[http://dx.doi.org/10.1007/s002040050276] [PMID: 8852700]
[30]
Ballard, S.; Shults, T.; Kownacki, A.A.; Blake, J.W.; Tobin, T. The pharmacokinetics, pharmacological responses and behavioral ef-fects of acepromazine in the horse. J. Vet. Pharmacol. Ther., 1982, 5(1), 21-31.
[http://dx.doi.org/10.1111/j.1365-2885.1982.tb00495.x] [PMID: 7097847]
[31]
Schneiders, F.I.; Noble, G.K.; Boston, R.C.; Dunstan, A.J.; Sil-lence, M.N.; McKinney, A.R. Acepromazine pharmacokinetics: a forensic perspective. Vet. J., 2012, 194(1), 48-54.
[http://dx.doi.org/10.1016/j.tvjl.2012.03.017] [PMID: 22534188]
[32]
Cazer, C.L.; Volkova, V.V.; Gröhn, Y.T. Use of pharmacokinetic modeling to assess antimicrobial pressure on enteric bacteria of beef cattle fed chlortetracycline for growth promotion, disease con-trol, or treatment. Foodborne Pathog. Dis., 2014, 11(5), 403-411.
[http://dx.doi.org/10.1089/fpd.2013.1677] [PMID: 24588058]
[33]
Bradley, B.D.; Allen, E.H.; Showalter, D.H.; Colaianne, J.J. Com-parative pharmacokinetics of chlortetracycline in milk-fed versus conventionally fed calves. J. Vet. Pharmacol. Ther., 1982, 5(4), 267-278.
[http://dx.doi.org/10.1111/j.1365-2885.1982.tb00442.x] [PMID: 7183795]
[34]
Meijer, L.A.; Ceyssens, K.G.F.; de Grève, B.I.J.A.C.; de Bruijn, W. Pharmacokinetics and bioavailability of doxycycline hyclate after oral administration in calves. Vet. Q., 1993, 15(1), 1-5.
[http://dx.doi.org/10.1080/01652176.1993.9694358] [PMID: 8498009]
[36]
Toutain, P.L.; Upson, D.W.; Terhune, T.N.; McKenzie, M.E. Com-parative pharmacokinetics of doramectin and ivermectin in cattle. Vet. Parasitol., 1997, 72(1), 3-8.
[http://dx.doi.org/10.1016/S0304-4017(97)00070-8] [PMID: 9403971]
[37]
Gayrard, V.; Alvinerie, M.; Toutain, P.L. Comparison of pharma-cokinetic profiles of doramectin and ivermectin pour-on formula-tions in cattle. Vet. Parasitol., 1999, 81(1), 47-55.
[http://dx.doi.org/10.1016/S0304-4017(98)00236-2] [PMID: 9950328]
[38]
Sallovitz, J.; Lifschitz, A.; Imperiale, F.; Pis, A.; Virkel, G.; Lanusse, C. Breed differences on the plasma availability of mox-idectin administered pour-on to calves. Vet. J., 2002, 164(1), 47-53.
[http://dx.doi.org/10.1053/tvjl.2002.0715] [PMID: 12359484]
[39]
Lifschitz, A.; Virkel, G.; Imperiale, F.; Sutra, J.F.; Galtier, P.; Lanusse, C.; Alvinerie, M. Moxidectin in cattle: correlation be-tween plasma and target tissues disposition. J. Vet. Pharmacol. Ther., 1999, 22(4), 266-273.
[http://dx.doi.org/10.1046/j.1365-2885.1999.00222.x] [PMID: 10499239]
[40]
Kissell, L.W.; Smith, G.W.; Leavens, T.L.; Baynes, R.E.; Wu, H.; Riviere, J.E. Plasma pharmacokinetics and milk residues of flunixin and 5-hydroxy flunixin following different routes of ad-ministration in dairy cattle. J. Dairy Sci., 2012, 95(12), 7151-7157.
[http://dx.doi.org/10.3168/jds.2012-5754] [PMID: 23040013]
[41]
Mariano, R.N.; Turino, L.N.; Cabrera, M.I.; Scándolo, D.E.; Ma-ciel, M.G.; Grau, R.J.A. A simple pharmacokinetic model linking plasma progesterone concentrations with the hormone released from bovine intravaginal inserts. Res. Vet. Sci., 2010, 89(2), 250-256.
[http://dx.doi.org/10.1016/j.rvsc.2010.02.015] [PMID: 20307896]
[42]
Daxenberger, A.; Meyer, K.; Hageleit, M.; Meyer, H.H.D. Detec-tion of melengestrol acetate residues in plasma and edible tissues of heifers. Vet. Q., 1999, 21(4), 154-158.
[http://dx.doi.org/10.1080/01652176.1999.9695011] [PMID: 10568006]

© 2024 Bentham Science Publishers | Privacy Policy