Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Research Article

Synthesis and Evaluation of N-substituted (Z)-5-(Benzo[d][1,3]dioxol-5- ylmethylene)-2-Thioxothiazolidin-4-one Derivatives and 5-Substituted- Thioxothiazolidindione Derivatives as Potent Anticonvulsant Agents

Author(s): Shiyang Dong, Yanhua Liu, Jun Xu*, Yue Hu, Limin Huang and Zengtao Wang*

Volume 18, Issue 10, 2019

Page: [798 - 807] Pages: 10

DOI: 10.2174/1871527318666191119125515

Price: $65

Abstract

Background: Epilepsy is a serious and common neurological disorder threatening the health of humans. Despite enormous progress in epileptic research, the anti-epileptic drugs present many limitations. These limitations prompted the development of more safer and effective AEDs.

Methods: A series of N-substituted (Z)-5-(benzo[d][1,3]dioxol-5-ylmethylene)- 2-thioxothiazolidin-4- one derivatives and 5-substituted-thioxothiazolidindione derivatives were designed, synthesized and tested for anticonvulsant activity against maximal electroshock (MES) and subcutaneous pentylenetetrazole (scPTZ). Neurotoxicity was determined by the rotarod test.

Results: Among them, the most potent 4e displayed high protection against MES-induced seizures with an ED50 value of 9.7 mg/kg and TD50 value of 263.3 mg/kg, which provided 4e with a high protective index (TD50/ED50) of 27.1 comparable to reference antiepileptic drugs. 4e clearly inhibits the NaV1.1 channel in vitro. The molecular docking study was conducted to exploit the results.

Conclusion: Stiripentol is a good lead compound for further structural modification. Compound 4e was synthesized, which displayed remarkable anticonvulsant activities, and the NaV1.1 channel inhibition was involved in the mechanism of action of 4e.

Keywords: Thioxothiazolidindione derivatives, synthesis, anticonvulsant, NaV1.1 channel, stiripentol, patch-clamp.

Graphical Abstract
[1]
Malawska B. New anticonvulsant agents. Curr Top Med Chem 2005; 5(1): 69-85.
[http://dx.doi.org/10.2174/1568026053386944] [PMID: 15638779]
[2]
French JA. Refractory epilepsy: Clinical overview. Epilepsia 2007; 48(Suppl. 1): 3-7.
[http://dx.doi.org/10.1111/j.1528-1167.2007.00992.x] [PMID: 17316406]
[3]
Kwan P, Brodie MJ. Early identification of refractory epilepsy. N Engl J Med 2000; 342(5): 314-9.
[http://dx.doi.org/10.1056/NEJM200002033420503] [PMID: 10660394]
[4]
Perucca E, French J, Bialer M. Development of new antiepileptic drugs: Challenges, incentives, and recent advances. Lancet Neurol 2007; 6(9): 793-804.
[http://dx.doi.org/10.1016/S1474-4422(07)70215-6] [PMID: 17706563]
[5]
Wagner ML. Felbamate: A new antiepileptic drug. Am J Hosp Pharm 1994; 51(13): 1657-66.
[PMID: 7942890]
[6]
Zaccara G, Franciotta D, Perucca E. Idiosyncratic adverse reactions to antiepileptic drugs. Epilepsia 2007; 48(7): 1223-44.
[http://dx.doi.org/10.1111/j.1528-1167.2007.01041.x] [PMID: 17386054]
[7]
Lin Z, Kadaba PK. Molecular targets for the rational design of antiepileptic drugs and related neuroprotective agents. Med Res Rev 1997; 17(6): 537-72.
[http://dx.doi.org/10.1002/(SICI)1098-1128(199711)17:6<537: AID-MED3>3.0.CO;2-2] [PMID: 9359082]
[8]
Bialer M, Johannessen SI, Levy RH, Perucca E, Tomson T, White HS. Progress report on new antiepileptic drugs: A summary of the Tenth Eilat Conference (EILAT X). Epilepsy Res 2010; 92(2-3): 89-124.
[http://dx.doi.org/10.1016/j.eplepsyres.2010.09.001] [PMID: 20970964]
[9]
Bialer M, Yagen B. Valproic Acid: Second generation. Neurotherapeutics 2007; 4(1): 130-7.
[http://dx.doi.org/10.1016/j.nurt.2006.11.007] [PMID: 17199028]
[10]
Nau H, Löscher W. Pharmacologic evaluation of various metabolites and analogs of valproic acid: Teratogenic potencies in mice. Fundam Appl Toxicol 1986; 6(4): 669-76.
[http://dx.doi.org/10.1016/0272-0590(86)90180-6] [PMID: 3086174]
[11]
Huang X, Chen T, Han RB, Piao FY. Synthesis and anticonvulsant activity of 3-(alkylamino, alkoxy)-1,3,4,5- tetrahydro-2H-benzo [b] azepine-2-one derivatives. CNS Neurol Disord Drug Targets 2018; 17(6): 448-57.
[http://dx.doi.org/10.2174/1871527317666180704101332] [PMID: 29972104]
[12]
Witkin JM, Schober DA, Gleason SD, et al. Targeted blockade of TARP-γ8-associated AMPA receptors: Anticonvulsant activity with the selective antagonist LY3130481 (CERC-611). CNS Neurol Disord Drug Targets 2017; 16(10): 1099-110.
[http://dx.doi.org/10.2174/1871527316666171101132047] [PMID: 29090671]
[13]
Shiha AA, de la Rosa RF, Delgado M, Pozo MA, García-García L. Subacute fluoxetine reduces signs of hippocampal damage induced by a single convulsant dose of 4-Aminopyridine in Rats. CNS Neurol Disord Drug Targets 2017; 16(6): 694-704.
[http://dx.doi.org/10.2174/1871527315666160720121723] [PMID: 27989232]
[14]
Song MX, Rao BQ, Cheng BB, et al. Design, synthesis and evaluation of the antidepressant and anticonvulsant activities of triazole-containing benzo[d]oxazoles. CNS Neurol Disord Drug Targets 2017; 16(2): 187-98.
[http://dx.doi.org/10.2174/1871527315666160822112501] [PMID: 27549143]
[15]
Nabbout R, Chiron C. Stiripentol: An example of antiepileptic drug development in childhood epilepsies. Eur J Paediatr Neurol 2012; 16(Suppl. 1): S13-7.
[http://dx.doi.org/10.1016/j.ejpn.2012.04.009] [PMID: 22695038]
[16]
Trojnar MK, Wojtal K, Trojnar MP, Czuczwar SJ. Stiripentol. A novel antiepileptic drug. Pharmacol Rep 2005; 57(2): 154-60.
[PMID: 15886413]
[17]
Poisson M, Huguet F, Savattier A, Bakri-Logeais F, Narcisse G. A new type of anticonvulsant, stiripentol. Pharmacological profile and neurochemical study. Arzneimittelforschung 1984; 34(2): 199-204.
[PMID: 6326778]
[18]
Aboul-Enein MN, El-Azzouny AA, Attia MI, et al. Design and synthesis of novel stiripentol analogues as potential anticonvulsants. Eur J Med Chem 2012; 47(1): 360-9.
[http://dx.doi.org/10.1016/j.ejmech.2011.11.004] [PMID: 22118828]
[19]
Wang T, Dong S, Chen X, et al. Design, synthesis, biological evaluation, homology modeling and docking studies of (E)-3-(benzo[d][1,3]dioxol-5-ylmethylene) pyrrolidin-2-one derivatives as potent anticonvulsant agents. Bioorg Med Chem Lett 2018; 28(8): 1324-9.
[http://dx.doi.org/10.1016/j.bmcl.2018.03.015] [PMID: 29548572]
[20]
Dong S, Wang T, Hu C, Chen X, Jin Y, Wang Z. Design and synthesis of 5-substituted benzo[d][1,3]dioxole derivatives as potent anticonvulsant agents. Arch Pharm (Weinheim) 2017; 350(2)e1600274
[http://dx.doi.org/10.1002/ardp.201600274] [PMID: 28092111]
[21]
Braga FG, Coimbra ES, de Oliveira Matos M, Lino Carmo AM, Cancio MD, da Silva AD. Synthesis and biological evaluation of some 6-substituted purines. Eur J Med Chem 2007; 42(4): 530-7.
[http://dx.doi.org/10.1016/j.ejmech.2006.10.014] [PMID: 17156894]
[22]
Piao ZT, Guan LP, Zhao LM, Piao HR, Quan ZS. Synthesis of novel 7-benzylamino-2H-1,4-benzoxazin-3(4H)-ones as anticonvulsant agents. Eur J Med Chem 2008; 43(6): 1216-21.
[http://dx.doi.org/10.1016/j.ejmech.2007.08.006] [PMID: 17950496]
[23]
Xie ZF, Chai KY, Piao HR, Kwak KC, Quan ZS. Synthesis and anticonvulsant activity of 7-alkoxyl-4,5-dihydro-[1,2,4]triazolo[4,3-a]quinolines. Bioorg Med Chem Lett 2005; 15(21): 4803-5.
[http://dx.doi.org/10.1016/j.bmcl.2005.07.051] [PMID: 16139502]
[24]
Krall RL, Penry JK, White BG, Kupferberg HJ, Swinyard EA. Antiepileptic drug development: II. Anticonvulsant drug screening. Epilepsia 1978; 19(4): 409-28.
[http://dx.doi.org/10.1111/j.1528-1157.1978.tb04507.x] [PMID: 699894]
[25]
Porter RJ, Cereghino JJ, Gladding GD, et al. Antiepileptic drug development program. Cleve Clin Q 1984; 51(2): 293-305.
[http://dx.doi.org/10.3949/ccjm.51.2.293] [PMID: 6380818]
[26]
Kupferberg HJ. Antiepileptic drug development program: a cooperative effort of government and industry. Epilepsia 1989; 30(Suppl. 1): S51-6.
[http://dx.doi.org/10.1111/j.1528-1157.1989.tb05815.x] [PMID: 2776711]
[27]
Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 1981; 391(2): 85-100.
[http://dx.doi.org/10.1007/BF00656997] [PMID: 6270629]
[28]
Ucar H, Cacciaguerra S, Spampinato S, et al. Van derpoorten K. Synthesis and anticonvulsant activity of 2(3H)-benzoxazolone and 2(3H)-benzothiazolone derivatives. J Med Chem 1998; 41(16): 3102.
[http://dx.doi.org/10.1021/jm980259g] [PMID: 9685250]
[29]
Deng X, Xie Y, Chen Y. Effect of neuroinflammation on ABC transporters: Possible contribution to refractory epilepsy. CNS Neurol Disord Drug Targets 2018; 17(10): 728-35.
[http://dx.doi.org/10.2174/1871527317666180828121820] [PMID: 30152292]
[30]
Jiang XW, Lu HY, Xu Z, et al. In Silico analyses for key genes and molecular genetic mechanism in epilepsy and Alzheimer’s disease. CNS Neurol Disord Drug Targets 2018; 17(8): 608-17.
[http://dx.doi.org/10.2174/1871527317666180724150839] [PMID: 30047339]
[31]
Zang K, Zhang Y, Hu J, Wang Y. The large conductance calcium- and voltage-activated potassium channel (BK) and epilepsy. CNS Neurol Disord Drug Targets 2018; 17(4): 248-54.
[http://dx.doi.org/10.2174/1871527317666180404104055] [PMID: 29623857]
[32]
Zhu Y, Zhang S, Feng Y, Xiao Q, Cheng J, Tao J. The Yin and Yang of BK channels in epilepsy. CNS Neurol Disord Drug Targets 2018; 17(4): 272-9.
[http://dx.doi.org/10.2174/1871527317666180213142403] [PMID: 29437015]
[33]
Cordero-Arreola J, West RM, Mendoza-Torreblanca J, et al. The role of innate immune system receptors in epilepsy research. CNS Neurol Disord Drug Targets 2017; 16(7): 749-62.
[http://dx.doi.org/10.2174/1871527316666170725145549] [PMID: 28745241]
[34]
Leo A, Citraro R, Marra R, et al. The sphingosine 1-phosphate signaling pathway in epilepsy: A possible role for the immunomodulator drug fingolimod in epilepsy treatment. CNS Neurol Disord Drug Targets 2017; 16(3): 311-25.
[http://dx.doi.org/10.2174/1871527315666161104163031] [PMID: 27823573]
[35]
Naseer MI, Rasool M, Chaudhary AG, et al. Chromosomal micro-aberration in a Saudi family with juvenile myoclonic epilepsy. CNS Neurol Disord Drug Targets 2017; 16(9): 1010-7.
[PMID: 28758580]
[36]
Pevarello P, Bonsignori A, Caccia C, et al. Sodium channel activity and sigma binding of 2-aminopropanamide anticonvulsants. Bioorg Med Chem Lett 1999; 9(17): 2521-4.
[http://dx.doi.org/10.1016/S0960-894X(99)00415-1] [PMID: 10498200]
[37]
Obniska J, Byrtus H, Kamiński K, Pawłowski M, Szczesio M, Karolak-Wojciechowska J. Design, synthesis, and anticonvulsant activity of new N-Mannich bases derived from spirosuccinimides and spirohydantoins. Bioorg Med Chem 2010; 18(16): 6134-42.
[http://dx.doi.org/10.1016/j.bmc.2010.06.064] [PMID: 20638856]
[38]
Zuliani V, Fantini M, Nigam A, Stables JP, Patel MK, Rivara M. Anticonvulsant activity of 2,4(1H)-diarylimidazoles in mice and rats acute seizure models. Bioorg Med Chem 2010; 18(22): 7957-65.
[http://dx.doi.org/10.1016/j.bmc.2010.09.029] [PMID: 20943396]
[39]
Catterall WA, Kalume F, Oakley JC. NaV1.1 channels and epilepsy. J Physiol 2010; 588(Pt 11): 1849-59.
[http://dx.doi.org/10.1113/jphysiol.2010.187484] [PMID: 20194124]
[40]
Volkers L, Kahlig KM, Verbeek NE, et al. Nav 1.1 dysfunction in genetic epilepsy with febrile seizures-plus or Dravet syndrome. Eur J Neurosci 2011; 34(8): 1268-75.
[http://dx.doi.org/10.1111/j.1460-9568.2011.07826.x] [PMID: 21864321]
[41]
Courtney KR, Kendig JJ, Cohen EN. The rates of interaction of local anesthetics with sodium channels in nerve. J Pharmacol Exp Ther 1978; 207(2): 594-604.
[PMID: 712641]
[42]
Chernoff DM. Kinetic analysis of phasic inhibition of neuronal sodium currents by lidocaine and bupivacaine. Biophys J 1990; 58(1): 53-68.
[http://dx.doi.org/10.1016/S0006-3495(90)82353-5] [PMID: 2166601]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy