Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Research Article

Characterization of Streptomyces sp. UK-201 from Lachhiwala Reserve Forest, a Biodiversity Hot Spot of the Himalayas

Author(s): Nidhi Srivastava, Sanjay Gupta and Indira P. Sarethy*

Volume 11, Issue 2, 2021

Published on: 13 November, 2019

Page: [207 - 220] Pages: 14

DOI: 10.2174/2210315509666191113152549

Price: $65

Abstract

Background: Multi-drug resistance among pathogens is emerging due to the slow pace of development of new antimicrobials by combinatorial chemistry. Natural products from microorganisms obtained from under-explored habitats can be lead molecules for such discoveries. In search of new antimicrobial compounds, Streptomyces isolate UK-201 exhibiting broad-spectrum antimicrobial and antifungal activity, obtained from under-explored Lachhiwala Reserve forest, of the Himalayas was selected in this study.

Objectives: The major objectives were to characterize isolate UK-201, taxonomically identify it based on 16S rDNA sequencing and execute metabolite fingerprinting of ethyl acetate extract of UK-201 by GC-MS.

Methods: Isolate UK-201 was characterized by phenotypic, biochemical/physiological methods and identified by 16S rDNA sequencing. Ethyl acetate extract of this isolate exhibited antimicrobial activity against the selected panel of gram-positive, gram-negative bacteria and fungi. The extract was partially purified by column chromatography. Active fractions were pooled and analysed by GCMS. The obtained compounds were tentatively identified by collated data analysis based on Similarity Index, and observed and calculated Retention Indices.

Results: Isolate UK-201 showed 97.46% similarity to Streptomyces niveiscabiei, 96.88% to S. sasae and S. puniciscabiei, 96.72% to S. capoamus and S. yaanensis. A low similarity percentage indicated the taxonomic novelty of the isolate and was confirmed by comparing it with phenotypic characteristics with the nearest matches. Metabolite fingerprinting showed the presence of twenty-four novel compounds.

Conclusion: This study showed that bioprospection from under-explored habitats conferred novel bio and chemodiversity.

Keywords: Streptomyces, 16SrDNA sequencing, antimicrobial, metabolite fingerprinting, GC-MS, fractions.

Graphical Abstract
[1]
Srivastava, N.; Nandi, I.; Ibeyaima, A.; Gupta, S.; Sarethy, I.P. Microbial diversity of a himalayan forest and characterization of rare actinomycetes for antimicrobial compounds. Biotechnology, 2019, 9(1), 27.
[2]
Ibeyaima, A.; Dwivedi, A.K.; Saini, N.; Gupta, S.; Sarethy, I.P. Saccharothrix sp. TD-093 from the Thar Desert, India: metabolite fingerprinting of antimicrobial compounds and in silico analysis. Curr. Microbiol., 2017, 74(3), 334-343.
[http://dx.doi.org/10.1007/s00284-016-1183-9]
[3]
Jantan, I.; Bukhari, S.N.A.; Mohamed, M.A.S.; Wai, L.K.; Mesaik, M.A. The evolving role of natural products from the tropical rainforests as a replenishable source of new drug leads; Drug Discovery Dev. Mol. Med., InTech, 2015.
[http://dx.doi.org/10.5772/59603]
[4]
Maddela, N.R.; Masabanda, M.; Leiva-Mora, M. Novel diesel-oil-degrading bacteria and fungi from the Ecuadorian Amazon rainforest. Water Sci. Technol., 2015, 71(10), 1554-1561.
[http://dx.doi.org/10.2166/wst.2015.142]
[5]
Lladó, S.; López-Mondéjar, R.; Baldrian, P. Forest Soil Bacteria: Diversity, Involvement in ecosystem processes, and response to global change. Microbiol. Mol. Biol. Rev., 2017, 81(2), e00063-e16.
[http://dx.doi.org/10.1128/MMBR.00063-16]
[6]
Dias, A.C.F.; Andreote, F.D.; Dini-Andreote, F.; Lacava, P.T.; Sá, A.L.B.; Melo, I.S.; Azevedo, J.L.; Araújo, W.L. Diversity and biotechnological potential of culturable bacteria from brazilian mangrove sediment. World J. Microbiol. Biotechnol., 2009, 25(7), 1305-1311.
[http://dx.doi.org/10.1007/s11274-009-0013-7]
[7]
Bérdy, J. Thoughts and facts about antibiotics: where we are now and where we are heading. J. Antibiot. (Tokyo), 2012, 65(8), 385-395.
[http://dx.doi.org/10.1038/ja.2012.27]
[8]
Nguyen, M.; Kim, J. Streptomyces gilvifuscus sp. nov., an actinomycete that produces antibacterial compounds isolated from soil. Int. J. Syst. Evol. Microbiol., 2015, 65(10), 3493-3500.
[http://dx.doi.org/10.1099/ijsem.0.000447]
[9]
Terra, L.; Dyson, P.J.; Hitchings, M.D.; Thomas, L.; Abdelhameed, A.; Banat, I.M.; Gazze, S.A.; Vujaklija, D.; Facey, P.D.; Francis, L.W.; Quinn, G.A. A novel alkaliphilic Streptomyces inhibits ESKAPE pathogens. Front. Microbiol., 2018, 9, 2458.
[http://dx.doi.org/10.3389/fmicb.2018.02458]
[10]
Kibret, M.; Guerrero-Garzón, J.F.; Urban, E.; Zehl, M.; Wronski, V-K.; Rückert, C.; Busche, T.; Kalinowski, J.; Rollinger, J.M.; Abate, D.; Zotchev, S.B. Streptomyces spp. from ethiopia producing antimicrobial compounds: characterization via bioassays, genome analyses, and mass spectrometry. Front. Microbiol., 2018, 9, 1270.
[http://dx.doi.org/10.3389/fmicb.2018.01270]
[11]
Franz, M.H.; Birzoi, R.; Maftei, C.V.; Maftei, E.; Kelter, G.; Fiebig, H.H.; Neda, I. Studies on the constituents of Helleborus purpurascens: analysis and biological activity of the aqueous and organic extracts. Amino Acids, 2018, 50(1), 163-188.
[http://dx.doi.org/10.1007/s00726-017-2502-6]
[12]
Srivastava, N.; Ibeyaima, A.; Sarethy, I.P. Screening of microorganisms for antimicrobial property from the lachhiwala reserve forest of Himalayas - A biodiversity hotspot. World J. Pharm. Res., 2017, 6(14), 424-442.
[http://dx.doi.org/10.20959/wjpr201714-9890]
[13]
Jones, K.L. Fresh isolates of actinomycetes in which the presence of sporogenous aerial mycelia is a fluctuating characteristic. J. Bacteriol., 1949, 57(2), 141-145.
[14]
Pridham, T.G.; Gottlieb, D. The utilization of carbon compounds by some actinomycetales as an aid for species determination. J. Bacteriol., 1948, 56(1), 107-114.
[15]
Kim, O-S.; Cho, Y-J.; Lee, K.; Yoon, S-H.; Kim, M.; Na, H.; Park, S-C.; Jeon, Y.S.; Lee, J-H.; Yi, H.; Won, S.; Chun, J. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol., 2012, 62(Pt 3), 716-721.
[http://dx.doi.org/10.1099/ijs.0.038075-0]
[16]
Jukes, T.H.; Cantor, C.R. Evolution of protein molecules. Mammalian Protein Metabolism; Elsevier, 1969, pp. 21-132.
[http://dx.doi.org/10.1016/B978-1-4832-3211-9.50009-7]
[17]
Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol., 2013, 30(12), 2725-2729.
[http://dx.doi.org/10.1093/molbev/mst197]
[18]
Bauer, A.W.; Kirby, W.M.; Sherris, J.C.; Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol., 1966, 45(4), 493-496.
[http://dx.doi.org/10.1093/ajcp/45.4_ts.493]
[19]
Park, D.H.; Kim, J.S.; Kwon, S.W.; Wilson, C.; Yu, Y.M.; Hur, J.H.; Lim, C.K.; Keun, C.; Kr, L.C.A. Streptomyces luridiscabiei sp. nov., Streptomyces puniciscabiei sp. nov. and Streptomyces niveiscabiei sp. nov., which cause potato common scab disease in Korea. Int. J. Syst. Evol. Microbiol., 2003, 53(Pt 6), 2049-2054.
[http://dx.doi.org/10.1099/ijs.0.02629-0]
[20]
Lee, H-J.; Whang, K-S. Streptomyces sasae sp. nov., isolated from bamboo (Sasa borealis) rhizosphere soil. Int. J. Syst. Evol. Microbiol., 2015, 65(10), 3547-3551.
[http://dx.doi.org/10.1099/ijsem.0.000454]
[21]
Gonçalves da Lima, O.; Delle Monache, F.; D’Albuquerque, I.L.; Marini Bettòlo, G.B. The identification of ciclacidine an antibiotic from Streptomyces capoamus sp. nov. Tetrahedron Lett., 1968, 4, 471-473.
[http://dx.doi.org/10.1016/S0040-4039(01)98786-6]
[22]
Zheng, J.; Zhang, X.; Xin, Y.; Han, X.; Ni, S.; Zhang, J. Streptomyces yaanensis sp. nov., isolated from soil. Int. J. Syst. Evol. Microbiol., 2013, 63(Pt 12), 4719-4723.
[http://dx.doi.org/10.1099/ijs.0.054734-0]
[23]
Kim, M.; Oh, H.S.; Park, S.C.; Chun, J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int. J. Syst. Evol. Microbiol., 2014, 64(Pt 2), 346-351.
[http://dx.doi.org/10.1099/ijs.0.059774-0]
[24]
Roy, R.N.; Laskar, S.; Sen, S.K. Dibutyl phthalate, the bioactive compound produced by Streptomyces albidoflavus 321.2. Microbiol. Res., 2006, 161(2), 121-126.
[http://dx.doi.org/10.1016/j.micres.2005.06.007]
[25]
Zheng, L.; Yan, X.; Xu, J.; Chen, H.; Lin, W. Hymeniacidon perleve associated bioactive bacterium pseudomonas sp. NJ6-3-1. Prikl. Biokhim. Mikrobiol., 2005, 41(1), 35-39.
[http://dx.doi.org/10.1007/s10438-005-0006-8]
[26]
Sharif, H.B.; Mukhtar, M.D.; Mustapha, Y.; Lawal, A.O. Preliminary investigation of bioactive compounds and bioautographic studies of whole plant extract of Euphorbia pulcherrima on Escherichia coli, Staphylococcus aureus, Salmonella typhi, and Pseudomonas aeruginosa. Adv. Pharm., 2015, 2015, 1-14.
[http://dx.doi.org/10.1155/2015/485469]
[27]
Yu, F-R.; Lian, X-Z.; Guo, H-Y.; McGuire, P.M.; Li, R-D.; Wang, R.; Yu, F-H. Isolation and characterization of methyl esters and derivatives from Euphorbia kansui (Euphorbiaceae) and their inhibitory effects on the human SGC-7901 cells. J. Pharm. Pharm. Sci., 2005, 8(3), 528-535.
[28]
Babushok, V.I.; Linstrom, P.J.; Zenkevich, I.G. Retention indices for frequently reported compounds of plant essential oils. J. Phys. Chem. Ref. Data, 2011, 40(4)043101
[http://dx.doi.org/10.1063/1.3653552]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy