Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Metabolomics and Pharmacological Screening of Aspergillus versicolor Isolated from Hyrtios erectus Red Sea Sponge; Egypt

Author(s): Mohamed A. Shreadah, Nehad M.A. El Moneam, Samy A. El-Assar and Asmaa Nabil-Adam*

Volume 16, Issue 7, 2020

Page: [1083 - 1102] Pages: 20

DOI: 10.2174/1573407215666191111122711

Price: $65

Abstract

Background: Aspergillus Versicolor is a marine-derived fungus isolated from Hyrtios Erectus Red Sea sponge.

Methods: The aim of this study was to carry out a pharmacological screening and investigation for the in vitro biological activity (antioxidant, cholinergic, antidiabetic and anticancer) of Aspergillus Versicolor crude extract’s active compounds by using different qualitative and quantitative methods.

Results: The present study results showed that Aspergillus Versicolor crude extracts contain 0.6 mg total phenolic/mg crude extract. Aspergillus Versicolor also showed a potent antioxidative capacity by decreasing the oxidation of ABTS. The anticancer and inhibitory effects of Aspergillus Versicolor crude extracts on PTK and SHKI were found to be 75.29 % and 80.76%; respectively. The AChE inhibitory assay revealed that Aspergillus Versicolor extracts had an inhibitory percentage of 86.67%. Furthermore, the anti-inflammatory activity using COX1, COX2, TNF, and IL6 was 77.32, 85.21 %, 59.83%, and 56.15%; respectively. Additionally, the anti-viral effect using reverse transcriptase enzyme showed high antiviral activity with 92.10 %.

Conclusion: The current study confirmed that the Aspergillus versicolor crude extract and its active constituents showed strong effects on diminishing the oxidative stress, neurodegenerative damage, antiinflammatory, anti-cancer and anti-viral, suggesting their beneficial role as a promising fermented product in the treatment of cancer, oxidative stress, Alzheimer's, anti-inflammatory and anti-viral diseases.

Keywords: Hyrtios erectus red sea sponge, Aspergillus versicolor extracts, anti-oxidant, anti-cancer, anti-inflammatory, antiviral activities.

Graphical Abstract
[1]
Blunt, J.W.; Copp, B.R.; Keyzers, R.A.; Munro, M.H.G.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep., 2015, 32(2), 116-211.
[http://dx.doi.org/10.1039/C4NP00144C]
[2]
Abdel Monein, N.M.; Yacout, G.A.; Aboul-Ela, H.M.; Shreadah, M.A. Hepatoprotective activity of chitosan nanocarriers loaded with the ethyl acetate extract of Astenotrophomonas sp. bacteria associated with the red sea sponge Amphimedon ochracea In CCl4 induced hepatotoxicity in rats. Adv. Biosci. Biotechnol., 2017, 8(1), 27-50.
[http://dx.doi.org/10.4236/abb.2017.81003]
[3]
Abd El Moneam, N.M.; Al-Assar, S.A.; Shreadah, M.A.; Nabil-Adam, A. Isolation, Identification and Molecular Screening of Psudomance Sp Metabolic pathways NRPs and PKS associated with the Red Sea sponge, Hyrtios aff. Erectus, Egypt. J. Pure Appl. Microbiol., 2017, 11(3), 1299-1311.
[http://dx.doi.org/10.22207/JPAM.11.3.10]
[4]
Abd El Moneam, N.M.; Shreadah, M.A.; Al-Assar, S.A. Nabil-Adam. A Protective role of antioxidants capacity of Hyrtios aff. Erectus sponge extract against mixture of Persistent Organic Pollutants (POPs)-induced hepatic toxicity in mice liver: Biomarkers and ultrastructural study. Environ. Sci. Pollut. Res. Int., 2017, 24(1), 22061-22072.
[http://dx.doi.org/10.1007/s11356-017-9805-8]
[5]
Abd El Moneam, N.M.; Al-Assar, S.A.; Shreadah, M.A.; Nabil-Adam, A. Isolation, identification and screening of Pseudomonas sp. metabolic pathways NRPs and PKS associated with the Red sea Sponge, Hyrtios aff. Erectus, Egypt. J. Pure Appl. Microbiol., 2017, 11(3), 1299-1311.
[http://dx.doi.org/10.22207/JPAM.11.3.10]
[6]
Abd El Moneam, N.M.; Shreadah, M.A.; Al-Assar, S.A.; De Voogd, N.J.; Nabil-Adam, A. Hepatoprotective effect of Red Sea sponge extract against the toxicity of a real-life mixture of persistent organic pollutants. Biotecnol Biotec Eq., 2018, 32(3), 734-743.
[http://dx.doi.org/10.1080/13102818.2018.1441747]
[7]
Shreadah, M.A.; Abd El Moneam, N.M.; Al-Assar, S.A.; Nabil-Adam, A. The ameliorative role of a marine sponge extract against mixture of persistent organic pollutants induced changes in hematological parameters in mice. Expert Opin. Environ. Biol., 2017, 6(2)
[http://dx.doi.org/10.4172/2325-9655.1000143]
[8]
Shreadah, M.A.; El Moneam, N.M.A.; Al-Assar, S.A.; Nabil-Adam, A. Phytochemical and pharmacological screening of Sargassium vulgare from Suez Canal, Egypt. Food Sci. Biotechnol., 2018, 27(4), 963-979.
[http://dx.doi.org/10.1007/s10068-018-0323-3]
[9]
Shreadah, M.A. Abdel Monein, Yakout G, Abo-Ella H. Bacteria from marine sponges: A source of biologically active compounds. Biomed. J. Sci. Tech. Res., 2018, 10(5), 8159-8178.
[10]
Shreadah, M.A.; Abdel Moniem, N.M.; Yakout, G.; Abo-Ella, H.M. Isolation, phylogenetic analysis of the microbial community associated with the red sea sponge Ircinia Echinata and biological evaluation of their secondary metabolites. Biomed. J. Sci. Tech. Res., 2018, 12(2), 9064-9082.
[11]
Shreadah, M.A.; Abdel Moneam, N.M.; Yacout, G.A. Bacteria from marine sponges: A source of biologically active compounds. Biomed. J. Sci. Tech. Res., 2018, 10(5), 1-7.
[12]
Shreadah, M.A.; Abdel Moneam, N.M.; Yacout, G.A.; Aboul-Ela, H.M. Sponge associated bacteria: Isolation, phylogenetic analysis and biotechnological potential. Biomed. J. Sci. Tech. Res., 2019, 15(2), 1-17.
[13]
Abdel-Tawab, A.M.; Fayad, W.; Shreadah, M.A.; Nassar, M.I.; Abou-Elzahab, M.M.; Abdel-Mogib, M. GC/MS Identification and biological evaluation of the Red sea soft coral Nephthea molle extracts. Res. J. Pharm. Biol. Chem. Sci., 2018, 9(3), 595-602.
[14]
Zhi-Qiang, X.; Xiao-Rong, T.; Sai-Jin, W.; Lin, H.; Xun-Hang, L.; Hui, L.; Guo-Quan, T. The mechanism of antifungal action of a new polyene macrolide antibiotic antifungalmycin 702 from Streptomycespadanus JAU4234 on the rice sheath blight pathogen Rhizoctonia solani. PLoS One, 2013, 8(8), e73884
[http://dx.doi.org/10.1371]
[15]
Radjasa, O.K.; Vaske, Y.M.; Navarro, G.; Vervoort, H.C.; Tenney, K.; Linington, R.G.; Crews, P. Highlights of marine invertebrate-derived biosynthetic products: Their biomedical potential and possible production by microbial associants. Bioorg. Med. Chem., 2011, 19(22), 6658-6674.
[http://dx.doi.org/10.1016/j.bmc.2011.07.017]
[16]
Petit, K.; Biard, J.F. Marine natural products and related compounds as anticancer agents: An overview of their clinical status. Anticancer. Agents Med. Chem., 2013, 13(4), 603-631.
[http://dx.doi.org/10.2174/1871520611313040010]
[17]
Abdel-Monem, N.M.; Abdel-Azeem, A.M.; El-Ashry, E.H.; Ghareeb, D.A. Nabiel-Adam, A pretreatment hepatoprotective effect of the marine fungus derived from sponge on hepatic toxicity induced by heavy metals in rats. BioMed Res. Int., 2013, 2013, 510879
[18]
Hegazy, M.E.; Mohamed, T.A.; Elshamy, A.I.; Hassanien, A.A.; Abdel-Azim, N.S.; Shreadah, M.A.; Abdelgawad, I.I.; Elkady, E.M.; Paré, P.W. A new steroid from the Red Sea soft coral Lobophytum lobophytum. Nat. Prod. Res., 2016, 30(3), 340-344.
[http://dx.doi.org/10.1080/14786419.2015.1046871]
[19]
Hegazy, M.E.; Gamal-Eldeen, A.M.; Mohamed, T.A.; Alhammady, M.A.; Hassanien, A.A.; Shreadah, M.A.; Abdelgawad, I.I.; Elkady, E.M.; Paré, P.W. New cytotoxic constituents from the Red Sea soft coral Nephthea sp. Nat. Prod. Res., 2016, 30(11), 1266-1272.
[http://dx.doi.org/10.1080/14786419.2015.1055266]
[20]
Shriadah, M.A.; Okbah, M.A.; El-Deek, M.S. Trace metals in the water columns of the Red Sea and the Gulf of Aqaba, Egypt. Water Air Soil Pollut., 2004, 153, 115-124.
[http://dx.doi.org/10.1023/B:WATE.0000019938.57041.21]
[21]
Okbah, M.A.; Shata, M.A.; Shriadah, M.A. Gochemical forms of trace metals in mangrove sediments-Red Sea (Egypt). Chem. Ecol., 2005, 21, 23-36.
[http://dx.doi.org/10.1080/02757540512331323953]
[22]
Fahmy, M.A.; Shriadah, M.A. AbulSoud A, Abdel Rahman SM, Shindy M. Hydrography and chemical characteristics of the coastal water along the gulf of suez. Egyptian J. Aquatic Res., 2005, 31, 1-14.
[23]
Fahmy, M.A.; Abdel-Halim, A.M.; Abdel Nabi, M.A.; Abo-El-Khair, E.M.; Ahdy, H.H.; Hemeilly, A.; Abu El-Soud, A.; Shreadah, M.A. Evaluations of the coastal water quality of the Egyptian Red Sea during 2011-2013. J. Environ. Prot., 2016, 7(12), 1810-1834.
[http://dx.doi.org/10.4236/jep.2016.712145]
[24]
Abdel-Halim, A.M.; Abo El-Khair, E.M.; Fahmy, M.A.; Shreadah, M.A. Environmental assessment on the Aqaba Gulf Coastal waters, Egypt. Egyptian J. Aquatic Res., 2007, 33(1), 1-14.
[25]
Abdel-Halim, A.M.; Abdel Nabi, M.A.; Abdel Fattah, L.M. Fahmy, MA Abo El-Khair, EM khaled AM, Abu El-Soud A, Shreadah MA. Environmental studies on the Aqaba Gulf coastal waters during 2011-2013. J. Environ. Prot., 2016, 7, 1411-1437.
[26]
Abo-El khair EM, Abdel Halim AM, Shriadah MA, Fahmy MA. . Environmental conditions of the Suez Gulf and the Red Sea coastal waters, Egypt. Proceedings of the 8th International Conference on the Mediterranean Coastal Environment. MEDCOAST 2007. E. Ozhan (Editor). 13 – 17 November 2007. Alexandria. Egypt.,, 2007, pp. 517-526.
[27]
Abo-El khair EM, Abdel Halim AM, Fahmy MA, Shriadah MA. . Environmental impact assessment of northern red sea regions during 2005 – 2007. Egyptian J Aquatic Res., 2008, 34(2), 20-30.
[28]
Abo-El khair EM, Abdel Fattah LM, Abdel-Halim AM, Abdel Nabi MA, Fahmy MA, Ahdy HH, Hemeilly A, Abu El-Soud A, Shreadah MA. Assessment of the hydrochemical characteristics for the coastal waters of the Suez Gulf during 2011-2013. J. Environ. Prot., 2016, 7, 1497-1521.
[29]
Shreadah, M.A.; Said, T.O.; El Zokm, G.M.; Masoud, M.S. physico-chemical characterititics of the surficial sediments along the Egyptian Red Sea Coasts. Egyptian J. Aqu. Res., 2008, 34(4), 16-34.
[30]
Shreadah, M.A.; Said, T.O.; Abd El Ghani, S.A.; Ahmed, A.M. Alkyllead and Alkyltin Species in different fishes collected from the Suez Gulf, Egypt. Egyptian J Aqu Res., 2008, 34(4), 64-73.
[31]
Shreadah, M.A.; Masoud, M.S.; Said, T.O.; El Zokm, G.M. Application of IR, X-Ray, TGA and DTA to determine the mineral composition of the Sediments and study of reaction kinetics along the Egyptian Red Sea Coasts. Egyptian J. Aqu. Res., 2008, 34(2), 83-95.
[32]
Shreadah, M.A.; Said, T.O.; Abdel Ghani, S.A.; Ahmed, A.M. Distribution of different organotinand organolead compounds in sediment of Suez Gulf J. Environ. Prog., 2011, 2(5), 545-554.
[33]
El-assar, S.A.; Nabil-Adam, A.; Shreadah, M.A.; Abdel-Moniem, N.M. Pesudomance sp. bacteria associated with marine sponge as a promising and sustainable source of bioactive molecules. Curr. Pharm. Biotechnol., 2019, 20(11), 964-984.
[http://dx.doi.org/10.2174/1389201020666190619092502]
[34]
Gurguess, S.M.; Shreadah, M.A.; Fahmy, M.A.; Aboul El Kheir, E.M.; Abdel Halim, A. Assessment of water quality in the Red Sea using in situ measurements and remote sensing data. Egyptian J. Aqu. Res., 2009, 35(2), 1-13.
[35]
Said, T.O.; Shreadah, M.A.; AbdelGhani, S.A.; Ahmed, A.M. Alkyltin and alkayllead compounds in coastal water of Suez Gulf, Egypt. Egyptian J. Aqu. Res., 2010, 36(1), 33-42.
[36]
Masoud, M.S.; Said, T.O. El- Zokm GM, Shreadah MA. Speciation of Fe, Mn and Zn in Surficial Sediments from the Egyptian Red Sea Coasts. Chem. Spec. Bioavail., 2010, 22(4), 257-269.
[http://dx.doi.org/10.3184/095422910X12894975123773]
[37]
Masoud, M.S.; Said, T.O.; El-Zokm, G.M.; Shreadah, M.A. Assessment of heavy metals contamination in surface sediments of the Egyptian Red Sea Coasts. Aust. J. Basic Appl. Sci., 2012, 6, 44-58.
[38]
Aboul-Ela, H.M.; Shreadah, M.A.; Abdel-Monem, N.M.; Yakout, G.A.; Van Soest, R.W.M. Isolation, cytotoxic activity and phylogenetic analysis of Bacillus sp. bacteria associated with the red sea sponge Amphimedonochracea. Adv. Biosci. Biotechnol., 2012, 3(7), 815-823.
[http://dx.doi.org/10.4236/abb.2012.37101]
[39]
Chakraborty, K.; Lipton, A.P.; Paulraj, R.; Chakraborty, R.D. Guaiane sesquiterpenes from seaweed Ulva fasciata Delile and their antibacterial properties. Eur. J. Med. Chem., 2010, 45(6), 2237-2244.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.065]
[40]
Ellman, G.L.; Courtney, K.D.; Andres, V., Jr; Feather-Stone, R.M.; Featherstone, M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol., 1961, 7(2), 88-95.
[http://dx.doi.org/10.1016/0006-2952(61)90145-9]
[41]
Moyo, S.J.; Aboud, S.; Kasubi, M.; Lyamuya, E.F.; Maselle, S.Y. Antimicrobial resistance among producers and non-producers of extended spectrum beta-lactamases in urinary isolates at a tertiary Hospital in Tanzania. BMC Res. Notes, 2010, 3, 348.
[http://dx.doi.org/10.1186/1756-0500-3-348]
[42]
Fonteh, P.N.; Keter, F.K.; Meyer, D. New bis(thiosemicarbazonate) gold(III) complexes inhibit HIV replication at cytostatic concentrations: Potential for incorporation into virostatic cocktails. J. Inorg. Biochem., 2011, 105(9), 1173-1180.
[http://dx.doi.org/10.1016/j.jinorgbio.2011.05.011]
[43]
Charrouf, Z.; Hilali, M.; Jáuregui, O.; Soufiaoui, M.; Guillaume, D. Separation and characterization of phenolic compounds in argan fruit pulp using liquid chromatography–negative electrospray ionization tandem mass spectroscopy. Food Chem., 2007, 100(4), 1398-1401.
[http://dx.doi.org/10.1016/j.foodchem.2005.11.031]
[44]
Nair, M.P.; Saiyed, Z.M.; Gandhi, N.H.; Ramchand, C.N. The flavonoid, quercetin, inhibits HIV-1 infection in normal peripheral blood mononuclear cells. Am. J. Infect. Dis., 2009, 5(2), 135-141.
[http://dx.doi.org/10.3844/ajidsp.2009.135.141]
[45]
Machu, L.; Misurcova, L.; Ambrozova, J.V.; Orsavova, J.; Mlcek, J.; Sochor, J.; Jurikova, T. Phenolic content and antioxidant capacity in algal food products. Molecules, 2015, 20(1), 1118-1133.
[http://dx.doi.org/10.3390/molecules20011118]
[46]
Modi, M.; Goel, T.; Das, T.; Malik, S.; Suri, S.; Rawat, A.K.; Srivastava, S.K.; Tuli, R.; Malhotra, S.; Gupta, S.K. Nutan. Ellagic acid & gallic acid from Lagerstroemia speciosa L. inhibit HIV-1 infection through inhibition of HIV-1 protease & reverse transcriptase activity. Indian J. Med. Res., 2013, 137(3), 540-548.
[47]
Vázquez-Calvo, Á.; Jiménez de Oya, N.; Martín-Acebes, M.A.; Garcia-Moruno, E. Saiz, JC. Antiviral properties of the natural polyphenols Delphinidin and Epigallocatechin Gallate against the Flaviviruses West Nile Virus. Zika Virus, and Dengue Virus. Front. Microbiol., 2017, 8, 1314.
[48]
Dharmaratne, H.R.; Tan, G.T.; Marasinghe, G.P.; Pezzuto, J.M. Inhibition of HIV-1 reverse transcriptase and HIV-1 replication by Calophyllum coumarins and xanthones. Planta Med., 2002, 68(1), 86-87.
[http://dx.doi.org/10.1055/s-2002-20058]
[49]
Li, Y.; Yao, J.; Han, C.; Yang, J.; Chaudhry, M.T.; Wang, S.; Yin, Y. Quercetin, Inflammation and Immunity. Nutrients, 2016, 8(3), 167.
[50]
Gasperi, V.; Evangelista, D.; Oddi, S.; Florenzano, F.; Chiurchiù, V.; Avigliano, L.; Catani, M.V.; Maccarrone, M. Regulation of inflammation and proliferation of human bladder carcinoma cells by type-1 and type-2 cannabinoid receptors. Life Sci., 2015, 138, 41-51.
[http://dx.doi.org/10.1016/j.lfs.2014.09.031]
[51]
Liu, J.; Ma, D.W.L. The role of n-3 polyunsaturated fatty acids in the prevention and treatment of breast cancer. Nutrients, 2014, 6(11), 5184-5223.
[http://dx.doi.org/10.3390/nu6115184]
[52]
Chen, A.; Okafor, I.S.; Garcia, C.; Wang, G. Synthesis and self-assembling properties of 4,6-O-benzylidene acetal protected D-glucose and D-glucosamine β-1,2,3-triazole derivatives. Carbohydr. Res., 2018, 461, 60-75.
[http://dx.doi.org/10.1016/j.carres.2018.02.011]
[53]
Kong, L.; Luo, C.; Li, X.; Zhou, Y.; He, H. The anti-inflammatory effect of kaempferol on early atherosclerosis in high cholesterol fed rabbits. Lipids Health Dis., 2013, 12, 115-127.
[http://dx.doi.org/10.1186/1476-511X-12-115]
[54]
Kassim, M.; Achoui, M.; Mustafa, M.R.; Mohd, M.A.; Yusoff, K.M. Ellagic acid, phenolic acids, and flavonoids in Malaysian honey extracts demonstrate in vitro anti-inflammatory activity. Nutr. Res., 2010, 30(9), 650-659.
[http://dx.doi.org/10.1016/j.nutres.2010.08.008]
[55]
Batra, P; Sharma, AK Anti-cancer potential of flavonoids: recent trends and future perspectives. 3 Biotech, 2013, 3(6), 439-459.
[56]
Uddin, S.; Choudhry, M.A. Quercetin, a bioflavonoid, inhibits the DNA synthesis of human leukemia cells. Biochem. Mol. Biol. Int., 1995, 36(3), 545-550.
[57]
Papademetrio, D.L.; Trabucchi, A.; Cavaliere, V.; Ricco, R.; Costantino, S.; Wagner, M.L.; Álvarez, E. The catechin fl avonoid reduces proliferation and induces apoptosis of murine lymphoma cells LB02 through modulation of antiapoptotic proteins. Rev. Bras. Farmacogn. Braz. J. Pharmacogn., 2013, 23(3), 455-463.
[http://dx.doi.org/10.1590/S0102-695X2013005000025]
[58]
Lugli, E.; Ferraresi, R.; Roat, E.; Troiano, L.; Pinti, M.; Nasi, M.; Nemes, E.; Bertoncelli, L.; Gibellini, L.; Salomoni, P.; Cooper, E.L.; Cossarizza, A. Quercetin inhibits lymphocyte activation and proliferation without inducing apoptosis in peripheral mononuclear cells. Leuk. Res., 2009, 33(1), 140-150.
[http://dx.doi.org/10.1016/j.leukres.2008.07.025]
[59]
Nakanishi, C.; Toi, M. Nuclear factor-kappaB inhibitors as sensitizers to anticancer drugs. Nat. Rev. Cancer, 2005, 5(4), 297-309.
[http://dx.doi.org/10.1038/nrc1588]
[60]
Reuter, S.; Eifes, S.; Dicato, M.; Aggarwal, B.B.; Diederich, M. Modulation of anti-apoptotic and survival pathways by curcumin as a strategy to induce apoptosis in cancer cells. Biochem. Pharmacol., 2008, 76(11), 1340-1351.
[http://dx.doi.org/10.1016/j.bcp.2008.07.031]
[61]
Siegelin, M.D.; Reuss, D.E.; Habel, A.; Rami, A.; von Deimling, A. Quercetin promotes degradation of survivin and thereby enhances death-receptor-mediated apoptosis in glioma cells. Neuro-oncol., 2009, 11(2), 122-131.
[http://dx.doi.org/10.1215/15228517-2008-085]
[62]
Cavenic Lavier, M.C.; Vernevaut, M.F.; Totis, M.; Siess, M.H.; Magdalou, J.; Suschetet, M. Comparative effects of flavonoids and model inducers on drug metabolising enzymes in rat liver. Toxicol., 1996, 114, 19-27.
[http://dx.doi.org/10.1016/S0300-483X(96)03412-9]
[63]
Cerdá Zolezzi, P.; Aulicino, P.; Wagner, M.; Fernández, T.; Hajos, S.; Álvarez, E. Induction of apoptosis and regulation of cytokine production by flavonoids in murine leukemia. Medicine. Medicina (B. Aires), 2000, 60, 799.
[64]
Lolli, G.; Cozza, G.; Mazzorana, M.; Tibaldi, E.; Cesaro, L.; Donella-Deana, A.; Meggio, F.; Venerando, A.; Franchin, C.; Sarno, S.; Battistutta, R.; Pinna, L.A. Inhibition of protein kinase CK2 by flavonoids and tyrphostins. A structural insight. Biochemistry, 2012, 51(31), 6097-6107.
[http://dx.doi.org/10.1021/bi300531c]
[65]
Gurr, M.; Harwood, J.; Frayn, K. Lipid Biochemistry. An Introduction; Wiley- Blackwell: Hoboken, 2008.
[66]
Colomer, R.; Moreno-Nogueira, J.M.; García-Luna, P.P.; García-Peris, P.; García-de-Lorenzo, A.; Zarazaga, A.; Quecedo, L.; del Llano, J.; Usán, L.; Casimiro, C. N-3 fatty acids, cancer and cachexia: A systematic review of the literature. Br. J. Nutr., 2007, 97(5), 823-831.
[http://dx.doi.org/10.1017/S000711450765795X]
[67]
Wall, R.; Ross, R.P.; Fitzgerald, G.F.; Stanton, C. Fatty acids from fish: The anti-inflammatory potential of long-chain omega-3 fatty acids. Nutr. Rev., 2010, 68(5), 280-289.
[http://dx.doi.org/10.1111/j.1753-4887.2010.00287.x]
[68]
Calder, P.C. Dietary modification of inflammation with lipids. Proc. Nutr. Soc., 2002, 61(3), 345-358.
[http://dx.doi.org/10.1079/PNS2002166]
[69]
Arab, K.; Rossary, A.; Flourié, F.; Tourneur, Y.; Steghens, J.P. Docosahexaenoic acid enhances the antioxidant response of human fibroblasts by upregulating gamma-glutamyl-cysteinyl ligase and glutathione reductase. Br. J. Nutr., 2006, 95(1), 18-26.
[http://dx.doi.org/10.1079/BJN20051626]
[70]
Kim, Y.J.; Chung, H.Y. Antioxidative and anti-inflammatory actions of docosahexaenoic acid and eicosapentaenoic acid in renal epithelial cells and macrophages. J. Med. Food, 2007, 10(2), 225-231.
[http://dx.doi.org/10.1089/jmf.2006.092]
[71]
Cerchietti, L.C.; Navigante, A.H.; Castro, M.A. Effects of eicosapentaenoic and docosahexaenoic n-3 fatty acids from fish oil and preferential Cox-2 inhibition on systemic syndromes in patients with advanced lung cancer. Nutr. Cancer, 2007, 59(1), 14-20.
[http://dx.doi.org/10.1080/01635580701365068]
[72]
Sonnweber, T.; Pizzini, A.; Nairz, M.; Weiss, G.; Tancevski, I. Arachidonic acid metabolites in cardiovascular and metabolic diseases. Int. J. Mol. Sci., 2018, 19(11), 3285.
[http://dx.doi.org/10.3390/ijms19113285]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy