Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

General Review Article

Solvent Perturbation of Protein Structures - A Review Study with Lectins

Author(s): Pritha Mandal and Anisur R. Molla*

Volume 27, Issue 6, 2020

Page: [538 - 550] Pages: 13

DOI: 10.2174/0929866526666191104145511

Price: $65

Abstract

Use of organic molecules as co-solvent with water, the ubiquitous biological solvent, to perturb the structure of proteins is popular in the research area of protein structure and folding. These organic co-solvents are believed to somehow mimic the environment near the cell membrane. Apart from that they induce non-native states which can be present in the protein folding pathway or those states also may be representative of the off pathway structures leading to amyloid formation, responsible for various fatal diseases. In this review, we shall focus on organic co-solvent induced structure perturbation of various members of lectin family. Lectins are excellent model systems for protein folding study because of its wide occurrence, diverse structure and versatile biological functions. Lectins were mainly perturbed by two fluoroalcohols – 2,2,2- trifluoroethanol and 1,1,1,3,3,3-hexafluoroisopropanol whereas glycerol, ethylene glycol and polyethylene glycols were used in some cases. Overall, all native lectins were denatured by alcohols and most of the denatured lectins have predominant helical secondary structure. But characterization of the helical states and the transition pathway for various lectins revealed diverse result.

Keywords: Lectins, solvent perturbation, trifluoroethanol, hexafluoroisopropanol, protein aggregation, secondary structure.

Graphical Abstract
[1]
Dobson, C.M.; Šali, A.; Karplus, M. Protein folding: A perspective from theory and experiment. Angew. Chem. Int. Ed. Engl., 1998, 37(7), 868-893.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19980420)37:7<868:AID-ANIE868>3.0.CO;2-H] [PMID: 29711488]
[2]
Dobson, C.M. Principles of protein folding, misfolding and aggregation. Semin. Cell Dev. Biol., 2004, 15(1), 3-16.
[http://dx.doi.org/10.1016/j.semcdb.2003.12.008] [PMID: 15036202]
[3]
Wetlaufer, D.B.; Ristow, S. Acquisition of three-dimensional structure of proteins. Annu. Rev. Biochem., 1973, 42, 135-158.
[http://dx.doi.org/10.1146/annurev.bi.42.070173.001031] [PMID: 4581224]
[4]
Anfinsen, C.B. Principles that govern the folding of protein chains. Science, 1973, 181(4096), 223-230.
[http://dx.doi.org/10.1126/science.181.4096.223] [PMID: 4124164]
[5]
Levinthal, C. Are there pathways for protein folding? J. Chim. Phys. Physico-Chimie Biol., 1968, 65, 44-45.
[http://dx.doi.org/10.1051/jcp/1968650044]
[6]
Baldwin, R.L. How does protein folding get started? Trends Biochem. Sci., 1989, 14(7), 291-294.
[http://dx.doi.org/10.1016/0968-0004(89)90067-4] [PMID: 2672452]
[7]
Kim, P.S.; Baldwin, R.L. Specific intermediates in the folding reactions of small proteins and the mechanism of protein folding. Annu. Rev. Biochem., 1982, 51, 459-489.
[http://dx.doi.org/10.1146/annurev.bi.51.070182.002331] [PMID: 6287919]
[8]
Brockwell, D.J.; Radford, S.E. Intermediates: ubiquitous species on folding energy landscapes? Curr. Opin. Struct. Biol., 2007, 17(1), 30-37.
[http://dx.doi.org/10.1016/j.sbi.2007.01.003] [PMID: 17239580]
[9]
Greene, R.F., Jr; Pace, C.N. Urea and guanidine hydrochloride denaturation of ribonuclease, lysozyme, α-chymotrypsin, and β-lactoglobulin. J. Biol. Chem., 1974, 249(17), 5388-5393. ,
[PMID: 4416801]
[10]
Fink, A.L.; Calciano, L.J.; Goto, Y.; Kurotsu, T.; Palleros, D.R. Classification of acid denaturation of proteins: intermediates and unfolded states. Biochemistry, 1994, 33(41), 12504-12511.
[http://dx.doi.org/10.1021/bi00207a018] [PMID: 7918473]
[11]
Bai, J.H.; Wang, H.J.; Zhou, H.M. Alkaline-induced unfolding and salt-induced folding of pig heart lactate dehydrogenase under high pH conditions. Int. J. Biol. Macromol., 1998, 23(2), 127-133.
[http://dx.doi.org/10.1016/S0141-8130(98)00033-6] [PMID: 9730166]
[12]
Singh, K.; Shandilya, M.; Kundu, S.; Kayastha, A.M. Heat, acid and chemically induced unfolding pathways, conformational stability and structure-function relationship in wheat α- amylase. PLoS One, 2015, 10(6)e0129203
[http://dx.doi.org/10.1371/journal.pone.0129203] [PMID: 26053142]
[13]
Couthon, F.; Clottes, E.; Angrand, M.; Roux, B.; Vial, C. Denaturation of MM-creatine kinase by sodium dodecyl sulfate. J. Protein Chem., 1996, 15(6), 527-537.
[http://dx.doi.org/10.1007/BF01908534] [PMID: 8895099]
[14]
Varshney, A.; Rabbani, G.; Badr, G.; Khan, R.H. Cosolvents induced unfolding and aggregation of keyhole limpet hemocyanin. Cell Biochem. Biophys., 2014, 69(1), 103-113.
[http://dx.doi.org/10.1007/s12013-013-9776-4] [PMID: 24242285]
[15]
Bhattacharjya, S.; Balaram, P. Effects of organic solvents on protein structures: observation of a structured helical core in hen egg-white lysozyme in aqueous dimethylsulfoxide. Proteins, 1997, 29(4), 492-507.
[http://dx.doi.org/10.1002/(SICI)1097-0134(199712)29:4<492:AID-PROT9>3.0.CO;2-A] [PMID: 9408946]
[16]
Khan, M.V.; Rabbani, G.; Ishtikhar, M.; Khan, S.; Saini, G.; Khan, R.H. Non-fluorinated cosolvents: A potent amorphous aggregate inducer of metalloproteinase-conalbumin (ovotransferrin). Int. J. Biol. Macromol., 2015, 78, 417-428.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.04.021] [PMID: 25900857]
[17]
Griebenow, K.; Klibanov, A.M. On protein denaturation in aqueous-organic mixtures but not in pure organic solvents. J. Am. Chem. Soc., 1996, 118, 11695-11700.
[http://dx.doi.org/10.1021/ja961869d]
[18]
Naqvi, Z.; Ahmad, E.; Khan, R.H.; Saleemuddin, M. Non-native states of bovine beta-lactoglobulin induced by acetonitrile: pH-dependent unfolding of the two genetic variants A and B. Cell Biochem. Biophys., 2013, 66(1), 175-185.
[http://dx.doi.org/10.1007/s12013-012-9466-7] [PMID: 23161102]
[19]
Sen, P.; Iqbal, M.A.; Fatima, S.; Khan, R.H. Methyl cyanide induces α to β transition and aggregation at high concentrations in E-state of human serum albumin. Biochemistry (Mosc.), 2010, 75(3), 367-374.
[http://dx.doi.org/10.1134/S0006297910030132] [PMID: 20370615]
[20]
Bhattacharjya, S.; Balaram, P. Hexafluoroacetone hydrate as a structure modifier in proteins: characterization of a molten globule state of hen egg-white lysozyme. Protein Sci., 1997, 6(5), 1065-1073.
[http://dx.doi.org/10.1002/pro.5560060513] [PMID: 9144778]
[21]
Herskovits, T.T.; Gadegbeku, B.; Jaillet, H. On the structural stability and solvent denaturation of proteins. I. Denaturation by the alcohols and glycols. J. Biol. Chem., 1970, 245(10), 2588-2598.
[PMID: 5445802]
[22]
Sticht, H.; Willbold, D.; Ejchart, A.; Rosin-Arbesfeld, R.; Yaniv, A.; Gazit, A.; Rösch, P. Trifluoroethanol stabilizes a helix-turn-helix motif in equine infectious-anemia-virus trans-activator protein. Eur. J. Biochem., 1994, 225(3), 855-861.
[http://dx.doi.org/10.1111/j.1432-1033.1994.0855b.x] [PMID: 7957222]
[23]
Munishkina, L.A.; Phelan, C.; Uversky, V.N.; Fink, A.L. Conformational behavior and aggregation of α-synuclein in organic solvents: modeling the effects of membranes. Biochemistry, 2003, 42(9), 2720-2730.
[http://dx.doi.org/10.1021/bi027166s] [PMID: 12614167]
[24]
Perham, M.; Liao, J.; Wittung-Stafshede, P. Differential effects of alcohols on conformational switchovers in α-helical and β-sheet protein models. Biochemistry, 2006, 45(25), 7740-7749.
[http://dx.doi.org/10.1021/bi060464v] [PMID: 16784225]
[25]
Tanford, C.; De, P.K.; Taggart, V.G. The role of the α-helix in the structure of proteins. Optical rotatory dispersion of β-lactoglobulin. J. Am. Chem. Soc., 1960, 82, 6028-6034.
[http://dx.doi.org/10.1021/ja01508a015]
[26]
Nelson, J.W.; Kallenbach, N.R. Stabilization of the ribonuclease S-peptide α-helix by trifluoroethanol. Proteins, 1986, 1(3), 211-217.
[http://dx.doi.org/10.1002/prot.340010303] [PMID: 3449856]
[27]
Lehrman, S.R.; Tuls, J.L.; Lund, M. Peptide α-helicity in aqueous trifluoroethanol: correlations with predicted α-helicity and the secondary structure of the corresponding regions of bovine growth hormone. Biochemistry, 1990, 29(23), 5590-5596.
[http://dx.doi.org/10.1021/bi00475a025] [PMID: 2386788]
[28]
Xiong, K.; Asher, S.A. Circular dichroism and UV resonance raman study of the impact of alcohols on the Gibbs free energy landscape of an α-helical peptide. Biochemistry, 2010, 49(15), 3336-3342.
[http://dx.doi.org/10.1021/bi100176a] [PMID: 20225890]
[29]
Sönnichsen, F.D.; Van Eyk, J.E.; Hodges, R.S.; Sykes, B.D. Effect of trifluoroethanol on protein secondary structure: an NMR and CD study using a synthetic actin peptide. Biochemistry, 1992, 31(37), 8790-8798.
[http://dx.doi.org/10.1021/bi00152a015] [PMID: 1390666]
[30]
Greff, D.; Toma, F.; Fermandjian, S.; Löw, M.; Kisfaludy, L. Conformational studies of corticotropin1-32 and constitutive peptides by circular dichroism. Biochim. Biophys. Acta, 1976, 439(1), 219-231.
[http://dx.doi.org/10.1016/0005-2795(76)90177-X] [PMID: 182236]
[31]
Marion, D.; Zasloff, M.; Bax, A. A two-dimensional NMR study of the antimicrobial peptide magainin 2. FEBS Lett., 1988, 227(1), 21-26.
[http://dx.doi.org/10.1016/0014-5793(88)81405-4] [PMID: 3338566]
[32]
Lequin, O.; Bruston, F.; Convert, O.; Chassaing, G.; Nicolas, P. Helical structure of dermaseptin B2 in a membrane-mimetic environment. Biochemistry, 2003, 42(34), 10311-10323.
[http://dx.doi.org/10.1021/bi034401d] [PMID: 12939161]
[33]
Kemmink, J.; Creighton, T.E. Effects of trifluoroethanol on the conformations of peptides representing the entire sequence of bovine pancreatic trypsin inhibitor. Biochemistry, 1995, 34(39), 12630-12635.
[http://dx.doi.org/10.1021/bi00039a019] [PMID: 7548013]
[34]
Siligardi, G.; Drake, A.F.; Mascagni, P.; Neri, P.; Lozzi, L.; Niccolai, N.; Gibbons, W.A. Resolution of conformation equilibria in linear peptides by circular dichroism in cryogenic solvents. Biochem. Biophys. Res. Commun., 1987, 143(3), 1005-1011.
[http://dx.doi.org/10.1016/0006-291X(87)90351-2] [PMID: 3566748]
[35]
Buck, M.; Schwalbe, H.; Dobson, C.M. Characterization of conformational preferences in a partly folded protein by heteronuclear NMR spectroscopy: assignment and secondary structure analysis of hen egg-white lysozyme in trifluoroethanol. Biochemistry, 1995, 34(40), 13219-13232.
[http://dx.doi.org/10.1021/bi00040a038] [PMID: 7548086]
[36]
Konno, T.; Iwashita, J.; Nagayama, K. Fluorinated alcohol, the third group of cosolvents that stabilize the molten-globule state relative to a highly denatured state of cytochrome c. Protein Sci., 2000, 9(3), 564-569.
[http://dx.doi.org/10.1110/ps.9.3.564] [PMID: 10752618]
[37]
Wilkinson, K.D.; Mayer, A.N. Alcohol-induced conformational changes of ubiquitin. Arch. Biochem. Biophys., 1986, 250(2), 390-399.
[http://dx.doi.org/10.1016/0003-9861(86)90741-1] [PMID: 3022649]
[38]
Buck, M.; Radford, S.E.; Dobson, C.M. A partially folded state of hen egg white lysozyme in trifluoroethanol: structural characterization and implications for protein folding. Biochemistry, 1993, 32(2), 669-678.
[http://dx.doi.org/10.1021/bi00053a036] [PMID: 8422374]
[39]
Shiraki, K.; Nishikawa, K.; Goto, Y. Trifluoroethanol-induced stabilization of the α-helical structure of β-lactoglobulin: implication for non-hierarchical protein folding. J. Mol. Biol., 1995, 245(2), 180-194.
[http://dx.doi.org/10.1006/jmbi.1994.0015] [PMID: 7799434]
[40]
Jackson, M.; Mantsch, H.H. Halogenated alcohols as solvents for proteins: FTIR spectroscopic studies. Biochim. Biophys. Acta, 1992, 1118(2), 139-143.
[http://dx.doi.org/10.1016/0167-4838(92)90141-Y] [PMID: 1730030]
[41]
Gast, K.; Zirwer, D.; Müller-Frohne, M.; Damaschun, G. Trifluoroethanol-induced conformational transitions of proteins: insights gained from the differences between α-lactalbumin and ribonuclease A. Protein Sci., 1999, 8(3), 625-634.
[http://dx.doi.org/10.1110/ps.8.3.625] [PMID: 10091665]
[42]
Sundd, M.; Kundu, S.; Jagannadham, M.V. Alcohol-induced conformational transitions in ervatamin C. An α-helix to β-sheet switchover. J. Protein Chem., 2000, 19(3), 169-176.
[http://dx.doi.org/10.1023/A:1007010818108] [PMID: 10981808]
[43]
Schönbrunner, N.; Wey, J.; Engels, J.; Georg, H.; Kiefhaber, T. Native-like β-structure in a trifluoroethanol-induced partially folded state of the all-β-sheet protein tendamistat. J. Mol. Biol., 1996, 260(3), 432-445.
[http://dx.doi.org/10.1006/jmbi.1996.0412] [PMID: 8757805]
[44]
Hamada, D.; Segawa, S.; Goto, Y. Non-native alpha-helical intermediate in the refolding of beta-lactoglobulin, a predominantly beta-sheet protein. Nat. Struct. Biol., 1996, 3(10), 868-873.
[http://dx.doi.org/10.1038/nsb1096-868] [PMID: 8836104]
[45]
Chen, E.; Everett, M.L.; Holzknecht, Z.E.; Holzknecht, R.A.; Lin, S.S.; Bowles, D.E.; Parker, W. Short-lived α-helical intermediates in the folding of β-sheet proteins. Biochemistry, 2010, 49(26), 5609-5619.
[http://dx.doi.org/10.1021/bi100288q] [PMID: 20515035]
[46]
Matsumura, Y.; Shinjo, M.; Mahajan, A.; Tsai, M.D.; Kihara, H. α-Helical burst on the folding pathway of FHA domains from Rad53 and Ki67. Biochimie, 2010, 92(8), 1031-1039.
[http://dx.doi.org/10.1016/j.biochi.2010.05.001] [PMID: 20466033]
[47]
Lim, V.I. Polypeptide chain folding through a highly helical intermediate as a general principle of globular protein structure formation. FEBS Lett., 1978, 89(1), 10-14.
[http://dx.doi.org/10.1016/0014-5793(78)80511-0] [PMID: 658388]
[48]
Vymětal, J.; Bednárová, L.; Vondrášek, J. Effect of TFE on the helical content of AK17 and HAL-1 peptides: Theoretical insights into the mechanism of helix stabilization. J. Phys. Chem. B, 2016, 120(6), 1048-1059.
[http://dx.doi.org/10.1021/acs.jpcb.5b11228] [PMID: 26786280]
[49]
Dammers, C.; Gremer, L.; Reiß, K.; Klein, A.N.; Neudecker, P.; Hartmann, R.; Sun, N.; Demuth, H.U.; Schwarten, M.; Willbold, D. Structural analysis and aggregation propensity of pyroglutamate Aβ(3-40) in aqueous trifluoroethanol. PLoS One, 2015, 10(11)e0143647
[http://dx.doi.org/10.1371/journal.pone.0143647] [PMID: 26600248]
[50]
Banerjee, V.; Das, K.P. Modulation of pathway of insulin fibrillation by a small molecule helix inducer 2,2,2-trifluoroethanol. Colloids Surf. B Biointerfaces, 2012, 92, 142-150.
[http://dx.doi.org/10.1016/j.colsurfb.2011.11.036] [PMID: 22178183]
[51]
Anderson, V.L.; Ramlall, T.F.; Rospigliosi, C.C.; Webb, W.W.; Eliezer, D. Identification of a helical intermediate in trifluoroethanol-induced alpha-synuclein aggregation. Proc. Natl. Acad. Sci. USA, 2010, 107(44), 18850-18855.
[http://dx.doi.org/10.1073/pnas.1012336107] [PMID: 20947801]
[52]
Abedini, A.; Raleigh, D.P. A critical assessment of the role of helical intermediates in amyloid formation by natively unfolded proteins and polypeptides. Protein Eng. Des. Sel., 2009, 22(8), 453-459.
[http://dx.doi.org/10.1093/protein/gzp036] [PMID: 19596696]
[53]
Rezaei-Ghaleh, N.; Ebrahim-Habibi, A.; Moosavi-Movahedi, A.A.; Nemat-Gorgani, M. Role of electrostatic interactions in 2,2,2-trifluoroethanol-induced structural changes and aggregation of α-chymotrypsin. Arch. Biochem. Biophys., 2007, 457(2), 160-169.
[http://dx.doi.org/10.1016/j.abb.2006.10.031] [PMID: 17141725]
[54]
Srisailam, S.; Kumar, T.K.S.; Rajalingam, D.; Kathir, K.M.; Sheu, H.S.; Jan, F.J.; Chao, P.C.; Yu, C. Amyloid-like fibril formation in an all β-barrel protein. Partially structured intermediate state(s) is a precursor for fibril formation. J. Biol. Chem., 2003, 278(20), 17701-17709.
[http://dx.doi.org/10.1074/jbc.M300336200] [PMID: 12584201]
[55]
Pallarès, I.; Vendrell, J.; Avilés, F.X.; Ventura, S. Amyloid fibril formation by a partially structured intermediate state of alpha-chymotrypsin. J. Mol. Biol., 2004, 342(1), 321-331.
[http://dx.doi.org/10.1016/j.jmb.2004.06.089] [PMID: 15313627]
[56]
Holm, N.K.; Jespersen, S.K.; Thomassen, L.V.; Wolff, T.Y.; Sehgal, P.; Thomsen, L.A.; Christiansen, G.; Andersen, C.B.; Knudsen, A.D.; Otzen, D.E. Aggregation and fibrillation of bovine serum albumin. Biochim. Biophys. Acta, 2007, 1774(9), 1128-1138.
[http://dx.doi.org/10.1016/j.bbapap.2007.06.008] [PMID: 17689306]
[57]
Fezoui, Y.; Teplow, D.B. Kinetic studies of amyloid β-protein fibril assembly. Differential effects of alpha-helix stabilization. J. Biol. Chem., 2002, 277(40), 36948-36954.
[http://dx.doi.org/10.1074/jbc.M204168200] [PMID: 12149256]
[58]
Anderson, V.L.; Webb, W.W. A desolvation model for trifluoroethanol-induced aggregation of enhanced green fluorescent protein. Biophys. J., 2012, 102(4), 897-906.
[http://dx.doi.org/10.1016/j.bpj.2012.01.036] [PMID: 22385861]
[59]
Shammas, S.L.; Knowles, T.P.J.; Baldwin, A.J.; Macphee, C.E.; Welland, M.E.; Dobson, C.M.; Devlin, G.L. Perturbation of the stability of amyloid fibrils through alteration of electrostatic interactions. Biophys. J., 2011, 100(11), 2783-2791.
[http://dx.doi.org/10.1016/j.bpj.2011.04.039] [PMID: 21641324]
[60]
Santangelo, M.G.; Foderà, V.; Militello, V.; Vetri, V. Back to the oligomeric state: pH-induced dissolution of concanavalin A amyloid-like fibrils into non-native oligomers. RSC Advances, 2016, 2016(6), 75082-75091.
[http://dx.doi.org/10.1039/C6RA16690C]
[61]
Jordens, S.; Adamcik, J.; Amar-Yuli, I.; Mezzenga, R. Disassembly and reassembly of amyloid fibrils in water-ethanol mixtures. Biomacromolecules, 2011, 12(1), 187-193.
[http://dx.doi.org/10.1021/bm101119t] [PMID: 21142059]
[62]
Di Carlo, M.G.; Vetri, V.; Buscarino, G.; Leone, M.; Vestergaard, B.; Foderà, V. Trifluoroethanol modulates α-synuclein amyloid-like aggregate formation, stability and dissolution. Biophys. Chem., 2016, 216, 23-30.
[http://dx.doi.org/10.1016/j.bpc.2016.06.003] [PMID: 27372900]
[63]
Vetri, V.; Piccirilli, F.; Krausser, J.; Buscarino, G.; Łapińska, U.; Vestergaard, B.; Zaccone, A.; Foderà, V. Ethanol controls the self-assembly and mesoscopic properties of human insulin amyloid spherulites. J. Phys. Chem. B, 2018, 122(12), 3101-3112.
[http://dx.doi.org/10.1021/acs.jpcb.8b01779] [PMID: 29488762]
[64]
Sharon, N.; Lis, H. Lectins as cell recognition molecules. Science, 1989, 246(4927), 227-234.
[http://dx.doi.org/10.1126/science.2552581] [PMID: 2552581]
[65]
Lis, H.; Sharon, N. Lectins: Carbohydrate-specific proteins that mediate cellular recognition. Chem. Rev., 1998, 98(2), 637-674.
[http://dx.doi.org/10.1021/cr940413g] [PMID: 11848911]
[66]
Campos, J.K.L.; Araújo, C.S.F.; Araújo, T.F.S.; Santos, A.F.S.; Teixeira, J.A.; Lima, V.L.M.; Coelho, L.C.B.B. Anti-inflammatory and antinociceptive activities of Bauhinia monandra leaf lectin. Biochim Open, 2016, 2, 62-68.
[http://dx.doi.org/10.1016/j.biopen.2016.03.001] [PMID: 29632839]
[67]
Chikalovets, I.V.; Mizgina, T.O.; Molchanova, V.I.; Ovcharenko, Y.S.; Chernikov, O.V. Isolation and characterization of lectin from the scallop Patinopecten yessoensis. Chem. Nat. Compd., 2017, 53, 717-721.
[http://dx.doi.org/10.1007/s10600-017-2098-9]
[68]
Sharon, N.; Lis, H. A century of lectin research (1888–1988). Trends Biochem. Sci., 1987, 12, 488-491.
[http://dx.doi.org/10.1016/0968-0004(87)90236-2]
[69]
Hendrickson, O.D.; Zherdev, A.V. Analytical application of lectins. Crit. Rev. Anal. Chem., 2018, 48(4), 279-292.
[http://dx.doi.org/10.1080/10408347.2017.1422965] [PMID: 29314902]
[70]
Fujita-Yamaguchi, Y.; Oishi, K.; Suzuki, K.; Imahori, K. Studies on carbohydrate binding to a lectin purified from Streptomyces sp. Biochim. Biophys. Acta, 1982, 701(1), 86-92.
[http://dx.doi.org/10.1016/0167-4838(82)90315-6] [PMID: 7055588]
[71]
Yamasaki, N.; Absar, N.; Funatsu, G. States of tryptophan residues in castor bean hemagglutinin: the perturbing effects of solvents on tryptophans in hemagglutinin and its complexes as analyzed by UV-difference spectroscopy. J. Biochem., 1987, 101(3), 761-766.
[http://dx.doi.org/10.1093/jb/101.3.761] [PMID: 3597351]
[72]
Stillmark, H. 1888.
[73]
Houston, L.L.; Dooley, T.P. Binding of two molecules of 4-methylumbelliferyl galactose or 4-methylumbelliferyl N-acetylgalactosamine to the B chains of ricin and Ricinus communis agglutinin and to purified ricin B chain. J. Biol. Chem., 1982, 257(8), 4147-4151.
[PMID: 7068628]
[74]
Spande, T.F.; Witkop, B. Determination of the tryptophan content of proteins with N- bromosuccinimide. Methods Enzymol., 1967, 11, 498-506.
[http://dx.doi.org/10.1016/S0076-6879(67)11060-4]
[75]
Naseem, F.; Khan, R.H. Fluoroalcohol-induced stabilization of the α-helical intermediates of lentil lectin: implication for non-hierarchical lectin folding. Arch. Biochem. Biophys., 2004, 431(2), 215-223.
[http://dx.doi.org/10.1016/j.abb.2004.07.029] [PMID: 15488470]
[76]
Xu, Q.; Keiderling, T.A. Trifluoroethanol-induced unfolding of concanavalin A: equilibrium and time-resolved optical spectroscopic studies. Biochemistry, 2005, 44(22), 7976-7987.
[http://dx.doi.org/10.1021/bi050003u] [PMID: 15924416]
[77]
Naseem, F.; Khan, R.H. Characterization of a common intermediate of pea lectin in the folding pathway induced by TFE and HFIP. Biochim. Biophys. Acta, 2005, 1723(1-3), 192-200.
[http://dx.doi.org/10.1016/j.bbagen.2005.02.009] [PMID: 15840464]
[78]
Naseem, F.; Khan, R.H. Transition of a compact intermediate state of pea lectin under the influence of different molecular weight polyethylene glycols. Protein J., 2007, 26(6), 415-421.
[http://dx.doi.org/10.1007/s10930-007-9081-4] [PMID: 17516155]
[79]
Naseem, F.; Khan, R.H. Pea lectin in alkaline conditions: formation of molten globule-like intermediate and its structural and thermal studies under the influence of hexafluoroisopropanol. Protein Pept. Lett., 2008, 15(6), 606-611.
[http://dx.doi.org/10.2174/092986608784966868] [PMID: 18680456]
[80]
Naseem, F.; Khan, R.H. Structural intermediates of acid unfolded Con-A in different co-solvents: fluoroalcohols and polyethylene glycols. Int. J. Biol. Macromol., 2008, 42(2), 158-165.
[http://dx.doi.org/10.1016/j.ijbiomac.2007.11.001] [PMID: 18096218]
[81]
Dev, S.; Khan, R.H.; Surolia, A. 2,2,2-Trifluoroethanol-Induced structural change of peanut agglutinin at different pH: A comparative account. IUBMB Life, 2006, 58(8), 473-479.
[http://dx.doi.org/10.1080/15216540600818150] [PMID: 16916785]
[82]
Fatima, S.; Ahmad, B.; Khan, R.H. Fluoroalcohols induced unfolding of Succinylated Con A: native like β-structure in partially folded intermediate and α-helix in molten globule like state. Arch. Biochem. Biophys., 2006, 454(2), 170-180.
[http://dx.doi.org/10.1016/j.abb.2006.08.014] [PMID: 16970906]
[83]
Loris, R.; Hamelryck, T.; Bouckaert, J.; Wyns, L. Legume lectin structure. Biochim. Biophys. Acta, 1998, 1383(1), 9-36.
[http://dx.doi.org/10.1016/S0167-4838(97)00182-9] [PMID: 9546043]
[84]
Loris, R.; Van Overberge, D.; Dao-Thi, M.H.; Poortmans, F.; Maene, N.; Wyns, L. Structural analysis of two crystal forms of lentil lectin at 1.8 A resolution. Proteins, 1994, 20(4), 330-346.
[http://dx.doi.org/10.1002/prot.340200406] [PMID: 7731952]
[85]
Kelly, S.M.; Jess, T.J.; Price, N.C. How to study proteins by circular dichroism. Biochim. Biophys. Acta, 2005, 1751(2), 119-139.
[http://dx.doi.org/10.1016/j.bbapap.2005.06.005] [PMID: 16027053]
[86]
Edelman, G.M.; Cunningham, B.A.; Reeke, G.N., Jr; Becker, J.W.; Waxdal, M.J.; Wang, J.L. The covalent and three-dimensional structure of concanavalin A. Proc. Natl. Acad. Sci. USA, 1972, 69(9), 2580-2584.
[http://dx.doi.org/10.1073/pnas.69.9.2580] [PMID: 4506778]
[87]
Hardman, K.D.; Ainsworth, C.F. Structure of concanavalin A at 2.4-A resolution. Biochemistry, 1972, 11(26), 4910-4919.
[http://dx.doi.org/10.1021/bi00776a006] [PMID: 4638345]
[88]
Deacon, A.; Gleichmann, T.; Kalb, A.J.; Price, H.; Raftery, J.; Bradbrook, G.; Yariv, J.; Helliwell, J.R. The structure of concanavalin A and its bound solvent determined with small- molecule accuracy at 0.94Å resolution. J. Chem. Soc., Faraday Trans., 1997, 93, 4305-4312.
[http://dx.doi.org/10.1039/a704140c]
[89]
Mandal, P.; Mandal, D.K. Localization and environment of tryptophans in different structural states of concanavalin A. J. Fluoresc., 2011, 21(6), 2123-2132.
[http://dx.doi.org/10.1007/s10895-011-0913-4] [PMID: 21748239]
[90]
Sreerama, N.; Venyaminov, S.Y.; Woody, R.W. Estimation of the number of α-helical and β-strand segments in proteins using circular dichroism spectroscopy. Protein Sci., 1999, 8(2), 370-380.
[http://dx.doi.org/10.1110/ps.8.2.370] [PMID: 10048330]
[91]
Jackson, M.; Mantsch, H.H. The use and misuse of FTIR spectroscopy in the determination of protein structure. Crit. Rev. Biochem. Mol. Biol., 1995, 30(2), 95-120.
[http://dx.doi.org/10.3109/10409239509085140] [PMID: 7656562]
[92]
Einspahr, H.; Parks, E.H.; Suguna, K.; Subramanian, E.; Suddath, F.L. The crystal structure of pea lectin at 3.0-A resolution. J. Biol. Chem., 1986, 261(35), 16518-16527.
[PMID: 3782132]
[93]
Banerjee, R.; Mande, S.C.; Ganesh, V.; Das, K.; Dhanaraj, V.; Mahanta, S.K.; Suguna, K.; Surolia, A.; Vijayan, M. Crystal structure of peanut lectin, a protein with an unusual quaternary structure. Proc. Natl. Acad. Sci. USA, 1994, 91(1), 227-231.
[http://dx.doi.org/10.1073/pnas.91.1.227] [PMID: 8278370]
[94]
Chandra, N.R.; Prabu, M.M.; Suguna, K.; Vijayan, M. Structural similarity and functional diversity in proteins containing the legume lectin fold. Protein Eng., 2001, 14(11), 857-866.
[http://dx.doi.org/10.1093/protein/14.11.857] [PMID: 11742104]
[95]
Decastel, M.; De Boeck, H.; Goussault, Y.; De Bruyne, C.K.; Loontiens, F.G.; Frénoy, J.P. Effect of pH on oligomeric equilibrium and saccharide-binding properties of peanut agglutinin. Arch. Biochem. Biophys., 1985, 240(2), 811-819.
[http://dx.doi.org/10.1016/0003-9861(85)90090-6] [PMID: 4026307]
[96]
Molla, A.R.; Mandal, D.K. Trifluoroethanol-induced conformational change of tetrameric and monomeric soybean agglutinin: role of structural organization and implication for protein folding and stability. Biochimie, 2013, 95(2), 204-214.
[http://dx.doi.org/10.1016/j.biochi.2012.09.011] [PMID: 23022144]
[97]
Ghosh, M.; Mandal, D.K. Analysis of equilibrium dissociation and unfolding in denaturants of soybean agglutinin and two of its derivatives. Int. J. Biol. Macromol., 2001, 29(4-5), 273-280.
[http://dx.doi.org/10.1016/S0141-8130(01)00175-1] [PMID: 11718824]
[98]
Molla, A.R.; Maity, S.S.; Ghosh, S.; Mandal, D.K. Organization and dynamics of tryptophan residues in tetrameric and monomeric soybean agglutinin: studies by steady-state and time-resolved fluorescence, phosphorescence and chemical modification. Biochimie, 2009, 91(7), 857-867.
[http://dx.doi.org/10.1016/j.biochi.2009.04.006] [PMID: 19383525]
[99]
Olsen, L.R.; Dessen, A.; Gupta, D.; Sabesan, S.; Sacchettini, J.C.; Brewer, C.F. X-ray crystallographic studies of unique cross-linked lattices between four isomeric biantennary oligosaccharides and soybean agglutinin. Biochemistry, 1997, 36(49), 15073-15080.
[http://dx.doi.org/10.1021/bi971828+] [PMID: 9398234]
[100]
Svensson, C.; Teneberg, S.; Nilsson, C.L.; Kjellberg, A.; Schwarz, F.P.; Sharon, N.; Krengel, U. High-resolution crystal structures of Erythrina cristagalli lectin in complex with lactose and 2′-α-L-fucosyllactose and correlation with thermodynamic binding data. J. Mol. Biol., 2002, 321(1), 69-83.
[http://dx.doi.org/10.1016/S0022-2836(02)00554-5] [PMID: 12139934]
[101]
Sen, D.; Mandal, D.K. A comparative study of unfolding of Erythrina cristagalli Lectin in chemical denaturant and Fluoroalcohols. Protein Pept. Lett., 2014, 21(1), 80-89.
[http://dx.doi.org/10.2174/09298665113209990088] [PMID: 23964743]
[102]
Mandal, P.; Molla, A.R.; Mandal, D.K. Denaturation of bovine spleen galectin-1 in guanidine hydrochloride and fluoroalcohols: structural characterization and implications for protein folding. J. Biochem., 2013, 154(6), 531-540.
[http://dx.doi.org/10.1093/jb/mvt084] [PMID: 24037640]
[103]
Liao, D.I.; Kapadia, G.; Ahmed, H.; Vasta, G.R.; Herzberg, O. Structure of S-lectin, a developmentally regulated vertebrate β-galactoside-binding protein. Proc. Natl. Acad. Sci. USA, 1994, 91(4), 1428-1432.
[http://dx.doi.org/10.1073/pnas.91.4.1428] [PMID: 8108426]

Rights & Permissions Print Export Cite as
© 2024 Bentham Science Publishers | Privacy Policy